精细积分方法的改进及其在动力学与控制中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常微分方程组的数值计算一直是备受人们关注的领域,对此已发展了丰富的数值方法。近年来,精细积分方法得到广泛关注,已扩展到时变、非线性微分方程、偏微分方程的求解,并成功地应用到结构动力响应、随机振动、波导、热传导以及最优控制等领域,为不同领域的数值计算提供了一个高精度、高稳定性的算法平台,值得深入研究。另一方面,控制领域对数值计算的关注度和重要性意识正在加强,而合适的理论框架对于构造高性能算法有重要意义。现代控制论所奠基的状态空间法的起点至少也应回溯到Hamilton正则方程体系,表明经典力学与现代控制论有共同的数学形式和理论基础,两个学科的问题是相互对应的。因此,借鉴力学中成熟的有限元、子结构分析等方法,展开对最优控制领域数值方法和控制系统设计的研究是有意义的。本论文以发展高效、可靠的数值算法为主线,改进了精细积分算法平台的性能,研究了时滞、时变、非线性系统最优控制的数值计算和控制器设计等问题,开发了最优控制系统设计工具箱并将其应用于卫星编队飞行控制的研究。主要工作如下:
     (1)采用矩阵函数逼近理论,提出了基于Pade级数逼近的矩阵指数精细积分方法中加权参数N和级数展开项数q的递推自适应选择算法,提高了精细积分方法的计算效率。并与MATLAB内置函数expm()进行了比较,表明本文方法在达到相同的效率的同时具有更高的精度和稳定性。
     (2)提出了动力初值问题中非齐次项产生的Duhamel积分响应矩阵的扩展精细积分方法(EPIM),该方法不需对系统矩阵(或相关动力矩阵)求逆。当非齐次项为多项式函数、指数函数、正/余弦函数及其组合函数的形式时,可以得到计算机意义上的精确解。并推广应用于:1)与虚拟激励法结合,应用于随机振动响应的计算;2)结合传统数值积分技术(如Taylor级数单步法和Adams多步法),构造了求解非线性微分方程的显式/隐式算法;3)利用系数周期性变化的特点,导出了周期时变Floquet转移矩阵和一类非线性周期系统响应的计算格式;等。算例表明,基于扩展精细积分方法构造的算法提高了数值稳定性和适用范围,具有高效、高精度、高稳定性的优点。
     (3)提出了两点边值问题中非齐次项产生的区段响应矩阵的扩展精细积分方法(EPIM),当非齐次项为多项式函数、指数函数、正/余弦函数及其组合函数的形式时,可以得到计算机意义上的精确解。在此基础上,研究了一般非齐次项的处理方法以及在无限长区段和变系数两点边值问题中的应用。还结合周期时变Floquet转移矩阵的扩展精细积分方法,导出了周期变系数Riccati、Lyapunov、Sylvester等矩阵微分方程的保结构算法,数值算例验证了算法的有效性。
     (4)对时滞系统的H_∞最优控制和滤波进行了研究。首先采用扩展精细积分方法对连续时滞系统方程和性能指标离散化,以最大程度地保证与原系统的等价性。然后引入合适的增维向量,化为不显含时滞的标准离散形式,采用区段混合能方法和扩展W-W算法进行计算分析,增强了增维方法的可行性,从而为时滞H_∞最优控制和滤波系统的分析和设计提供了一套精确、稳定的算法。并导出了含输入时滞的H_∞全信息控制器,应用于建筑结构的减振控制,仿真显示对于不同的时滞量和地震激励形式,结构的振动响应都得到了有效抑制,验证了控制器的有效性。
     (5)时变、非线性最优控制系统设计导出Hamilton系统两点边值问题,其数值算法应该保辛。本文在区段分析的框架下,提出了时变Hamilton两点边值问题基于常值精细积分的保辛摄动方法,导出了零阶、摄动系统分别基于区段混合能矩阵和区段传递矩阵的组合公式以及对应关系,指出前者具有内在的稳定性从而是更好的选择。进一步提出了时变非齐次Hamilton两点边值问题的保辛摄动方法,并应用于非线性最优控制问题的迭代计算,结果表明,迭代过程中关键算法的改进显著地提高了收敛速度,降低了对初始迭代值的敏感性,说明保辛摄动方法是一种高精度和稳定的算法。
     (6)传统终端控制器往往存在终端高增益或奇异现象,只好在靠近终端区段采用开环控制。本文引入终端“软约束项”改进了性能指标,并利用Lagrange乘子的常数本质,构造了非奇异的、两个区段都具有反馈-前馈控制结构的终端控制器。分析了引入的“软约束项”对构造反馈结构控制器的重要影响,对于最小能量控制问题尤为重要。进一步利用区段混合能矩阵构造了反馈增益矩阵和控制系统方程的闭合解,导出了保结构递推算法,方便了控制器的设计与实现。并将该方法推广应用于离散时间系统的终端控制器设计。
     (7)针对当前主流商业控制系统设计软件MATLAB缺乏有限长时间时变最优控制器设计功能的现状开发了PIMCSD Toolbox;在此基础上研究了典型双星编队重构的时变最优控制方案,研究成果为航天器编队控制系统的工程设计和应用提供了重要参考。
Numerical computation for a set of simultaneous ordinary differential equations(ODEs) is very important in applications. So far, tremendous efforts have been devoted to finding appropriate numerical methods to solve this problem. In recent years, precise integration method(PIM) for the numerical integration of ODEs has been proposed and has attracted a wide range of concerns. PIM not only can give a high accurate numerical result, which approaches the computer precision for the linear time-invariant ODEs, but also is free from stiff problems. It has been extended to solve time-variant, non-linear and partial differential equations and successfully applied to various fields, such as structural dynamics, random vibration, wave prorogation, transient heat conduction and optimal control, et al. The PIM provides a basic algorithm platform with high precision and high stability, so it is worthy of studying further. At the same time, numerical awareness in control needs to be increased. Especially, it is of great importance to choose an appropriate theoretical framework for constructing algorithms of high performance. The starting point of the state space method, i.e. the basis of modern control theory, should trace back at least to the Hamiltonian canonical equation system, which demonstrates that structural mechanics and optimal control have the same mathematical basis. Along this way of consideration, the mathematical problems of the two different fields have a one-to-one correspondence with each other. As a result, it is helpful to make further researches on the controller design and its numerical computation in optimal control field by introducing the mature methods in mechanics, such as finite element method, sub-structure techniques, et al. This dissertation aims at the development of efficient and reliable numerical methods, improves the performance of the PIM-based algorithm platform and studies the problems of the controller design and its numerical computation arising from the time-delay, time-varying, and non-linear optimal control systems. This dissertation also develops an optimal control system design and simulation toolbox (PEMCSD Toolbox) and applies it to the study of the formation flying control system. The main research work covers the following aspects:
     (1) This dissertation presents an iterative algorithm for adaptive selection of the scaling parameter N and series-expanding parameter q by using the approximation theory of matrix functions, which plays an important role on the computational efficiency and numerical accuracy of the PIM based on Padéapproximation for matrix exponential. The proposed algorithm not only improves the computational efficiency, but also is independent of the matrix's characteristics. Numerical tests are made by comparing with the MATLAB's built-in function expm(), and it shows that the proposed algorithm achieves the same efficiency, but higher accuracy and stability.
     (2) This dissertation presents the extended precise integration method(EPIM) for computing the response matrices of Duhamel integrations arising from non-homogenous dynamic systems. Numerical results of the response matrices can approach the computer precision when the non-homogenous terms are of the following forms, such as polynomial, exponential, trigonometric functions and their combinations. More importantly, the EPIM is independent of the quality of the system matrix(or its relative matrices) since it dose not need the inverse matrix calculation. The EPIM has been applied to some problems: 1) Combined with the pseudo-excitation method, an efficient and accurate algorithm for computing random responses of structural vibration has been proposed; 2) Combined with the traditional numerical integration techniques, such as the single-step method based on Taylor series expansion and the Adams multi-step method, several numerical algorithms with high efficiency and accuracy for the solution of non-linear differential equations have been constructed; 3)Making full use of the characteristics of periodicity, researches on computing the Floquet transition matrix of the periodic time-varying system and solving the responses of a class of periodic non-linear system have been made. Numerical examples show that the EPIM-based algorithms have advantages of high accuracy, high stability and simple formulas, which greatly improve the numerical stability and expand the scope of applications.
     (3) The algebraic-equation method and interval-elimination method are derived based on the interval analysis techniques and the extended precise integration method(EPIM) for computing the interval response matrices, arising from the non-homogenous terms of the two point boundary value problems(TPBVPs), is proposed. The EPIM can give high precise numerical results approaching to computer precision for non-homogenous terms with certain special forms. High accurate and efficient algorithms based on the EPIM are constructed for the problems with general non-homogenous terms, infinite interval and time-varying coefficients. Finally structure-preserving algorithms for certain matrix differential equations with periodic coefficients, such as Riccati equations, Lyapunov equations and Sylvester equations, are constructed by combining interval analysis method with the EPIM for periodic Floquet transition matrix. Numerical results verify the effectiveness of the algorithms.
     (4) Robust H_∞optimal control and filter of time-delay systems are studied in a uniform frame work. Firstly the continuous time-delay systems and its performance indices are discretized by the EPIM in order to ensure the equivalence to its original systems as much as possible. Then the discrete time-delay systems are transformed into standard discrete forms without time-delay by introducing the appropriate extended state vectors. So theories and methods of usual discrete system can be applied. Taking into account the increasing dimensions of the standardized system, the interval mixed energy method and extended W-W algorithms are introduced, which are with high parallelism and stability. So a set of accurate and stable algorithms are proposed for the computational problems of H_∞optimal control and filter systems. A H_∞full information controller with control time-delay is designed and applied to vibration attenuation of the seismic-excited buildings. Simulation results show that structural vibration is greatly attenuated for different amounts of time-delays and different types of seismic excitation, which verifies the effectiveness of the controller.
     (5)This dissertation presents the symplectic-conservative perturbation method for computational problems of linear time-varying and non-linear optimal control systems. Since the necessary conditions of optimal control problems are equivalent to the TPBVPs of Hamiltonian systems, its numerical methods should be symplectic conservation. Firstly the symplectic conservative perturbation method based on the PIM is presented for the linear time-varying TPBVPs. Combination formulas between the zeros-order system and the perturbation system are derived based on the interval mixed energy matrices and the transition matrices, respectively. Their relationships are investigated and the former is found to be a better choice for optimal control problems because of its inherent stability. The symplectic-conservative perturbation method for non-homogenous time-varying Hamiltonian TPBVPs is further proposed and applied to the iterative computation of the non-linear optimal control problems. Numerical results show it not only increases convergency of the iteration algorithm but also decreases sensitivity to the initial iterative values greatly, which demonstrates that the proposed method is both high accurate and symplectic-conservative.
     (6) Due to high feedback gains or singularity at the terminal time of traditional terminal controllers, an open-loop control for a short interval before the end time is often adopted. This dissertation presents a non-singular terminal controller with the feedback-feedforward architecture in both intervals, by introducing a new terminal "soft constraint" term to improve the variational formulas and using the essence of constant for the Lagrange multiplier. Influences of the "soft constraint" term on constructing the feedback controller are studied, which is of special importance for the minimal energy control. Closed-form solutions to the feedback matrices and states of the controlled system are constructed by introducing interval mixed energy matrices. Further more, structure-preserving algorithms are derived, which greatly facilitates the design and implementation of terminal controllers. The proposed method has been extended to the terminal controller of discrete-time systems successfully.
     (7) The optimal control system design and simulation toolbox(PIMCSD Toolbox) is developed in view of the absence of functions on the finite time optimal control. Then time-varying controllers for the typical double satellites formation reconfiguration are studied based on the PIMCSD Toolbox. Research results provide an important reference for engineering designs and applications of spacecraft formation control systems.
引文
[1]李连喜.21世纪初科学发展趋势[M].北京:科学出版社,1996.
    [2]Computational science:Ensuring america's competitiveness:President's Information Technology Advisory Committee,2006,6.
    [3]Bathe K J,Wilson E L.Numerical methods in finite element analysis[M].New Jersey:Prentice Hall,1976.
    [4]Subbaraj K,Dokainish M A.A survey of direct time integration methods in computational structural dynamics:Ⅰ.Explicit methods:ⅱ.Implicit methods[I].Computers &Structures,1989,32(6):1371-1386,1387-1401.
    [5]Lambert J D.The initial value problem for ordinary differential equations[M].New York:Academic press,1993.
    [6]Press W H,Teukolsky S A,Vetterling W T,et al.Numerical recipes in c++.2~(nd) ed[M].Cambridge:Cambridge University Press,2002.
    [7]钟万勰,杨再石.连续时间LQ控制主要本征对的算法[J].应用数学和力学,1991,12(1):45-50.
    [8]谭述君,钟万勰.精细积分方法研究进展[J].中国力学文摘,2007,21(3):1-12.
    [9]钟万勰.结构动力学方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136.
    [10]钟万勰.矩阵黎卡提微分方程的精细积分法[J].计算结构力学及其应用,1994,11(2):113-119.
    [11]林家浩,沈为平,宋华茂.结构非平稳随机响应的混合型精细积分[J].振动工程学报,1995,8(2):127-135.
    [12]钟万勰.子域精细积分及偏微分方程数值解[J].计算结构力学及其应用,1995,12(3):253-260.
    [13]钟万勰.卡尔曼-布西滤波的精细积分[J].大连理工大学学报,1999,39(2):191-200.
    [14]陈飚松,顾元宪.瞬态热传导方程的子结构精细积分方法[J].应用力学学学报,2001,18(1):14-19.
    [15]钟万勰.线性二次最优控制的精细积分[J].自动化学报,2002,27(2):166-173.
    [16]张素英,邓子辰.非线性动力方程的增维精细积分法方法[J].计算力学学报,2003,20(4):423-426.
    [17]Fung T C.A precise time-step integration method by step-response and impulsive-response matrices for dynamic problems[J].International Journal for Numerical Methods in Engineering,1997,40:4501-4527.
    [18]Zhong W X,Williams F W.H_∞ filtering with secure eigenvalue calculation and precise integration[J].International Journal for Numerical Methods in Engineering,1999, 46(7):1017-1030.
    [19]Huang Y A,Deng Z C,Yao L X.An improved symplectic precise integration method for analysis of the rotating rigid-flexible coupled system[J].Journal of Sound and Vibration,2007,2007(200):229-246.
    [20]钟万勰.电磁波导的辛体系[J].大连理工大学学报,2001,41(4):379-387.
    [21]Zhong W X.On precise integration method[J].Journal of Computational and Applied Mathematics,2004,163:59-78.
    [22]Varga A.Numerical awareness in control[J].IEEE Control Systems Magazine,2004:14-17.
    [23]钟万勰,欧阳华江,邓子辰.计算结构力学与最优控制[M].大连:大连理工大学出版社,1993.
    [24]钟万勰.应用力学对偶体系[M].北京:科学出版社,2002.
    [25]姚伟岸,钟万勰.辛弹性力学[M].北京:高等教育出版社,2002.
    [26]蔡志勤.精细逐步积分及其部分演化[D]:(博士学位论文).大连:大连理工大学,1998.
    [27]孔向东.常微分方程的精细积分方法及其在多体系统动力学中的应用[D]:(博士学位论文).大连:大连理工大学,1998.
    [28]刘勇.哈密顿体系下参数激励系统的精细积分[D]:(博士学位论文).上海:上海交通大学,1996.
    [29]赵玉立.柔性撞击系统的建模、精细算法及控制研究[D]:(博士学位论文).西安:西北工业大学,2003.
    [30]郭泽英.基于精细算法的短肢剪力墙结构弹塑性动力时程分析[D]:(博士学位论文).西安:西安建筑科技大学,2007.
    [31]贺光宗.某些发展方程的无网格-精细积分方法研究[D]:(硕士学位论文).淄博:山东理工大学,2006.
    [32]黄素清.小波精细积分法在偏微分方程求解中的研究[D]:(硕士学位论文).广州:暨南大学,2005.
    [33]李金桥.基于精细积分算法的结构动力方程及主动控制的研究[D]:(硕士学位论文).成都:四川大学,2002.
    [34]张晓艳.偏微分方程的小波精细积分法研究[D]:(硕士学位论文).西安:西安理工大学,2008.
    [35]Lin J H,Shen W P,Williams F W.Accurate high-speed computation of non-stationary random structural response[J].Engineering Structures,1997,19(7):586-593.
    [36]顾元宪,陈飚松,张洪武.结构动力方程的增维精细积分方法[J].力学学报,2000,32(4):447-456.
    [37]周钢,王跃先,贾国庆等.一种基于Taylor级数的齐次扩容精细算法[J].上海交通大学学报,2001,35(12):1916-1919.
    [38]张森文,曹开彬.计算结构动力响应的状态方程直接积分法[J].计算力学学报,2000,17(1):94-97,118.
    [39]Wang M F,Zhou X Y.Modified precise time step integration method of structural dynamic analysis[J].Earthquake Engineering and Engineering Vibration,2005,4(2):287-293.
    [40]谭述君,钟万勰.非齐次动力方程Duhamel项的精细积分[J].力学学报,2007,39(3):374-381.
    [41]Bellman R,Cooke K L.Differential-difference equations[M].London:Academic Press,1963.
    [42]Malek-Zavarei M,Jamashidi M.Time-delay systems,analysis,optimization and applications[M].Amsterdam:North-Holland,1987.
    [43]Mahmoud M S.Robust control and filtering for time-delay systems[M].New York:Marcel Dekker,Inc,2000.
    [44]Udwadia F E,yon-Bremen n,Phohomsiri P.Time delayed control design for active control of structures:Principles and applications[J].Structural Control and Health Monitoring,2007,14:27-61.
    [45]Agarwal A K,Yang J N.Compensation for time delay for control of civil engineering structures[J].Earthquake Engineering and Structural Dynamics,2000,29:37-62.
    [46]Fridman E.Special issue on time-delay systems,editorial[J].International Journal of Robust and Nonlinear Control,2003,13:791-792.
    [47]Feng K.On deference schems and symplectic geometry[C].Proceeding of the 5~(th)international symposium on differential geometry and differential equations,Beijing,1984.
    [48]冯康,秦孟兆.哈密尔顿系统的辛几何算法[M].杭州:浙江科学技术出版社,2003.
    [49]Hairer E,Lubich C,Wanner G.Geometric numerical integration:Structure-preserving algorithms for ordinary differential equations.2~(nd) ed[M].Berlin:Springer,2006.
    [50]Bryson A E.Time-varying linear-quadratic control[J].Journal of Optimization Ttheory and Applications,1999,100(3):515-525.
    [51]Bryson A E.Applied linear optimal control:Examples and algorithms[M].Cambridge:Cambridge University Press,2002.
    [52]张红卫,叶庆凯.关于控制系统计算机辅助设计的研究进展[J].控制理论与应用,1998,15(5):649-655.
    [53]Grace A,Laub A,Little J,et al.Control system toolbox user's guide:The MathWorks,Inc.,1992.
    [54]Huffel S V,Sima V,Varga A,et al.High-performance numerical software for control[J].IEEE Control Systems Magazine,2004:60-76.
    [55]王治宝,韩京清.Cadcsc软件系统--控制系统计算机辅助设计[M].北京:科学出版社,1997.
    [56]Bryson A E.Dynamic optimization[M].California:Addison Wesley Longman,Inc.,1999.
    [57]Moler C B,Van-Loan C F.Nineteen dubious ways to compute the exponential of a matrix[J]. SIAM Review,1978,20:801-836.
    [58]Moler C B,Van-Loan C F.Nineteen dubious ways to compute the exponential of a matrix,twenty-five years later[J].SIAM Review,2003,45(1):3-49.
    [59]叶玉全,张静.Hamilton动力系统的辛几何精细算法[J].九江师专学报,1997,15(6):1-5.
    [60]曾进,周钢,孙薇荣.精细辛算法[J].上海交通大学学报,1997,31(9):31-33.
    [61]Fang T C.Computation of the matrix exponential and its derivatives by scaling and squaring[J].International Journal for Numerical Methods in Engineering,2004,59:1273-1286.
    [62]Fung T C,Chen Z L.Krylov precise time-step integration method[J].International Journal for Numerical Methods in Engineering,2006,68:1115-1136.
    [63]钟万勰,姚征.椭圆函数的精细积分算法[C].祝贺郑哲敏先生八十华诞应用力学报告会--应用力学进展论文集,北京,2004:106-111.
    [64]张洪武.关于动力分析精细积分算法精度的讨论[J].力学学报,2001,33(6):847-852.
    [65]向宇,黄玉盈,曾革委.精细时程积分法的误差分析与精度估计[J].计算力学学报,2002,19(3):276-280.
    [66]Wang M F,Au F T K.Assessment and improvement of precise time step integration method[J].Computers & Structures,2006,84:779-786.
    [67]刘勇,沈为平.精细时程积分中状态转换矩阵的自适应算法[J].振动与冲击,1995,2:82-85.
    [68]徐明毅,张勇传.精细辛几何算法的误差估计[J].数学物理学报,2006,26A(2):314-320.
    [69]Higham N J.The scaling and squaring method for the matrix exponential revisited[J].SIAM Journal on Matrix Analysis and Applications,2005,26(4):1179-1193.
    [70]Wang Y X,Tian X D,Zhou G.Homogenized high precision direct integration scheme and its applications in engineering[J].Communications in Numerical Methods in Engineering,2002,18:429-439.
    [71]时小红,周钢,付召华.基于Legendre多项式函数系的齐次扩容精细算法[J].计算力学学报,2005,22(3):335-338.
    [72]Huang Y Z,Long Y J.On orthogonal polynomial approximation with the dimensional expanding technique for precise time integration in transient analysis[J].Communications in Nonlinear Science and Numerical Simulation,2007,12:1584-1603.
    [73]储德文,王元丰.精细直接积分法的积分方法选择[J].工程力学,2002,19(6):115-119.
    [74]汪梦甫.无条件稳定的更新精细积分方法[J].固体力学学报,2006,27(3):311-314.
    [75]Kanth A S V R,Reddy Y N.Cubic spline for a class of singular two-point boundary value problems[J].Applied Mathematics Computation,2005,170:733-740.
    [76]Caglar H,Caglar N,Elfaituri K.B-spline interpolation compared with finite difference,finite element and finite volume methods which applied to two-point boundary value problems[J].Applied Mathematics Computation,2006,175:72-79.
    [77]Guibout V M,Scheeres D J.Solving relative two point boundary value problems:Applications to spacecraft formation flight transfers[J].Journal of Guidance,Control,and Dynamics,2004,27(2):693-704.
    [78]钟万勰,钟翔翔.LQ控制区段混合能矩阵的微分方程及其应用[J].自动化学报,1992,1992(18):3.
    [79]Chen B,Tong L,Gu Y.Precise time integration for linear two-point boundary value problems[J].Applied Mathematics Computation,2006,175:182-211.
    [80]Marshall J E.Extensions of oj.Simth's method to digital,other systems[J].International Journal of Control,1974,19:933-939.
    [81]McGreevy S,Soong T T,Reinhorn A M.An experimental study of time delay compensation in active structural control[C].Proc.6~(th) Intl.Modal Analysis Conf.of Society for Experimental Mechanics,1988:733-739.
    [82]Chung L L,Lin R C,Soong T T,et al.Experimental study of active control for mdof seismic structure[J].Journal of Engineering Mechanics,1989,115:1609-1627.
    [83]Choi H H,Chung M J.Memoryless H_∞ controller design for linear systems with delayed state and control[J].Automatica,1995,31(6):917-919.
    [84]Palhares R m,De-Souza C E,Peres P L D.Robust H_∞ filtering for uncertain discrete-time state-delayed systems[J].IEEE Tansactions on Signal Processing,2001 49(8):1696-1073.
    [85]Chung L L,Wang Y P,Tung C C.Instantaneous control of structures with time-delay consideration[J].Engineering Structures,1997,19(6):465-475.
    [86]Franklin G F,Powell J D,Workmen M.Digital control of dynamics systems.3~(rd) ed[M].Beijing:Tsinghua University Press,2001.
    [87]孙增圻.计算机控制理论及应用[M].北京:清华大学出版社,1987.
    [88]Cai G,Huang J.Optimal control method with time delay in control[J].Journal of Sound and Vibration,2002,251(3):383-394.
    [89]Cai G P,Huang J Z.Instantaneous optimal method for vibration control of linear sampled-data systems with time delay in control[J].Journal of Sound and Vibration,2003,262:1057-1071.
    [90]蔡田平,黄金枝.控制存在时滞的线性系统主动控制的滑移模态方法[J].力学季刊,2002,23(2):164-172.
    [91]蔡国平,洪嘉振.考虑时滞影响的柔性悬臂梁的离散最优控制[J].航空学报,2003,24(4):306-312.
    [92]潘颖,王超,蔡国平.地震作用下主动减震结构的时滞离散最优控制[J].工程力学,2004,21(2):88-94.
    [93]吴志刚.线性鲁棒控制的理论与计算[M].大连:大连理工大学出版社,2003.
    [94]Bryson A E,Ho Y C.Applied optimal control[M].New York:Hemisphere Publishing Corporation,1975.
    [95]Sage A P,White-Ⅲ C C.Optimum systems control[M].New Jersey:Prentice-Hall,1977.
    [96]Anderson B D O,Moore J B.Optimal control:Quadratic methods[M].New Jersey:Prentice-Hall 1990.
    [97]Burl J B.Linear optimal control:H_2 and H_∞ methods[M].California:Addison Wesley Longman,Inc.,1999.
    [98]Chen W L,Shih Y P.Analysis and optimal control of time-varying linear systems via walsh functions[J].International Journal of Control,1978,27(6):917-932.
    [99]徐宁寿,郑兵.方块脉冲函数用于线性时变系统的分析和最优控制[J].自动化学报,1982,8(1):55-67.
    [100]古天龙,徐国华.分段线性函数用于时变系统的最优控制[J].控制理论与应用,1989,6(4):102-108.
    [101]Liu C C,Shih Y P.Analysis and optimal control of time-varying systems via Chebyshev polynomials[J].International Journal of Control,1983,38(5):1003-1012.
    [102]Tsay S C,Lee T T.Analysis and optimal control of liear time-varying systems via general orthogonal polynomials[J].International Journal of Systems Science,1987,18(8):1579-1594.
    [103]Hsiao C H,Wang W J.Optimal control of linear time-varying systems via haar wavelets[J].Journal of Optimization Theory and Applications,1999,103(4):641-655.
    [104]李波,朱经浩.时变系统1q最优控制的迭代解法[J].同济大学学报,2001,29(5):589-592.
    [105]Schley C H,Lee I.Optimal control computation by the newton-raphson method and the Riccati transformation[J].IEEE Transactions on Automatic Control,1967,12(2):139-144.
    [106]Chanane B.Optimal control of nonlinear systems:A recursive approach[J].Computers Mathematics with Applications,1998,35(3):29-33.
    [107]李俊民,刑科义,万百五.基于线性时变模型的非线性动态系统最优控制disope算法[J].应用数学和力学,1999,12(1):91-96.
    [108]Huang C S,Wang S,Teo K L.Solving Hamilton-Jacobi-Bellman equations by a modified method of characteristics[J].Nonliear Analysis,2000,40:279-293.
    [109]朱经浩,马婧英.利用H-J-B方程的粘性逼近求解非线性最优控制[J].同济大学学报,2005,33(7):947-951.
    [110]钟万勰,姚征.时间有限元与保辛[J].机械强度,2005,27(2):178-183.
    [111]Matthews M V,Steeg C W.Terminal controller synthesis[C].Princeton Symposium on Non-linear Control Systems,Princeton,1956.
    [112]O' Hern E A,Smyth R K.Terminal control system applications[J].IRE Transactions on Automatic Control,1961:142-153.
    [113]Bryson A E,Ho Y C.Applied optimal control[M].Waltham,Massachusetts:Blaisdell Publishing Company,1969.
    [114]Chun H M,Turner J D.A simple algorithm for the selection of terminal penalty weighting matrices[J].Journal of Guidance,Control,and Dynamics,1986,9(4):503-505.
    [115]Verrriest E I,Yeung D.Parity in LQ control:The infinite time limit for terminal control[C].Proceeding of the 2006 American control conference,Minnerpolis,Minnesota,USA,2006:1706-1711.
    [116]Shaferman V,Shima T.Linear quadratic guidance laws for imposing a terminal intercept angle[J].Journal of Guidance,Control,and Dynamics,2008,31(5):1400-1412.
    [117]Khargonekar P P,Nagpal K M,Poolla K R.H_∞ control with transients[J].SIAM Journal on Control and Optimization,1991,29(6):1373-1393.
    [118]Savkin A V,Petersen I R.Robust control with a terminal state constraint[J].Automatica,1996,32(7):1001-1005.
    [119]Savkin A V,Pathirana P N,Faruqi F A.Problems of precision missile guidance:Lqr and h control frameworks[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(3):901-910.
    [120]Juang J N,Turner J D,Chun H M.Closed-form solutions for feedback control with terminal contraints[J].Journal of Guidance,Control,and Dynamics,1985,8(1):39-43.
    [121]Park C,Guibout V M,Scheeres D J.Solving optimal continuous thrust rendezvous problems with generating functions[J].Journal of Guidance,Control,and Dynamics,2006,29(2):321-331.
    [122]Rosenbrock H H.Computer-aided control system design[M].Orlando,FL,USA:Academic Press,Inc.,1974.
    [123]Kenney C S,Leipnik R B.Numerical integration of differential matrix Riccati equation[J].IEEE Transactions on Automatic Control,1985,30(10):962-970.
    [124]Zhong W X.Duality system in applied mechanics and optimal control[M].Boston:Kluwer Academic Publishers,2004.
    [125]钟万勰,吴志刚,谭述君.状态空间控制理论与计算[M].北京:科学出版社,2007.
    [126]张洪武,钟万勰.矩阵指数计算算法讨论[J].大连理工大学学报,2000,40(5):522-525.
    [127]Golub G H,Van-Loan C F.Matrix computations.3~(rd) ed[M].London:The Johns Hopkins University Press,1996.
    [128]向宇,黄玉盈,黄健强.一种新型齐次扩容精细积分法[J].华中科技大学学报,2002,30(11):74-76.
    [129]汪梦甫,周锡元.结构动力方程的更新精细积分方法[J].力学学报,2004,36(2):191-195.
    [130]Priestley M B.Spectral analysis of nonstationary random process[J].Journal of Sound and Vibration,1967,6(1):86-97.
    [131]To C W S.Response statistics of discretized structures to nonstationary random excitation[J].Journal of Sound and Vibration,1986,105(33):217-231.
    [132]Lin J H,Zhang W S,Williams F W.Pseudo-excitation algorithm for nonstationary random seismic responses[J].Engineering Structures,1994,16(4):270-276.
    [133]张文首,林家浩,刘婷婷,et al.结构非平稳随机响应的增维精细时程积分[J].振动与冲击,2006,25(5):18-20.
    [134]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [135]吕和祥,于洪洁,裘春行.精细积分的非线性动力学积分方程及其解法[J].固体力学学报,2001,22(3):303-308.
    [136]Li Y Y,Jin X L.An implicit series precise integration algorithms for structural nonlinear dynamic equations[J].Acta Mechanica Solida Sinica,2005,18(1):70-75.
    [137]Hairer E,Wanner G.Solving ordinary differential equations Ⅰ:Nonstiff problems[M].Berlin:Springer,1993.
    [138]Gaonkar G H,Prasad D S S,Sastry D.On computing Floquet transition matrices of rotorcraft[J].Journal of the American Helicopter Society,1981,26(3):56-61.
    [139]Celi R,Friedmann P P.Rotor blade aeroelasticity in forward flight with an implicit aerodynamic formulation[J].AIAA Journal,1988,26(12):1425-1433.
    [140]张育林,曾国强,王兆魁,et al.分布式卫星系统理论及应用[M].北京:科学出版社,2008.
    [141]Friedmann P,Hammond C E,Woo T H.Efficient numerical treatment of periodic system with application to stability problems[J].International Journal for Numerical Methods in Engineering,1977,11:1117-1136.
    [142]D' Angelo H.Linear time-varying systems:Analysis and synthesis[M].Boston:Allyn and Bacon,Inc.,1970.
    [143]Hsu C S.On approximating a general linear periodic system[J].Journal Mathematical Analysis and Applications,1974,45(1):234-251.
    [144]Cai Z Q,Gu Y X,Zhong W X.A new approach of computing Floquet transition matrix[J].Computers & Structures,2001,79(631-635).
    [145]De-Kleine H A.A note on the asymptotic stability of periodic solutions of autonomous differential equations[J].SIAM Review,1984,26(3):417-421.
    [146]Urabe M.Galerkin's procedure for nonlinear periodic systems[J].Archives of Rational Mechanics and Analysis,1965,20(2):120-152.
    [147]蔡志勤,顾元宪,钟万勰.一类非线性周期系统响应的精细积分方法[J].力学季刊,2000,21(2):145-148.
    [148]Frank-Kamenetskii D A.Diffusion and heat transfer in chemical kinetics[M].New York:Plenum Press,1969.
    [149]Heath M T.Scientific computing:An introductory survey.2~(nd) ed[M].New York:McGraw-Hill,2002.
    [150]高强.哈密尔顿体系中波的传播、鲁棒控制与辛方法探索[D]:(博士学位论文).大连:大连理工大学,2006.
    [151]Kanth A S V R,Reddy Y N.A numerical method for solving two-point boundary value problems over infinite intervals[J].Applied Mathematics and Computation,2003,144:483-494.
    [152]Bittanti S,Laub A J,Willams J C.The Riccati equation[M].New York:Springer,1991.
    [153]Green M,Limebeer D J N.Linear robust control[M].New Jersey:Prentice-Hall,1995.
    [154]Zhong W X.Combined method for the solution of asymmetric Riccati differential equations[J].Computer Methods in Applied Mechanics and Engineering,2001,191:93-102.
    [155]Varga A.On solving periodic differential matrix equations with applications to periodic system norms computation[C].Decision and Control,and 2005 European Control Conference,2005:6545-6550.
    [156]Hu H Y,Wang Z H.Dynamics of controlled mechanical systems with delayed feedback[M].Berlin:Springer,2002.
    [157]Chung L L,Lin C C,Lu K H.Time-delay control of structures[J].Journal Earthquake Engineering and Structural Dynamics,1995,24:687-701.
    [158]Yang J N,Akbarpour A,Askar G.Effect of time delay on control of seismic-excited buildings[J].Journal of Structural Engineering,1990,116:2801-2814.
    [159]Van-Loan C F.Computing integrals involving the matrix exponential[J].IEEE Transactions on Automatic Control,1978,23(3):395-404.
    [160]Zhang L,Yang C Y,Chajes M J,et al.Stability of active-tendon structural with time delay[J].Journal of Engineering Mechanics,1993,ASCE 119:1017-4024.
    [161]Klamka J.Relative and absolute controllability of discrete systems with delays in control[J].International Journal of Control,1977,26(1):65-74.
    [162]钟万勰.H_∞状态反馈与瑞利商精细积分[J].计算力学学报,1999,16(1):1-8.
    [163]Wittrick W H,Williams F W.A general algorithm for computing natural frequencies of elastic structures[J].Quarterly Journal of Mechanics and Applied Mathematics,1971,24(3):263-284.
    [164]Zhong W X,Williams F W,Bennett P N.Extension of the Wittrick-Williams algorithm to mixed variable systems[J].Journal of Vibration and Acoustics,1997,119(3):334-340.
    [165]王德进.H_2和H_∞优化控制理论[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [166]Yao J T P.Concept of structural control[J].Journal of Structural Division,1972,98:1567-1574.
    [167]Soong T T,Reinhorn A M,Wang Y P,et al.Full-scale implementation of active control.Ⅰ:Design and simulation[J].Journal of Structural Engineering,1993,119:1935-1960.
    [168]Yang J N,Akbarpour A,Ghaemmaghami P.New optimal control algorithms for structural control[J].Journal of Engineering Mechanics,1987,113(6):1369-1386.
    [169]张微敬,欧进萍.基于状态反馈的结构鲁棒控制[J].世界地震工程,2002,18(3):37-41.
    [170]关新平,张群亮.不确定离散时滞系统的鲁棒H_∞滤波与仿真[J].系统仿真学报,2002,14(8):1078-1081.
    [171]于骁,谭述君,林家浩.地震作用下建筑结构基于平衡降阶的时滞H_∞控制[J].工程力学,2008,25(2):148-153.
    [172]Davison E J,Maki M C.The numerical solution of the matrix Riccati differential equation[J].IEEE Transactions on Automatic Control,1973:71-73.
    [173]钟万勰.应用力学的辛数学方法[M].北京:高等教育出版社,2006.
    [174]Choi C H.Time-varying Riccati differential equation for numerical experiments[C].Proceedings of the 29th Conference on Decision and Control,Honolulu,Hawaii,1990:930-940.
    [175]Kirk D E.Optimal control theory[M].New Jersey:Prentice-Hall,1970.
    [176]Betts J T.Survey of numerical methods for trajectory optimization[J].Journal of Guidance,Control,and Dynamics,1998,21(2):193-207.
    [177]Holsapple R,Venkataraman R,Doman D.A modified simple shooting method for solving two-point boundary-value problems[C].IEEE Aerospace Conference,2003:2783-2790.
    [178]Rahmani A,Mesbahi M,Hadaegh F Y.On the optimal balanced-energy formation flying maneuvers[C].AIAA Guidance,Navigation and Control Conference,San Francisco,California,2005.
    [179]Bilardi G,Ferrante A.The role of terminal cost/reward in finite-horizon discrete-time LQ optimal control[J].Linear Algebra and its Applications,2007,425:323-344.
    [180]Park C,Scheeres D J.Solutions of the optimal feedback control problem using Hamiltonian dynamics and generating functions[C].Proceedings of the 42nd IEEE Conference on Decision and Control,Maui,2003:1222-1227.
    [181]郑大钟.线性系统理论[M].北京:清华大学出版社,2002.
    [182]Chu E K W,Fan H Y,Lin W W.A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations[J].Linear Algebra and its applications,2005,396(55-80).
    [183]Barker H A.Open environments and object-oriented methods for computer-aided control system design[J].Control Engineering Practice,1995,3(3):347-356.
    [184]李云峰,陈际达.控制系统计算机辅助设计的研究进展[J].计算机工程与科学,2000,22(1):83-85.
    [185]谭述君,钟万勰.基于精细积分的(最优)控制系统程序库[C].技术科学论坛第二十三次学术报告会议论文集,上海,2006:75-94.
    [186]彭海军,谭述君,钟万勰.无限长时间最优控制系统基本计算问题--使用PIMCSD工具箱 [C].航空航天中力学与控制的挑战和机遇会议论文集,上海,2007:372-381.
    [187]谭述君,钟万勰.有限长时间LQ最优控制系统设计与仿真--使用PIMCSD工具箱[C].航空航天中力学与控制的挑战和机遇会议论文集,上海,2007:382-391.
    [188]Arnold-Ⅲ W F,Laub A J.Generalized eigenproblem algorithms and software for algebraic Riccati equations[C].Proceedings of the IEEE,1984:1746-1754.
    [189]Abels J,Benner P.Darex-a collection of benchmark examples for discrete-time algebraic Riccati equations[3].SLICOT Working Note,1999-16.
    [190]InalhanG,Tillerson M,How J P.Relative dynamics and control of spacecraft formations in eccentric orbits[J].Journal of Guidance,Control,and Dynamics,2002,25(1):48-59.
    [191]崔海英,李俊峰,高云峰.椭圆参考轨道的卫星编队队形保持控制设计[J].工程力学,2007,24(4):147-151.
    [192]《卫星工程》系列编辑委员会.航天器轨道动力学与控制[M].北京:中国宇航出版社,1995.
    [193]Bate R R,Mueller D D,White J E.Fundamentals of astrodynamics[M].New York:Dover,1971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700