基于预测控制的汽油发动机怠速控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一直以来,怠速工况是发动机工作的重要工况之一,对于提高汽油发动机的燃油经济性、降低排放具有十分重要的意义。这主要是由于车辆在交通密集度大的道路上行驶时,约有30%的燃油消耗在怠速工况中,并且怠速排放CO和HC量占总排放量的70%左右。因而,怠速控制问题成为发动机控制技术中的一项最重要最基本的内容。
     本文根据发动机怠速控制系统的特点,归纳总结了发动机怠速工况下的各种建模方法和控制方法,在平均值模型的基础上建立发动机怠速工况下的非线性混杂系统模型。考虑到发动机怠速工况下模型的特点,以及在整个控制过程中不可避免地存在输入约束和状态约束的特点,文中采用预测控制策略设计了发动机怠速控制器。首先是根据发动机怠速工况的简化模型,采用二次型目标函数设计了基于预测控制策略的怠速控制器,同时给出了闭环系统的稳定性条件;然后利用∞-范数形式的目标函数,将发动机怠速控制问题转换成了带有约束条件的线性规划(LP)问题,并采用终端等式约束的方法来保证系统的稳定性;最后采用准无限时域非线性预测控制策略设计了非线性怠速控制器,在终端域的基础上引入了终端惩罚项,并通过离线求解一个Lyapunov方程来获得该终端惩罚矩阵,利用有限时域控制令系统进入平衡点附近的不变集(终端域),从而保证了该非线性系统的渐近稳定性。
     文中对所提的各种控制算法进行了明确的论证,并对基于不同控制算法的发动机怠速控制器进行了大量的仿真实验,实验结果显示设计的控制器具有较好的控制性能,对不确定干扰具有良好的鲁棒性。
Idle Speed Control (ISC) represents one of the most important and basic automo-tive control problems, it has relation with often-conflicting requirements of improved fuel economy and reduced emissions. On the average, about fuel consumption 30% and emis-sion 70% of CO and HC come from engine idle speed condition, when vehicles run on heavy traffic load road. In general, the engine idle speed should be as low as as possible for improved fuel economy; however, the low vehicle speeds will increase the emission; and meanwhile, the unpredictable load variations coming from the intermittent use of devices powered by engine, such as the air conditioning system and the steering wheel servo-mechanism, result in stalling. So, the idle speed control objective is maintaining the engine speed as close as possible to desired value in order to minimize fuel consumption, reduce the emission, and reject the load.
     There inevitably exist input constraints (the spark advance angle is bounded to avoid knock and misfire) and state constraints (avoid manifold pressure rising too much and to limit the control range for safety reasons) in the idle speed mode; meanwhile, engine idle model has nonlinear and hybrid nature of combination of time-domain and event-based behaviors, so we focus on the model predictive control for gasoline engine idle speed control in this paper.
     Firstly, a reasonable mathematics model of a SI four-cylinder four-stroke engine idle speed is built in order to effectively control engine idle speed system. Considering the good combustion quality of SI gasoline engine, assume that the air-fuel ratio A is 1, and ignore the modeling of fuel loop. While the air control path can provide large control authority, its disadvantage is that it is relatively slow,due to the intake manifold dynamics and subsequent intake-to-power-related delays. A much faster actuation path is provided through spark control, so the spark advance become another input variable for reducing delay. According to engine idle speed feature, based on the mean value models, present nonlinear hybrid model of engine in which both continuous and discrete time-domain as well as event-based phenomena are modeled in a separate but integrated manner in this paper. The following simulations show that the model is effective.
     Secondly, in the case of the ISC, the system variables changes should be relatively small by intention, a simple PWA version of the above nonlinear hybrid model in idle speed mode can be easily obtained by linearizing method. using PWA model, this chapter designs model predictive controller in which the quadratic cost function is minimized in order to obtained an optimal control sequence subject to input and state constraints. The first element of the optimal sequence is applied to system. At next time, the procedure is repeated by new measurement value. Furthermore, we discuss guaranteeing stability conditions of closed-loop system under terminal cost and terminal equality constraint, respectively. We can obtain the terminal weight matrix guaranteeing stability by solving a linear matrix inequality(LMI) transformed from nonlinear matrix inequality. And the controller design problem is discussed in the case of terminal equality constraints.
     And then, different norm presents different physical meaning in physic. The quadratic performance index which is used widely in model predictive control means power; and inf-norm describes the maximum amplitude conception, different cost function shows different performance. So, this paper presents the model predictive control strategy based on inf-norm cost function into engine idle speed control. The performance index amounts to the sum of a weighted inf-norm of the input and the state deviation from the origin. Therefore, the engine idle speed control problem comes down to linear programming problem with input and state constraints. We design the controller with terminal equality constraints for guaranteeing stability. Comparing the simulation results, it is found that quadratic MPC cost and MPC cost based on∞-norms have different effect to engine system.
     Finally, a quasi-infinite horizon nonlinear model predictive controller is designed for engine idle speed system. For the strong nonlinear engine system, it can not satisfy high performance requirement that linearizing model of engine is applied for controller design. In this chapter, nonlinear control is applied to design a engine idle speed controller. The terminal region and terminal penalty matrix can be calculated off-line so that reducing on-line computational burden and guaranteeing the asymptotic stability of closed-loop system. In order to validate the efficiencies of the proposed approaches, we give simulation results for each approach, which is discussed in detail from modeling, controller parameter choosing, disturbance attenuation testing. The simulation results indicate that the control effects with the proposed approaches are satisfactory.
     The formulation processes and the proof of mentioned approaches are presented in detail in this thesis. Moreover, we give simulation results for each approach, which is discussed in detail from modelling, controller parameter choosing, disturbance testing. The simulation results indicate that the control effects with the proposed approaches are satisfactory.
     Due to the limit of experiment equipment, we just give the theoretical analysis, numerical and hardware-in-loop simulation results. If the experiments are performed, we believe that more valuable conclusion can be obtained. Deeper research work needs to be done since some problems are still remain to be solved, such as how to reduce the the rank of the output feedback controller, or how to speed up the online calculation etc.
引文
[1]HROVAT D, SUN J. Models and control methodologies for IC engine idle speed control design[J]. control engine practice,1997,5(8):1093-1100.
    [2]CAVINA N, MINELLI G, CAGGIANO M. Model-Based Idle Speed Control for a High Performance Engine[J]. SAE Paper 2003-01-0358,2003.
    [3]HAZELL P A, FLOWER J. Discrete Modeling of Spark Ignition Engines for Control Purpose[J]. International Journal of Control,1971,13:625-632.
    [4]POWELL B. A Dynamic Model for Automotive Engine Control Analysis[C]//IEEE Conference on Decision and Control. USA:IEEE Press,1979:120-126.
    [5]BUTTS K, SIVASHANKAR N, SUN J. Feedforward and Feedback Design for Engine Idle Speed Control Using l1 Optimaization[C]//Proceedings of the American Control Conference. Seattle,USA:IEEE Press,1995.
    [6]MORRIS R, HOPKINS H G, BORCHERTS R. An Identification Approach to Throttle-Torque Modeling[J]. SAE Paper 1981-81-0448,1981.
    [7]SANKETI P R, ZAVALA J, HEDRICK J. Automotive Engine Hybrid Modelling and Control for Reduction of Hydrocarbon Emissions [J]. International Journal of Control,2006,79(5):449-464.
    [8]BALLUCHI A, BENVENUTI L, BENEDETTO M. Automotive Engine Control and Hybrid Systems:Challenges and Opportunities [J]. Proceedings of the IEEE,2000, 88:888-912.
    [9]HENDRICKS E, SORENSON S. Mean Value Modelling of Spark Ignition Engines[J]. SAE Automotive Engineering 900616,1990.
    [10]HENDRICKS E, CHEVALIER A, JENSEN M. Modeling of the Intake Manifold Filling Dynamics[J]. SAE Automotive Engineering 960037,1996.
    [11]杨家志等.发动机怠速模型及前馈补偿控制[J].American Control Conference,1997:19-23.
    [12]BALLUCHI. A, ZONCU. M. A Nonlinear Hybrid Model of a 4-Cylinder Engine for Idle Speed Control [J]. Test Case for the Computation and Control European Project,2004.
    [13]THORNHILL M, THOMPSON S, SINDANO H. A comparison of idle speed control schemes[J]. Control Engineering Practice,2000,8:519-530.
    [14]SANTIS. E D, BENEDETTO. M D D, BERARDI L. Computation of Maximal Safe Sets for Switching Systems[J]. IEEE Transactions on Automatic Control,2004, 49:184-195.
    [15]KIENCKE U, NIELSEN L. Automotive Control Systems[M]. Berlin:Springer-Verlag, 2000.
    [16]HOWELL M N, BEST M C. On-line PID tuning for engine idle-speed control using continuous action reinforcement learning automata[J]. Control Engineering Practice,2000,8:147-154.
    [17]SOLYOM S, ERIKSSON S. Mid-Ranging Scheme for Idle Speed Control of SI En-gines[J]. SAE Paper 2006-01-0608,2006.
    [18]POWELL B, POWERS W. Linear Quadratic Control Design for Nonlinear IC Engine Systems[C]//Proc. ISATA Conference. Stockholm, Sweden:IEEE Press,1981.
    [19]POWERS W, POWELL B, LAWSON G. Applications of Optimal Control and Kalman Filtering to Automotive Systems[J]. Int.J.of Vehicle Design,1983.
    [20]ABATE M, DINUNZIO V. Idle Speed Control Using Optimal Regulation [J]. SAE Paper 1990-90-5008,1990.
    [21]CARNEVALE C, MOSCHETTI A. Idle Speed Control with H∞ Technique[J]. SAE Paper 1993-93-0770,1990.
    [22]PAPAGEORGIOU G. Robust Control System Design:H∞ Loop Shaping and Aerospace Applications[D]. U.K.:University of Cambridge,1998.
    [23]WILLIAMS S. Idle Speed Control Design Using an H∞ Approach[C]//Proceedings of the American Control Conference. Pittsburgh, USA:IEEE Press,1989:1950-1956.
    [24]HROVAT D, BODENHEIMER B. Robust Automotive Idle Speed Control Design Based on μ-Synthesis[C]//Proceedings of the American Control Conference. San Francisco,USA:IEEE Press,1993.
    [25]李彬轩,何文华等.模糊控制在发动机怠速控制中应用的研究[J].小型内燃机,1998:1-3.
    [26]ABATE M, Dosio N. Use of Fuzzy Logic for Engine Idle Speed Control[J]. SAE Paper 1990-90-0594,1990.
    [27]赵光舟,杨志家.应用神经网络模糊控制器的发动机怠速控制[J].内燃机工程,2000.
    [28]金惟惟.用于电控发动机怠速控制的模糊逻辑芯片研制[J].北京:清华大学硕士学位论文,2005.
    [29]张振东,周萍等.电控发动机怠速控制模糊算法研究[J].北京:农业机械学报,2005:75-77.
    [30]吴锋,杨志家等.利用旁通空气的摩托车发动机怠速控制系统研究[J].内燃机工程,2002.
    [31]张道文,姚春林,童岱.模糊神经网络在发动机怠速控制中的应用[J].汽车技术,2002:18-20.
    [32]GORIMEVSK D, FELDKAMP L. On line optimization of RBF Network Feedforward Compensation for Load Disturbance in Idle Speed Control of Automotive Engine[J]. IEEE.0-7803-2975-9,1996.
    [33]PUSKORIUS G V, FELDKAMP L A. Automative Engine Idle Speed Control with Recurrent Neural Networks[C]//Proceedings of the American Control Conference. San Francisco, USA:IEEE Press,1993.
    [34]GORINEVSKY D, FELDKAMP L A. RBF Network Feedforward Compensation of Load Disturance in Idle Speed Control[J]. IEEE.Control System,1996.
    [35]PUSKORIUS G V, FELDKAMP L A, DAVIS L. Dynamic Neural Network Meth-ods Applied to on-Vehicle Idle Speed Contro[J]. In Proceedings of IEEE,1996, 84(10):1407-1420.
    [36]WATANABE S. Development of Model Following Idle Speed Control System Incor-porating Engine Torque Models[J]. SAE Paper 1992-92-0160,1992.
    [37]CHEN H, ALLGOWER F. A Quasi-infinite Horizon Nonlinear Predictive Control Scheme with Guaranteed Stability[J]. Automatica,1998,34(10):1205-1217.
    [38]MAYNE D Q, RAWLINGS C V, RAO C V. Constained Model Predictive Control: Stability and Optimality[J]. Automatica,2000,36:789-814.
    [39]BEMPORAD A, BORRELLI F, MORARI M. Model predictive control based on linear programming —the explicit solution[J]. IEEE Transactions on Automatic Control, 2002,47(12):1974-1986.
    [40]XI Y G, ZHANG Q L. New approach to designing constrained predictive con-trollers[J]. Acta Automatica Sinica,2005,31:655-661.
    [41]BEMPORAD A, MORARI M, DUA V,等. The explicit linear quadratic regulator for constrained systems [J]. Automatica,2002,38(1):3-20.
    [42]MAYNE D Q, SERON M, RAKOVIC S. Robust Model Predictive Control of Con-strained Linear Systems with Bounded Disturbances [J]. Automatica,2004,41:219-224.
    [43]BEMPORAD A, MORARI M. Control of systems integrating logic, dynamics, and constraints [J]. Automatica,1999,35:407-427.
    [44]MAYNE D Q. Control of Contrained Dynamic Systems[J]. European Journal of Control,2001,7:87-99.
    [45]RICHALET J, RAULT A, TESTUD J L. Model Predictive Heuristic Control:Appli-cation to Industrial Processes[J]. Automatica,1976,14:413-428.
    [46]BEMPORAD A. A predictive controller with artificial Lyapunov function for linear systems with input/state constraints [J]. Automatica,1998,34(10):1255-1260.
    [47]MORARI M, LEE J. Model Predictive Control:Past, Present and Future[C]//In Proceedings of the PSE'97. Norway:IEEE Press,1997.
    [48]席裕庚,李德伟.预测控制定性综合理论的基本思路和研究现状[J].自动化学报,2008,34(10):1225-1234.
    [49]CHEN H. Stability and Robustness Considerations in Nonlinear Model Predictive Control[M]. Diisseldorf:Fortschr.-Ber. VDI Reihe 8 Nr.674, VDI Verlag,1997.
    [50]LAZAR M. Model Predictive Control of Hybrid Systems:Stability and Robust-ness [D]. Netherlands:Eindhoven University of Technology,2006.
    [51]DING B C, XI Y, CYCHOWSKIC M. A synthesis approach for output feedback robust constrained model predictive control[J]. Automatica,2008,44(2008):258-264.
    [52]SLUPPHAUG O, Foss B. Model Predictive Control for a class of Hybrid Sys-tems [C]//Proceedings of the 4rd European Control Conference. Rome:IEEE Press, 1997:1136-1142.
    [53]BRANICKY M S, BORKAR V S, MITTER S K. A Unified Framework for Hybrid Control Model and Optimal Control Theory[J]. IEEE Transactions on Automatic Control,1998,34(1):31-45.
    [54]BRANICKY M. Studies in Hybrid Systems:Modeling, Analysis, and Control[D]. Massachusetts, U.S.A.:Massachusetts Institute of Technology,1995.
    [55]VAN DER SCHAFT A J, SCHUMACHER J. Complementarity Modeling of Hybrid Systems[J]. IEEE Transactions on Automatic Control,1998,43(3):483-490.
    [56]ALUR R, DAVID L. The Theory of Timed Automata[J]. Theoretical and Computer Science,1994,126(2):183-253.
    [57]ALUR R, COURCOUBETIS C, HENZINGER T. HYBRID SYSTEMS[M]//GROSSMAN R. Hybrid Automata:An Algorithmic Approach to the Specification and Verification of Hybrid Systems. New York, USA:Springer-Verlag,1993:209-229.
    [58]DI CAIRANO S, BEMPORAD A. An Equivalence Result between Linear Hybrid Au-tomata and Piecewise Affine Systems [J]. IEEE Transactions on Automatic Control, 2010,55(2):498-502.
    [59]BEMPORAD A, GARULLI A, PAOLETTI S. A Bounded-Error Approach to Piecewise Affine System Identification [J]. IEEE Transactions on Automatic Control,2005, 50(10):1567-1580.
    [60]HEEMELS W, SCHUMACHER J M, WEILAND S. Linear complementarity sys-tems[J]. SIAM Journal of Applied Mathematics,2000,60(4):1234-1269.
    [61]DE SCHUTTER B. Optimal Control of a Class of Linear Hybrid Systems with Saturation[J]. SIAM Journal on Control and Optimization,2000,39(3):835-851.
    [62]HEEMELS W P M, DE SCHUTTER B, BEMPORAD A. Equivalence of Hybrid Dynamical Models[J]. Automatica,2001,37(7):1085-1091.
    [63]邹媛媛,邹涛,李少远.混杂系统的预测控制[J].控制与决策,2007,22(4):361-365.
    [64]NECOARA I, VAN DEN BOOM T, SCHUTTER B D. Stabilization of max-plus-linear systems using model predictive control:The unconstrained case[J]. Automatica, 2008,44:971-981.
    [65]DE SCHUTTER B, VAN DEN BOOM T J. Model Predictive Control for Max-Min Linear Discrete Event Systems[J]. Automatica,2001,37(3):1049-1056.
    [66]VAN DEN BOOM T J, DE SCHUTTER B. Model Predictive Control for Perturbed Max-Min Plus Linear Systems:A Stochastic Approach[J]. International Journal of Control,2004,77(3):302-309.
    [67]HIROYUKI G, KAUHIRO T, SHIRO M. A Gain Scheduled Model Predictive Control Linear-Parameter-Varying Max-Plus-Linear Systems[C]//Proceedings of the Amer-ican Control Conference. Denver:IEEE Press,2003:4016-4021.
    [68]VAN DEN BOOM T J, DE SCHUTTER B, SCHULLERUS D. Adaptive Model Pre-dictive Control for Max-Plus-Linear Discrete Event Input-Output Systems[J]. IEE Proceedings, Part D:Control Theory and Applications,2004,151(3):339-346.
    [69]LAZAR M, HEEMELS W, WEILAND S. Stabilizing Model Predictive Control of Hybrid Systems[J]. IEEE Transactions on Automatic Control,2006,51(11):1813-1818.
    [70]NECOARA I, DE SCHUTTER B, VAN DEN BOOM T. Model Predictive Con-trol for Perturbed Continuous Piecewise Affine Systems with Bounded Distur-bances [C]//Proceedings of the 43rd IEEE Conference on Decision and Control. Paradise Island:IEEE Press,2004:1848-1863.
    [71]JEAN T, DIER D, JEAN B. Predictive Control of Hybrid Systems Under a Multi-MLD Formalism with State Space Polyhedra Partition [C]//Proceedings of the American Control Conference. Boston:IEEE Press,2004:2516-2522.
    [72]XUE Z K, LI S Y. Multi-Model Predictive Control with Local Constraints Based on Model Swithing[J]. Journal of Control Theory and Application,2005,3(2):150-156.
    [73]NANDOLA N, BHARTIYA S. A Multiple Model Approach for Predictive Control of Nonlinear Hybrid Systems[J]. Journal of Process Control,2008,18(2008):131-148.
    [74]ZOU T, LI S Y, DING B C. A Dual-Mode Nonlinear Model Predictive Control with the Enlarged Terminal Constraint Sets[J]. Acta Automatica Sinica,2006, 32(1):21-27.
    [75]DE SCHUTTER B, VAN DEN BOOM T J. Model Predictive Control for Max-Min-Scaling Systems[C]//Proceedings of the American Control Conference. Arlington: IEEE Press,2001:1049-1056.
    [76]DE SCHUTTER B, DE MOOR B. The Extended Linear Complementarity Prob-lem[J]. Mathematical Programming,1995,71(3):289-325.
    [77]DE SCHUTTER B, VAN DEN Boom T J. MPC for Continuous Piecewise-Affine Systems[J]. Systems and Control Letters,2004,52(3):179-192.
    [78]LAZAR M, HEEMELS W, WEILAND S. On the Stability of Quadratic Forms Based Model Predictive Control of Constrained PWA Systems[C]//Proceedings of the American Control Conference. Portland:IEEE Press,2005:575-580.
    [79]LAZAR M, HEENELS W, WEILAND S. Stabilization Condition for MPC of Con-strained PWA Systems[C]//Proceedings of the 43rd IEEE Conference on Decision and Control. Paradise Island:IEEE Press,2004:4595-4600.
    [80]LAZAR M, HEENELS W, WEILAND S. Hybrid Systems:Computation and Con-trol[M]. Berlin:Springer-Verlag,2005.
    [81]MUNOZ DE LA PENA D, BEMPORAD A, FILIPPI C. Robust Explicit MPC Based on Approximate Multi-Parametric Convex Programming [J]. IEEE Transactions on Automatic Control,2006,51(8):1399-1403.
    [82]NECOARA I, DE SCHUTTER B, VAN DEN BOOM T. Robustly Stabilizing MPC for Preturbed PWL Systems [C]//Proc of the 44th IEEE Conf on Decision and Control and European Control Conf. Seville:IEEE Press,2005:3759-3764.
    [83]CANNON M, DESHMUKH V, KOUWARITAKIS B. Nonlinear Model Predictive Con-trol with Polytopic Invariant Sets[J]. Automatica,2003,39(8):1487-1494.
    [84]CUELI J, BORDONS C. Iterative Nonlinear Model Predictive Control Stability, Robustness and Applications[J]. Control Engineering Practice,2008,16(2008):1023-1034.
    [85]CHEN H, SCHERER C, ALLGOWER F. A game theoretic approach to nonlin-ear robust receding horizon control of constrained systems [C]//Proceedings of the American Control Conference. Albuquerque:IEEE Press,1997:3073-3077.
    [86]FINDEISEN R, DIEHL M, ALLGOWER F. Efficient Output Feedback Nonlinear Model Predictive Control[C]//Proceedings of the American Control Conference. Anchorage, AK:IEEE Press,2002:4752-4757.
    [87]KHALIL H K. Nonlinear Systems[M]. New York:Macmillan Publishing Company, 1992.
    [88]KHALIL H K. Nonlinear Systems[M]. Beijing:Publishing House of Electronics Industry,2007.
    [89]郭宏志.汽油发动机发动机怠速控制方法研究[M].长春:博士论文,2009.
    [90]SCILLIERI J, BUCKLAND J, FREUDENBERG J. Reference Feedforwark in the Idle Speed Control of a Direct-Injection Spark-Ignition Engine[J]. IEEE Transactions on Vehicular Technology,2005,54(1).
    [91]YOON P, SUNWOO M. A Nonlinear Dynamic Modeling of SI Engine for Controller Design[J]. International Journal of Vehicle Design,2001,26(2/3):277-297.
    [92]YURKOCICH S, SIMPSON M. Crank-Angle Domain Modeling and Control for Idle Speed[J]. SAE Paper 97-0846,1997.
    [93]STOTSKY A A. Automotive Engines Control, Estimation, Statistical Detection[M]. Heidelberg, Berlin:Springer-Verlag,2009.
    [94]HENDRICKS E, SORENSON S. Mean Value Engine Modelling of Spark Ignition Engine[J]. SAE Automotive Engineering 900616,1990.
    [95]HENDRICKS E, CHEVALIER A, JENSEN M. Modeling of the Intake Manifold Filling Dynamics[J]. SAE Automotive Engineering 960037,1996.
    [96]CHEVALIER A, MILLER M, HENDRICKS E. On the Validity of Mean Value Engien Models during Transient Operation[J]. SAE Paper 2000-01-1261,2000.
    [97]VIGILD W, HENDRICKS E, CHEVALIER A. Predicting the Port Air Mass Flow of SI Engines in Air/Fuel Ratio Control Applications [J]. SAE Paper 2000-01-260, 2000.
    [98]FORD R G. Robust Automotive Idle Speed Control in a Novel Framework[D]. Cambridge, U.K.:Darwin College Cambridge,2000.
    [99]GUZZELLA L, ONDER C. Introduction to Modeling and Control of Internal Com-bustion Engine Systems[M]. Berlin:Springer-Verlag,2004.
    [100]HROVAT D, COLVIN D, POWELL B. Comments on Applicatins of Some New Tools to Robust Stability Analysis of Spark Ignition Engine:A Case Study [J]. IEEE Transactions on Control Systems Technology,1998,6(3).
    [101]PANSE P. Dynamic Modeling and Control of Port Fuel Injection Engines[M]. Indian Institute of Technology Bombay:Ph.D dissertation,2005.
    [102]刘铮,王建昕.汽车发动机原理教程[M].北京:清华大学出版社,2001.
    [103]FONS M, MULLER M, CHEVALIER A. Mean Value Engine Modelling of an SI Engine with EGR[J]. SAE Paper 1999-01-0909,1999.
    [104]SANTIS. E D, BENEDETTO. M D, POLA G. digital idle speed control of automotive engines:a safety problem for hybrid systems [J]. Nonlinear Analysis,2006,65:1705-1724.
    [105]JOHANSSON M, RENTAER A. Computation of Piecewise Quadratic Lyapunov Functions for Hybrid Systems [J]. IEEE Transactions on Automatic Control,1998, 43(4):555-559.
    [106]MAYNE D Q, RAKOVIC S. Model Predictive Control of Constrained Piecewise Affine Discrete-Time Systems[J]. International Journal of Robust and Nonlinear Control,2003,13:261-279.
    [107]KOTHARE M V, BALAKRISHNAN V, MORARI M. Robust Constrained Model Pre-dictive Control Using Linear Matrix Inequalities[J]. Automatica,1996,32(10):1361-1379.
    [108]DAAFOUZ J, RIEDINGER P, IUNG C. Stability Analysis and Control Synthesis for Switched Systems:A Switched Lyapunov Function Approach[J]. IEEE Transactions on Automatic Control,2002,47(11):1883-1887.
    [109]JUN Z, SPONG M W. Hybrid control for global stabilization of the cart-pendulum system[J]. Automatica,2001,37:1941-1951.
    [110]ELMAS C, USTUN O. A hybrid controller for the speed control of a permanent magnet synchronous motor drive[J]. Control Engineering Practice,2008,16:260-270.
    [111]俞立.鲁棒控制:线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [112]ZADEH L, WHALEN L. On Optimal Control and Linear Programming [J]. IEEE Transactions on Automatic Control,1962,7(AC):45-46.
    [113]PROPOI A. Use of Linear Programming Methods for Synthesizing Sampled-Data Automatic Systems[J]. Automat.Rem.Control,1963,24(7):837-844.
    [114]RAO C, RAOLINGS J. Linear Programming and Model Predictive Control[J]. Jour-nal of Process Control,2000,10:283-289.
    [115]CHANG T, SEBORG D. A Linear Programming Approach for Multivariable Feed-back Control with Inequality Constraints [J]. International Journal of Control,1983, 37(3):583-587.
    [116]LI S, CHEN H, MA M M. Model Predictive Control Based on Linear Program-ming for Engine Idle Speed Control [C]//Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation. Changchun, China:IEEE Press, 2009:1166-1172.
    [117]ZHENG A, MORARI M. Stability of Model Predictive Control with Mixed Con-straints[J]. IEEE Transactions on Automatic Control,1995,40:1818-1823.
    [118]KEERTHI S S, GILBERT E G. Optimal Infinite-Horizon Feedback Control Laws for a General Class of Constrained Discrete-Time Systems:Stability and Moving-Horizon Approximations[J]. Journal of Optimization Theory and Applications,1988,57:265-293.
    [119]GILBERT E. Linear Systems with State and Control Constraints:the Theory and Application of Maximal Output Admissible Set[J]. IEEE Transactions on Automatic Control,1991,36(9):1008-1020.
    [120]席裕庚,耿晓军,陈虹.预测控制性能研究的新进展[J].控制理论与应用,2000,17(4):469-475.
    [121]MICHALSKA D, MAYNE D. Robust Receding Horizon Control of Constrained Non-linear Systems[J]. IEEE Transactions on Automatic Control,1993, AC-38(11):1623-1633.
    [122]LI S, CHEN H, YU S Y. Nonlinear Model Predictive Control for Idle Speed Control of SI Engine[C]//IEEE Conference on Decision and Control. Shanghai, China:IEEE Press,2009:6590-6595.
    [123]YU S Y, CHEN H, ZHAO H Y. Quasi-infinite horizon MPC for nonlinear discrete-time systems[J]. Journal of Jilin University (Engineering Technology Edition),2009, 39(3):0678-0683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700