异型轧辊数控车床切削进给系统的设计理论及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轧辊是轧机的重要部件之一,是轧制作业的主要变形模具,其质量直接决定了轧制产品的质量。而异型轧辊属于非圆截面零件,由于其复杂的截面形状,较高的形位、尺寸精度,以及较差的加工工艺性,对加工设备的性能提出了更高的要求。如何提高复杂曲面异型轧辊的加工质量、加工效率,降低成本,已成为冶金机械领域中备受关注的难点和热点之一。
     本课题以异型轧辊数控专用车床设计开发中的关键技术为切入点,利用曲线拟合理论、机械运动学、动力学理论、优化方法及有限元方法等手段,较深入地研究了异型轧辊数控专用车床的进给系统的设计理论和关键技术。取得了以下主要创新性成果:
     1.对异型轧辊横截面外轮廓曲线进行了分析与拟合,给出了异型轧辊环状孔型曲线的解析式;依据孔型曲线的特性,提出了分段逼近的策略和逼近方法。
     2.提出了异型轧辊数控车床采用双径向进给系统,并对进给系统刀具的运动特性进行了分析,利用ADAMS软件对刀具的径向进给运动进行了仿真,确定了刀具径向进给参数。
     3.完成了进给系统与主轴系统的运动学匹配设计。并得出两点结论:一是在满足加工精度的前提下,应尽可能地降低主轴转速,使径向进给速度和加速度具有较大设计空间;二是刀具的进给速度和加速度较高时,径向进给系统必须具有较高的刚度、固有频率和合适的阻尼,且具有较小的运动惯量、时间常数和弹性变形。
     4.建立了进给系统的结构模型和动力学模型。进行了动态性能仿真,并具体分析了传动系统各结构参数对系统动态性能的影响,优化了相关结构参数,满足了实际生产的要求。
     本课题是针对异型轧辊的加工提出的,其研究成果对非圆类零件车削加工技术的研究同样具有参考价值和指导意义。
The roll is the most important part of the rolling mill and the most important deforming tool for the work piece. So the shape and the dimension accuracy of the roll are the most important elements for the machining quality of the work piece and can directly affect the rationality of manufacturing technique and economics of products. Non-circular cross-section rollers belong to the non-circular cross-section parts. Owing to their unique complexity of the outer surface contours, high request for precision of size and poor mechanical processing techniques, they have putted forward the very high request towards the dynamic properties of feed system on the CNC machine tool. So how to manufacture non-circular cross-section rollers efficiently and accurately has become one of the hot and knotty issues in the research of mechanical processing about non-circular cross-section parts.
     Based on the reality of poor processing precision and low processing efficiency of non-circular cross-section parts with the ordinary processing methods, the main task of this paper is to improve the dynamic properties of feed system on the CNC lathe by optimizing its related structure parameters. If this goal can be met by making an in-depth study, the feed system on the CNC lathe will satisfy requirements of production on quick response, high-precision and non-circular cross-section roller varied can be manufactured efficiently and accurately by turning . The main research contents are as follows.
     1. The data of the outer surface contours of noncircular cross section roller is analyzed and the curve fitting of cross-sectional outlines is obtained. According to the characteristics of the outer surface contours, the method to approximate the contours curve is proposed.
     2. Double feed systems along the radius are proposed and the motion characteristics of the tool during manufacturing are analyzed concretely in theory at first. Then by the aid of ADAMS which is used for dynamic analysis, the values of the feed parameters of the tool in processing are solved.
     3. The kinematics matching design of the feed system and the principal axis system is finished and two conclusions are obtained. First, on the condition of satisfying the machining precision, the rotational velocity of the principal axis should be cut down to enlarge the design space of the feed velocity and acceleration. Secondly, when the feed velocity and acceleration get a higher level, the radial feed system should possesses higher stiffness, higher inherent frequency, appropriate damp, lower inertia, minor time constant and minor flexibility deformation.
     4. The structure model and the dynamics model are built. The dynamic properties of feed system are simulated and analyzed. In addition, the impact on the dynamic properties which structure parameters of the feed system bring is analyzed concretely. The optimization objective functions are carried out and the simulation in relation to the optimization result are given. Simulation results indicate that the dynamic and static performance of the optimized feed system is superior to that of the original form and can meet the demand of production.
     In sum, the research results of this article are not only applicable to the production of non-circular cross-section rollers, but hold true for the production of all non-circular cross-section parts. So the research results of this paper have certain reference significance and practical utility towards the production of non-circular cross-section parts.
引文
[1] Jimeno A., Sánchez, J.L., Mora H. FPGA-based tool path computation: An application for shoe last machining on CNC lathes. Computers in Industry, 2006, 57(2): 103-111
    [2] Omirou Sotiris, Nearchou Andreas. An epitrochoidal pocket--- A new canned cycle for CNC milling machines. Robotics and Computer-Integrated Manufacturing, 2009, 25(1):73-80
    [3] Lin Faa-Jeng, Shieh Hsin-Jang, Shieh Po-Huang. An adaptive recurrent-neural-network motion controller for X-Y table in CNC machine. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006, 36 (2): 286-299
    [4]上海市职业技术教育课程改革与教材建设委员会组编.数控机床原理及应用.北京:机械工业出版社,2001
    [5] Qin H, Ohoka M, Yamamoto J. Manufacturing accuracy of contours with a machining center 1994, (31): 27-34
    [6]王爱玲.现代数控机床结构与设计.北京:兵器工业出版社,1999
    [7]董建国.数控机床伺服系统刚度对定位精度影响的研究[硕士学位论文].兰州理工大学,2007
    [8]文怀兴,夏田编著.数控机床系统设计.北京:化学工业出版社,2005
    [9] Kynast R.Digital Drive Interface, SERCOS Interface.Vogel Verlag, Berlin, 2004: 10-13
    [10]张曙.开放式数控系统的现状和趋势.数控与软件,2007,2(1):84-87
    [11] R.Telrz, K.Urbasik, Intelligent, open Architecture Control for Machining Systems. Manufacturing Science and Engineering, 1994, 68 (2): 851-861
    [12]白恩远.现代数控机床伺服及检测技术.第2版.北京:国防工业出版社,2005
    [13]畅越星.数控落地铣镗床主轴箱动力学分析和结构设计研究[硕士学位论文].兰州理工大学:2007
    [14] A.Miles, High Performance Machining, Hanser Gardner Publication, Cincinnati, 1998
    [15] K.A. Pasch, W.P. Seering, On the drive systems for high-performance machines. ASME J. of Mech. Transm. And Autom in Design, 1984, 106(1) : 102-108
    [16]谭建成.数控系统伺服电机控制技术发展动向.机电工程技术,2003, 32(5):11-13
    [17] Ruiz-Huerta Leopoldo, Baidyk Tatiana, Kussul Ernst. Geometrical error analysis of a CNC micro-machine tool. Mechatronics, 2007, 17(4): 231-243
    [18] Hosseinkhani Y., Akbari J., Vafaeesefat A. Penetration-elimination method for five-axis CNC machining of sculptured surfaces. International Journal of Machine Tools and Manufacture, 2007, 47(10): 1625-1635
    [19] J.Tlusty. High-speed machining. Annals of the CIRP, 1993, 42(2): 733-738
    [20] Seamus Gordon, Michael T.Hillery. Development of a high-speed CNC cutting machine using Linear motor. Joural of Materials Processing Technology, 2005, 166(2) : 321-329
    [21] Min Hu, Zhaoying Zhou, Yong Li, Hejun Du. Development of a linear electrostrictive servo motor.Journal of the International Societies for Precision Engineering and Nanotechnology, 2001, 25(4) : 316-320
    [22] Stephen Czajkowski. Linear motors: The future of high-performance machine tools. American Machinist, Sept.1996: 44-48
    [23]夏加宽,刘晓霞,王成元等.机床进给用直接驱动直线伺服电动机.制造技术与机床,2003,4:8-11
    [24]林胜,林春庭.高速数控机床现状和发展趋势.精密制造与自动化,2004(1):7-8
    [25]张春良,陈子辰,梅德庆.直线电机伺服进给系统及其关键技术问题.组合机床与自动化加工技术.2001(11):37-39
    [26] X.Wang.Experimental Research on the Linear Motor Micro-feed Device with High-Frequency Response, Long Travel and High Accuracy. Annals of the CIRP, 1991, 40(1): 379-382
    [27]孙俊兰,姜大志.异型截面零件的切削加工技术.工具技术,1999,33(1):19-21
    [28]邓中亮,王先逵.异形零件的几种车削加工方法.机械制造,1994(1):14-15
    [29]邓中亮.非圆截面工件加工法的发展.制造技术与机床,1996(9):48-49
    [30] Nancy Brooke. Turning out piston assembles. American Machinist, 1982, 126(2) : 118-119
    [31] Rakowski Leo R. New piston line knocks Chrysler's-block off. Machine and Tool, 1988, 83(7): 34-36
    [32]张树堂,周积智.未来轧钢技术创新的展望.轧钢,2003(1):10-13
    [33]师江伟,杨涤心,倪峰等.高速钢复合轧辊研究进展.铸造设备研究,2005(1):28-31
    [34]李郝林,方键编.机床数控技术.北京:机械工业出版社,2000
    [35] Stoer J. and Bulirsch R. Introduction to Numerical Analysis. New York, Springer-Verlag, 1980
    [36] Burton K.AU. Closing the loop on hydraulic control. Machine Design, 1999 (9) :93-97
    [37]陈屹,谢华编著.现代设计方法及其应用.北京:国防工业出版社,2004
    [38] Pramanik A., Zhang L.C., Arsecularatne J.A. An FEM investigation into the behavior of metal matrix composites: Tool-particle interaction during orthogonal cutting International. Journal of Machine Tools and Manufacture, 2007, 47(10): 1497-1506
    [39] Lei W.T., Paung I.M.,Yu Chen-Chi. Total ballbar dynamic tests for five-axis CNC machine tools. International Journal of Machine Tools and Manufacture, 2009, 49(6): 488-499
    [40] Yih-Fong Tzeng, Ming-Der Jean. Dimensional quality optimization of high-speed CNC milling process with dynamic quality characteristic. Robotics and Computer-Integrated Manufacturing, 2005, 21(6): 506-517
    [41] Evstropov G.M. Determining the metal pressure on the rollers of a longitudinal-rolling mill. Steel in Translation, 2008, 38(2): 165-170
    [42]李庆扬,王能超,易大义编.数值分析.北京:清华大学出版社,2001
    [43]祝小军.非圆柱体车削的进给运动分析.盐城工学院学报,2000(9):14-17
    [44]邓中亮,王先逵.基于傅立叶级数的非圆截面车削进给运动特性分析.机械工程学报,1999,35(2):14-16
    [45] Vanin V.A., Kolodin A.N. Kinematic structure of gear-cutting machine tools based on a hydraulic step drive for the production of noncircular gears. Russian Engineering Research, 2009, 29(3) :291-297
    [46] Davim J. P., Maranh?o C., Jackson, M.J. FEM analysis in high speed machining of aluminium alloy (Al7075-0) using polycrystalline diamond (PCD) and cemented carbide (K10) cutting tools. International Journal of Advanced Manufacturing Technology, 2008, 39(11): 1093-1100
    [47] Fang G., Zeng P. Fem investigation for orthogonal cutting process with grooved tools-technical communication. Machining Science and Technology, 2007, 11(4) :561-572
    [48]程耀东.机械振动学(线性系统).杭州:浙江大学出版社,1988
    [49]李增刚编著.ADAMS入门详解与实例.北京:国防工业出版社,2007
    [50]杨橚,唐恒龄,廖伯瑜.机床动力学.北京:机械工业出版社,1983
    [51]廖伯瑜,周新民,尹志宏著.现代机械动力学及其工程应用—建模、分析、仿真、修改、控制、优化.北京:机械工业出版社,2003
    [52]陈婵娟主编.数控车床设计.北京:化学工业出版社,2006
    [53] M. Ebrahimi, R. Whalley. Analysis, modeling and simulation of stiffness in machine tool drives. Computers and Industrial Engineering, 2000, 38(1) :93-105
    [54]廖效果,朱启逑主编.数字控制机床.武汉:华中科技大学出版社,2001
    [55] Walford T. L., Stone B J. The measurement of the radial stiffness of rolling element bearing under oscillating condition. Journal Mechanical Engineering Sciences, 1980,22(4) : 97-102
    [56] George Younkin. Modeling machine tool feed servo drive using simulation techniques to predict performance. IEEE Transactions on Industry Applications 1999, 27(2): 268-274
    [57] Kaan Erkorkmaz,Yusuf Altintas. High speed CNC system design. Part II : Modeling and identification of feed drives. Inernational Journal of Machine Manufacture, 2001, 41(10): 1487-1509
    [58]王培功.XK717数控铣床进给传动系统的动力学建模及动态优化设计[硕士学位论文].浙江工业大学,2005
    [59] Karayel Durmus1. Prediction and control of surface roughness in CNC lathe using artificial neural network. Journal of Materials Processing Technology, 2009, 209(7):3125-3137
    [60]邰晓辉.XK717数控铣床进给传动系统的动力学优化[硕士学位论文].浙江工业大学,2006
    [61] Min-Seok Kim, Sung-Chong Chung. A systematic approach to design high-performance feed drive Systems. Machine Tools & Manufacture, 2005, 45: 1421-1435
    [62] Antoine Dequidt, Jean-Marie Castelain, Etienne Valdes. Mechanical pre-design of high performance motion servomechanisms. Mechanism and Machine Theory, 2000, 35(8): 1047-1063
    [63] D. Surdilovic, M. Vukobratovic. One method for efficient dynamic modeling of flexible manipulators. Mechanism and Machine Theory, 1996, 31(3): 297-315
    [64]杨勇.数控伺服系统动态特态仿真及参数优化[硕士学位论文].南京理工大学,2005
    [65]陈豪.基于MATLAB的滚珠丝杠动力学建模与仿真分析.甘肃科技,2007,23(4):131
    [66]杨叔子,杨克冲,吴波等编著.机械工程控制基础.武汉:华中科技大学出版社,2002
    [67] M.C. Good, L.M. Sweet, K.L. Strobel. Dynamic models for control system design of integrated robot and drive systems, ASME, Transactions, Journal of Dynamic Systems, Measurement, and Control, 1985, 107: 53-59
    [68] K.H. Low, M.Vidyasager. Dynamic Systems, Meas. Control, 1988, 110: 175-181
    [69]潘湘高.基于Matlab Ltiview的控制系统分析方法.计算机时代,2003(3):37-38
    [70]李钟慎.Ltiview工具在MIMO系统分析中的应用.计算机测量与控制,2002,10(9):617-618
    [71]陈奕.机械结构优化研究与实践.设计与研究,2007(6):35-36
    [72] S. Cetinkunt. Optimal design issues in high-speed high-precision motion servo systems, Mechatronics 1991, 1(2): 187-201
    [73] J.S. Arora. Introduction to Optimum Design, McGraw-Hill, Inc.,Singapore, 1989
    [74]李芳,凌道盛.工程结构优化设计发展综述.工程设计学报,2002(5):229-235
    [75]浦昭邦,王宝光主编.测控仪器设计.北京:机械工业出版社,2001
    [76] H.Nakazawa. Principles of precision engineering, Oxford University Press, New York, 1994
    [77]王昀睿,郭卫.用MATLAB优化工具箱求解机械最优化问题.煤矿机械,2000(7):6-7
    [78]飞思科技产品研发中心编著.MATLAB6.5辅助优化计算与设计.北京:电子工业出版社,2003
    [79]席平原.应用MATLAB工具箱实现机械优化设计.机械设计与研究,2003,19(3):40-41
    [80] J.Koski. Multicriterion optimization in structural design, in: New Directions in Optimum Structural Design, Wiley, New York, 1984
    [81]李琳.数控机床交流伺服控制系统的设计与仿真[硕士学位论文].三峡大学:2006
    [82]计亚平.数控机床伺服系统参数选择及其刚度的研究.机电工程,1998(3):33
    [83]吴孔友.机夹可转位车刀的结构、几何参数及切削性能分析.工具技术,2006,40(6):49-51
    [84]解海滨.高速钢轧辊的加工特性与切削刀具研究.工具技术,2008.24(7).65-68
    [85]蒋友谅.非线性有限元法.北京:北京理工大学出版社,1988
    [86]方刚,曾攀.金属正交切削工艺的有限元模拟.机械科学与技术,2003(4):641-645
    [87]董丽华,袁哲俊,李振加.铣刀片的应力场分析.工具技术,1999,33(3):8-l1
    [88] Demirhan Necdet, Kanber Bahattin. Stress and displacement distributions on cylindrical roller bearing rings using FEM. Mechanics Based Design of Structures and Machines, 2008, 36(1) : 86-102
    [89] Gu Lizhi, Long Zeming, Cao Liwen. Theoerticla prediction of tool-cihp contact length in orthogonal metal machining by computer simulation. Cihnese Journal of Mechanical Enginerign, 2002(3): 233-327
    [90]陈艺,张子军,潘明.结构优化设计&有限元分析在机械设计中的应用.现代农业装备,2007(5):40-45
    [91] Bobukh V.I., Sukov G.S., Bobukh I.A., Satonin, A.V. Damping capacity of the roller-type hinges of spindles in the drive rolls of rolling mills. Metallurgist, 2008, 52(9): 524-529

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700