模糊环境下基于决策粗糙集的决策方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
决策环境的复杂性、动态性,以及决策者所具备知识的有限性等都是影响人们作出合理决策所面临的挑战性因素。近些年来,信息与计算机科学相关领域的快速发展和应用,为决策者解决该类不确定性复杂决策问题提供了一种新的思路。决策粗糙集理论作为一种新的处理不确定性决策问题的方法,其特点是基于贝叶斯决策过程,考虑了决策风险对决策结果的影响,可更好为人们决策服务。
     从实际决策语义出发,把模糊这一不确定性评估形式引入到决策粗糙集中,既拓宽了决策粗糙集的应用范围,又为该模型中关键要素损失函数的取值提供了新的解决方案。借鉴现有决策理论和粗糙集理论的研究成果,本文选取区间数、三角模糊数、语言变量和犹豫模糊数等四种典型的模糊形式,依次研究相应模糊环境下基于决策粗糙集的理论模型和决策方法。
     首先,考虑决策粗糙集中各损失值为区间数的情况,提出了区间数决策粗糙集的基础模型。先基于确定性排序方法和可能度排序方法,探索其决策机制和决策规则。借鉴以上常规分析方法,进一步提出了一种基于区间数决策粗糙集的优化方法。通过实验对比研究,明确了区间数决策粗糙集三种分析方法的适用条件和准则。
     其次,考虑决策粗糙集中各损失值为三角模糊数的情况,提出了三角模糊数决策粗糙集的基础模型。先为期望损失选取合适的三角模糊数排序方法,再挖掘出决策规则。进一步,为了确定模型中各损失值,把决策粗糙集中各类损失成功映射到多属性群决策中,这极大促进了该模型的实际应用。与此同时,利用粒子群优化算法通过调节评估刻度,演化群决策的协调过程,以解决群决策中不一致性。
     再次,引入语言变量这一定性评估形式,考虑决策粗糙集中条件概率和损失函数两要素,在不同取值类型下构建出一系列新的决策粗糙集模型,从而丰富了原有决策粗糙集的研究内容。为便于模型的实际应用,进一步把决策粗糙集中各类要素成功映射到多属性群决策中,并设计出确定模型中各要素的算法。
     最后,考虑决策粗糙集中损失函数为犹豫模糊数这一新型形式,探索出该模型在犹豫模糊环境下的决策机制。进一步,为解决实际决策过程中的资源分配问题,从成本语义出发,利用各对象的风险成本和多目标0-1整数规划设计求解方法,这极大地推动了决策粗糙集在管理决策领域的应用。
     本文以决策粗糙集为研究对象,将不确定性模糊理论引入到决策粗糙集中,以损失函数为研究切入点,研究了模糊环境下基于决策粗糙集的决策方法。这不仅拓宽决策粗糙集的应用领域,还为研究基于粗糙集理论的决策分析提供新的方向。
When people want to make a reasonalbe decision, they face many challenges to influence their decisions, e.g. the complexity and the dynamics of decision environment, the limitation of knowledge of the decision makers and so on. In recent years, with the rapid development and application of information technologies and computer science, it provides a new idea to solve these types of uncertainty and complex problems for decision makers. As a new method to solve uncertainty decision problems, decision-theoretic rough sets consider the influence of decision risk to the result based on Bayesian decision process. It can serve to help the decision-making.
     In the viewpoint of the practical semantics, we introduce the fuzzy uncertainty formation into the decision-theoretic rough set model. On the one hand, it extends the application ranges of decision-theoretic rough sets. On the other hand, it also provides a new solution for determining the value of loss function presented in decision-theoretic rough sets. In the light of the research results exsited in the available decision theory and rough set theory, this paper chooses four typical fuzzy formations to individually discuss the models and decision-making methods based on decision-theoretic rough sets, including interval-valued, triangular fuzzy number, linguistic variable and hesitant fuzzy number.
     Firstly, considering the values of losses used in decision-theoretic eough sets with intervals, we propose a basic model of interval-valued decision-theoretic rough sets. In the frame of interval-valued decision-theoretic rough sets, we focus on deriving decision rules with the aid of the two conventional methods, i.e., a certain ranking method and a degree of possibility ranking method, respectively. Following the above analysis, we further propose an optimization method for interval-valued decision-theoretic rough sets. By the comparsion study of experimental analysis, the criteria for choosing a suitable analysis method to interval-valued decision-theoretic rough sets are generated.
     Secondly, considering the values of losses used in decision-theoretic eough sets with triangular fuzzy numbes, we propose a basic model of triangular fuzzy decision-theroetic rough sets. Ranking the expected loss with triangular fuzzy number is analyzed and decision rules are derived. With the aid of multiple attribute group decision making, we further design an algorithm to determine the values of losses used in triangular fuzzy decision-theroetic rough sets. It can promote the applications of triangular fuzzy decision-theroetic rough sets. Meanwhile, we optimize the scales of the linguistic variables with the use of particle swarm optimization, which evolves the negotiation process of experts and produces higher values of consistency.
     Thirdly, we introduce the linguistic variable into decision-theoretic rough sets. Considering the two elements of conditional probability and loss function used in decision-theoretic rough sets, a series of novel models are constructed under their different value types. It can enrich the research contents of original decision-theoretic rough sets. For convenience of application, we determine the values of the two elements used in decision-theoretic rough sets with the aid of multi-attribute group decision making and design an adaptive algorithm.
     Finally, considering the new expression of evaluation information of hesitant fuzzy number, we introduce hesitant fuzzy number into decision-theoretic rough sets and explore its decision mechanism. In order to solve the resource allocation problems in the decision procedure, we design the associated risks of alternatives and multi-objective0-1integer programming to solve it according to the practical semantics. It greatly promotes the applications of decision-theoretic rough sets in the area of management decision.
     The topic of this paper is on the decision-theoretic rough sets. We introduce the fuzzy uncertainty formation into decision-theoretic rough sets and focus on discussing the loss function. Under the fuzzy environment, we study some decision-making methods based on decision-theoretic rough sets. It not only extends the application range of decision-theoretic rough sets, but also provides a new direction for decision analysis in the rough set theory.
引文
[1]Abd El-Monsef M M E, Kilany N M. Decision analysis via granulation based on general binary relation [J]. International Journal of Mathematics and Mathematical Sciences, 2007, doi:10.1155/2007/12714. Article ID:12714.
    [2]Androutsopoulos I, Paliouras G, Karkaletsis V, Sakkis G, Spyropoulos C D, Stamatopoulos P. Learning to filter spam e-mail:A comparison of a naive bayesian and a memory-based approach [C]. In:4th European Conference on Principles and Practice of Knowledge Discovery in Databases, 2000:1-13.
    [3]Asady B. The revised method of ranking LR fuzzy numbers based on deviation degree [J]. Expert Systems with Applications, 2010,37(7):5056-5060.
    [4]Asady B. Revision of distance minimization method for ranking of fuzzy numbers [J]. Applied Mathematical Modelling, 2011,35(3):1306-1313.
    [5]Atanassov K. Operators over interval valued intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1994,64(2):159-174.
    [6]Ayad A, Liu J. Supporting E-learning system with modified Bayesian rough set model [C]. In:W. Yu, H. He and N. Zhang (Eds.):ISNN 2009, Part Ⅱ, LNCS 5552, Berlin: Springer, 2009:192-200.
    [7]Azam N, Yao J T. Analyzing uncertainties of probabilistic rough set regions with game-theoretic rough sets [J]. International Journal of Approximate Reasoning, 2013, DOI:10.1016/j.ijar.2013.03.015.
    [8]Bryson N, Mobolurin A. An action learning evaluation procedure for multiple criteria decision making problems [J]. European Journal of Operational Research, 1995,96(2): 379-386.
    [9]Chen S J, Hwang C L, Hwang F P. Fuzzy multiple attribute decision making:Methods and applications [M]. Berlin:Springer-Verlag, 1992.
    [10]Chen S J, Chen S M. Fuzzy risk analysis based on measures of similarity between interval-valued fuzzy numbers [J]. Computers and Mathematics with Applications, 2008,55(8):1670-1685.
    [11]Chen C, Doloi H. BOT application in china:driving and impeding factors [J]. International Journal of Project Management, 2008,26(4):388-398.
    [12]Chen S M, Chen J H. Fuzzy risk analysis based on ranking generalized fuzzy numbers with different heights and different spreads [J]. Expert Systems with Applications, 2009, 36(3):6833-6842.
    [13]Chen C, Doloi H. BOT application in china:driving and impeding factors [J]. International Journal of Project Management, 2008,26(4):388-398.
    [14]Chen Y, Miao D Q. Rule extraction based on granulation order in interval-valued fuzzy information system [J]. Expert Systems with Applications, 2011,38(10):12249-12261.
    [15]Chen Y, Miao D Q, Feng Q R. Positive approximation and converse approximation in interval-valued fuzzy rough sets [J]. Information Sciences, 2011,181(11):2086-2110.
    [16]Chen S M, Munif A, Chen G S, Liu H C, Kuo B C. Fuzzy risk analysis based on ranking generalized fuzzy numbers with different left heights and right heights [J]. Expert Systems with Applications,2012,39(7):6320-6334.
    [17]Chen N, Xu Z S, Xia M M. Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis [J]. Applied Mathematical Modelling, 2013,37(4): 2197-2211.
    [18]Cheng C H, Yang K L, Hwang C L. Evaluating attack helicopters by AHP based on linguistic variable weight [J]. European Journal of Operational Research, 1999,116(2): 423-435.
    [19]Chiou H K, Tzeng G H. Fuzzy hierarchical evaluation with grey relation model of green engineering for industry [J]. International Journal of Fuzzy System, 2001,3(3): 466-475
    [20]Chou S Y, Dat L Q, Yu V F. A revised method for ranking fuzzy numbers using maximizing set and minimizing set [J]. Computers & Industrial Engineering, 2011, 61(4):1342-1348.
    [21]Coppola C, Pacelli T. Approximate distances, pointless geometry and incomplete information [J]. Fuzzy Sets and Systems, 2006,157(17):2371-2383.
    [22]Dembczynski K, Greco S, Slowinski R. Rough set approach to multiple criteria classification with imprecise evaluations and assignments [J]. European Journal of Operational Research, 2009,198(2):626-636.
    [23]Deng Y, Sadiq R, Jiang W, Tesfamariam S. Risk analysis in a linguistic environment:a fuzzy evidential reasoning-based approach [J]. Expert Systems with Applications,2011, 38 (12):15438-15446.
    [24]Deng X F, Yao Y Y. An information-theoretic interpretation of thresholds in probabilistic rough sets [C]. In: T. Li et al. (Eds.):RSKT 2012, LNAI 7414, 2012: 369-378.
    [25]Dubois D, Prade H. Rough fuzzy sets and fuzzy rough sets [J]. International Journal of General Systems, 1990,17(2-3):191-209.
    [26]Duda R, Hart P E. Pattern classification and scene analysis [M]. New York: Wiley. 1973.
    [27]Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In:Proceedings of the Sixth International Symposium on Micromachine and Human Science, 1995: 39-43.
    [28]Facchinetti G, Ricci R G. A characterization of a general class of ranking functions on triangular fuzzy numbers [J]. Fuzzy Sets and Systems, 2004,146(2):297-312.
    [29]Fan T F, Lian C J, Liu D R. Dominance-based fuzzy rough set analysis of uncertain and possiblistic data tables [J]. International Journal of Approxiamte Reasoning, 2011, 52(9):1283-1297.
    [30]Gong Z T, Sun B Z, Chen D G. Rough set theory for the interval-valued fuzzy information systems [J]. Information Sciences,2008,178(8):1968-1985.
    [31]Greco S, Matarazzo B, Slowinski R. Rough membership and Bayesian confirmation measures for parameterized rough sets [C]. In:D. Slezak et al. (Eds.):RSFDGrC 2005, LNAI 3641, Berlin:Springer, 2005:314-324.
    [32]Greco S, Matarazzo B, Slowinski R. Parameterized rough set model using rough membership and Bayesian confirmation measures [J]. International Journal of Approximate Reasoning, 2008,49(2):285-300.
    [33]Greco S, Slowinski R, Yao Y Y. Bayesian decision theory for dominance-based rough set approach [C]. In: J.T. Yao et al.(Eds.):RSKT2007, LNAI 4481, Berlin:Springer, 2007:134-141.
    [34]Grzymala-Busse J W, Marepally S R, Yao Y Y. A comparison of positive, boundary, and possible rules using the MLEM2 rule induction algorithm [C]. In:Proceedings of the 10th International conference on hybrid intelligent systems,2010:7-12.
    [35]Grzymala-Busse J W, Yao Y Y. Probabilistic rule induction with the LERS data mining system [J]. International Journal of Intelligent Systems, 2011,26(6):518-539.
    [36]Herbert J P, Yao J T. Rough set model selection for practical decision making[C]. In: Proceedings of the 4th International conference on fuzzy systems and knowledge discovery (FSKD'07), Hainan, china, Ⅲ,2007:203-207.
    [37]Herbert J P, Yao J T. Game-theoretic risk analysis in decision-theoretic rough sets [C]. In:G. Wang et al. (Eds.):RSKT2008, LNAI 5009, Berlin: Springer, 2008:132-139.
    [38]Herbert J P, Yao J T. Criteria for choosing a rough set model [J]. Computers and Mathematics with Application, 2009a,57(6):908-918.
    [39]Herbert J P, Yao J T. Learning optimal parameters in decision-theoretic rough sets [C]. In:P. Wen et al. (Eds.):RSKT2009, LNAI 5589, Berlin: Springer, 2009b:610-617.
    [40]Herbert J P, Yao J T. Game-theoretic rough sets [J].Fundamenta Informaticae, 2011, 108(3-4):267-286.
    [41]Herrera F, Herrera-Viedma E, Verdegay J L. A model of consensus in group decision making under linguistic assessments [J]. Fuzzy Sets and Systems, 1996a,78(1):73-87.
    [42]Herrera F, Herrera-Viedma E, Verdegay J L. Direct approach process in group decision making using linguistic OWA operators [J]. Fuzzy Sets and Systems, 1996b,79(2): 175-190.
    [43]Herrera F, Herrera-Viedma E, Martinez L. A fuzzy linguistic methodology to deal with unbalanced linguistic term sets [J]. IEEE Transactions on Fuzzy Systems, 2008,16(2): 354-370.
    [44]Hong D H, Lee S B. Some algebraic properties and a distance measure for interval-valued fuzzy numbers [J]. Information Sciences, 2002,148(1-4):1-10.
    [45]Huang B. Graded dominance interval-based fuzzy objective information systems [J]. Knowledge-Based Systems, 2011,24(7):1004-1012.
    [46]Huang K Y, Chang T H, Chang T C. Determination of the threshold value β of variable precision rough set by fuzzy algorithms [J]. International Journal of Approximate Reasoning, 2011,52(7):1056-1072.
    [47]Intan R, Mukaidono M. Generalized fuzzy rough sets by conditional probability relations [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2002,16 (7):865-881.
    [48]Inuiguchi M, Tanino T, Sakawa M. Membership funcion elicitation in possibilistic programming problems [J]. Fuzzy Sets and Systems, 2000,111(1):29-45.
    [49]Jensen R, Shen Q. Fuzzy-rough attribute reduction with application to web categorization [J]. Fuzzy Sets and Systems,2004,141(3):469-485.
    [50]Jia X Y, Zheng K, Li W W, Liu T T, Shang L. Three-way decisions solution to filter spam email:an empirical study. In: J.T. Yao et al. (Eds.):RSCTC 2012, LNAI 7413, Berlin, Springer-Verlag, 2012:287-296.
    [51]Jia X Y, Liao W H, Tang Z M, Shang L. Minimum cost attribute reduction in decision-theoretic rough set models [J]. Information Sciences,2013a, 219(10): 151-167.
    [52]Jia X Y, Tang Z M, Liao W H, Shang L. On an optimization representation of decision-theoretic rough set model. International Journal of Approximate Reasoning, 2013b, DOI:10.1016/j.ijar.2013.02.010.
    [53]Jiang C, Han X, Liu G R, Liu G P. A nonlinear interval number programming method for uncertain optimization problems [J]. European Journal of Operational Research, 2008,188(1):1-13.
    [54]Katzberg J D, Ziarko W. Variable precision rough sets with asymmetric bounds [C]. In:Ziarko, W. (Eds.):Rough Sets, Fuzzy Sets and Knowledge Discovery, London:Springer,1994:167-177.
    [55]Kearfott R B. Interval computations:introduction, uses, and resources [J]. Euromath Bulletin,1996,2(1):95-112.
    [56]Kengpol A, O'Brien C. The development of a decision support tool for the selection of advanced technology to achieve rapid product development [J]. International Journal of Production Economics,2001,69(2):177-191.
    [57]Kumar A, Singh P, Kaur P, Kaur A. A new approach for ranking of L-R type generalized fuzzy numbers [J]. Expert Systems with Applications, 2011,38(9): 10906-10910.
    [58]Leung Y, Fischer M M, Wu W Z, et al. A rough set approach for the discovery of classification rules in interval-valued information systems [J]. International Journal of Approximation Reasoning, 2008,47(2):233-246.
    [59]Li D F. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems [J]. Computers and Mathematics with Applications, 2010,60(6):1557-1570.
    [60]Li W, Miao D Q, Wang W L, Zhang N. Hierarchical rough decision theoretic framework for text classification [C]. In: Proceedings of the 9th IEEE International Conference on Cognitive Informatics (ICCI10),2010:484-489.
    [61]Li H X, Zhou X Z. Risk decision making based on decision-theoretic rough set: a multi-view decision model [J]. International Journal of Computational Intelligence Systems, 2011,4(1):1-11.
    [62]Li H X, Zhou X Z, Zhao J B, Liu D. Attribute reduction in decision-theoretic rough set model:a further investigation [C]. In: J. T. Yao et al. (Eds):RSKT 2011, LNCS 6954, Berlin:Springer, 2011:466-475.
    [63]Li D F. A fast approach to compute fuzzy values of matrix games with payoffs of triangular fuzzy numbers [J]. European Journal of Operational Research, 2012,223(2): 421-429.
    [64]Li H X, Zhou X Z, Zhao J B, Huang B. Cost-sensitive classification based on decision-theoretic rough set model [C]. In:T. Li (Ed.), et al., RSKT 2012, LNAI 7414, Berlin: Springer,2012:379-388.
    [65]Liang D C, Liu D, Pedrycz W, Hu P. Triangular fuzzy decision-theoretic rough sets [J]. International Journal of Approximate Reasoning, 2013,54:1087-1106.
    [66]Likert R. A technique for the measurement of attitudes [J]. Archives of Psychology, 1932,22(140):1-55.
    [67]Lin C M, Gen M. Multi-criteria human resource allocation for solving multistage combinatorial optimization problems using multiobjective hybrid genetic algorithm [J]. Expert Systems with Application, 2008,34(4):2480-2490.
    [68]Lingras P, Chen M, Miao D Q. Rough multi-category decision theoretic framework [C]. In:G. Wang et al.(Eds):RSKT 2008, LNAI 5009, Berlin:Springer, 2008:676-683.
    [69]Lingras P, Chen M, Miao D Q. Semi-supervised rough cost/benefit decisions [J]. Fundamenta Informaticae,2009a,94(2):233-244.
    [70]Lingras P, Chen M, Miao D Q. Rough cluster quality index based on decision theory [J]. IEEE Transactions on Knowledge and Data Engineering, 2009b,21(7):1014-1026.
    [71]Liou T S, Wang M J J. Ranking fuzzy numbers with integral value [J]. Fuzzy Sets and Systems, 1992,50(3):247-255.
    [72]Lipovetsky S, Tishler A. Interval estimation of priorities in the AHP [J]. European Journal of Operational Research, 1999,114(1):153-164.
    [73]Liu P D. A novel method for hybrid multiple attribute decision making [J]. Knowledge-Based Systems, 2009,22(5):388-391.
    [74]Liu D, Li H X, Zhou X Z. Two decades'research on decision-theoretic rough sets [C]. In: Proceedings of 9th IEEE International Conference on Cognitive Informatics, 2010: 968-973.
    [75]Liu D, Li T R, Ruan D. Probabilistic model criteria with decision-theoretic rough sets [J]. Information Sciences,2011a,181(17):3709-3722.
    [76]Liu D, Yao Y Y, Li T R. Three-way investment decisions with decision-theoretic rough sets [J]. International Journal of Computational Intelligence Systems, 2011b,4(1): 66-74.
    [77]Liu P D, Zhang X, Liu W L. A risk evaluation method for the high-tech project investment based on uncertain linguistic variables [J]. Technological Forecasting & Social Change, 2011c,78(1):40-50.
    [78]Liu D, Li T R, Li H X. A multiple-category classification approach with decision-theoretic rough sets [J]. Fundamenta Informaticae, 2012a,115 (2-3):173-188.
    [79]Liu D, Li T R, Liang D C. Three-way government decision analysis with decision-theoretic rough sets [J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2012b,20 (Supp.1):119-132.
    [80]Liu D, Li T R, Liang D C. Decision-theoretic rough sets with probabilistic distribution [C]. In: T. Li et al. (Eds.):RSKT 2012, LNAI 7414, Berlin: Springer, 2012c:389-398.
    [81]Liu D, Li T R, Liang D C. Incorporating logistic regression to decision-theoretic roughsets for classifications [J]. International Journal of ApproximateReasoning, 2013, DOI:10.1016/j.ijar.2013.02.013.
    [82]Ma W M, Sun B Z. On relationship between probabilistic rough set and Bayesian risk decision over two universes [J]. International Journal of General Systems, 2011,41(3): 225-245.
    [83]Mata F, Martinez L, Herrera-Viedma E. An adaptive consensus support model for group decision-making problems in a multigranular fuzzy linguistic context [J]. IEEE Transactions on Fuzzy Systems, 2009,17(2):279-290.
    [84]Medaglia A L, Fang S C, Nuttle H L W, Wilson J R. An efficient and flexible mechanism for constructing membership functions [J]. European Journal of Operational Research, 2002,139(1):84-95.
    [85]Mezher T, Chedid R, Zahabi W. Energy resource allocation using multi-objective goal programming:the case of Lebanon [J]. Applied Energy, 1998,61(4):175-192.
    [86]Min F, Zhu W. Attribute reduction of data with error ranges and test costs [J]. Information Sciences,2012,211:48-67.
    [87]Mishra H, Mishra A, Shiv B. In praise of vagueness:malleability of vague information as a performance booster [J]. Psycholohical Science, 2011,22(6):733-738.
    [88]Moore R E. Interval analysis [M]. Englewood Cliffs'NJ:Prentice Hall, 1966.
    [89]Moore R E. Methods and applications of interval analysis [M]. Philadelphia: SIAM. Publications, 1979.
    [90]Moore R, Lodwick W. Interval analysis and fuzzy set theory [J]. Fuzzy Sets and Systems, 2003,135(1):5-9.
    [91]Ozer M. Factors which influence decision making in new product evaluation [J]. European Journal of Operational Research, 2005,163(3):784-801.
    [92]Pang J F, Liang J Y. Evaluation of the results of multi-attribute group decision-making with linguistic information [J]. Omega, 2012,40(3):294-301.
    [93]Pawlak Z. Rough sets [J]. International Journal of Computer and Information Science, 1982,11(5):341-356.
    [94]Pawlak Z, Wong S K M, Ziarko W. Rough sets:probabilistic versus deterministic approach [J]. International Journal of Man-Machine Studies, 1988,29(1):81-95.
    [95]Pawlak Z. Rough Sets:Theoretical Aspects of Reasoning about Data [M]. Boston: Kluwer Academic Publishers, 1991.
    [96]Pawlak Z, Skowron A. Rough membership functions [C]. In:Advances in the Dempster-Shafer Theory of Evidence, John Wiley and Sons, New York, 1994:251271.
    [97]Pedrycz W. Why triangular membership functions [J]. Fuzzy Sets and Systems, 1994,64(1):21-30.
    [98]Pedrycz W, Song M L. A granulation of linguistic information in AHP decision-making problems [J]. Information Fusion, 2011a, DOI:10.1016/j.in_us.2011.09.003.
    [99]Pedrycz W, Song M L. Analytic hierarchy process (AHP) in group decision making and its optimization with an allocation of information granularity [J]. IEEE Transactions on Fuzzy Systems, 2011b,19(3):527-539.
    [100]Pedrycz W. Allocation of information granularity in optimization and decision-making models:Towards building the foundations of Granular Computing [J]. European Journal of Operational Research, 2012, DOI:10.1016/j.ejor.2012.03.038.
    [101]Pedrycz W, Bargiela A. An optimization of allocation of information granularity in the interpretation of data structures:toward granular fuzzy clustering [J]. IEEE Transtions on Systems, Man, and Cybernetics-Part B,2012,42(3):582-590.
    [102]Qian Y H, Liang J Y, Dang C Y. Interval ordered information systems [J]. Computers and Mathematics with Application, 2008,56(8):1994-2009.
    [103]Qian G, Wang H, Feng X Q. Generalized hesitant fuzzy sets and their application in decision support system [J]. Knowledge-Based Systems, 2013a,37:357-365.
    [104]Qian Y H, Zhang H, Sang Y L, Liang J Y. Multigranulation decision-theoretic rough sets [J]. International Journal of Approximate Reasoning, 2013b, DOI:10.1016/j. ijar. 2013.03.004.
    [105]Rao P P B, Shankar N R. Ranking fuzzy numbers with a distance method using circumcenter of centroids and an index of modality [J]. Advances in Fuzzy Systems,2011,DOI:10.1155/2011/178308.
    [106]Rodriguez R M, Martinez L, Herrera F. Hesitant fuzzy linguistic term sets for decision making [J]. IEEE Transactions on Fuzzy Systems, 2012,20 (1):109-119.
    [107]Sari I U, Behret H, Kahraman C. Risk governance of urbran rail systems using fuzzy AHP:the case of Istanbul [J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2012,20(Suppl.1):67-79.
    [108]Sawicki P, Zak J. Technical diagnostic of a fleet of vehicles using rough set theory [J]. European Journal of Operational Research, 2009,193(3):891-903.
    [109]Sengupta A, Pal T K. On comparing interval numbers [J]. European Journal of Operational Research, 2000,127(1):28-43.
    [110]Shen Q, Chouchoulas A. A rough-fuzzy approach for generating classification rules [J]. Pattern Recognition,2002,35(11):2425-2438.
    [111]Shi Y, Eberhart R. A modified particle swarm optimizer [C]. In: Proceedings of IEEE International Conference on Evolutionary Computation, 1998:4-9.
    [112]Slezak D, Ziarko W. Variable precision Bayesian rough set model [C]. In: G. Wang et al.(Eds.):RSFDGrC 2003, LNAI2639, Berlin: Springer, 2003a:312-315.
    [113]Slezak D, Ziarko W. Attribute reduction in the Bayesian version of variable precision rough set model [J]. Electronic Note in Theoretical Computer Science, 2003b,82(4): 263-273.
    [114]Slezak D. Rough sets and bayes factor [J]. Transaction on Rough Sets Ⅲ, 2005,3400: 202-229.
    [115]Slezak D, Ziarko W. The investigation of the Bayesian rough set model [J]. International Journal of Approximate Reasoning, 2005,40(1-2):81-91.
    [116]Sun B Z, Gong Z T, Chen D G. Fuzzy rough set theory for the interval-valued fuzzy information systems [J]. Information Sciences, 2008,178(13):2794-2815.
    [117]Thieme R J, Song M, Calantone R J. Artificial neural network decision support systems for new product development project selection [J]. Journal of Marketing Research, 2000, 37 (4):499-507.
    [118]Torra V, Narukawa Y. On hesitant fuzzy sets and decision [C]. In:The 18th IEEE International Conference on Fuzzy Systems, 2009:1378-1382.
    [119]Torra V. Hesitant fuzzy sets [J]. International Journal of Intelligent Systems, 2010, 25(6):529-539.
    [120]Turksen I B. Measurement of membership functions and their acquisition [J]. Fuzzy Sets and Systems,1991,40(1):5-38.
    [121]Van Laarhoven P J M, Pedrycz W. A fuzzy extension of Saaty's priority theory [J]. Fuzzy Sets and Systems,1983,11(1-3):229-241.
    [122]Wang Z X, Liu Y J, Fan Z P, Feng B. Ranking L-R fuzzy number based on deviation degree [J]. Information Sciences, 2009,179(13):2070-2077.
    [123]Wei G W. Hesitant fuzzy prioritized operators and their application to multiple attribute decsision making [J]. Knowledge-Based Systems, 2012,31:176-182.
    [124]Weiss N A. Introductory statistics (9th edition) [M]. Boston:Addison-Wesley. 2012.
    [125]Wu W Z, Zhang W X, Li H Z. Knowledge acquistion in incomplete fuzzy information systems via the rough set approach [J]. Expert Systems, 2003,20(5):280-286.
    [126]Wu Z B, Chen Y H. The maimizing deviation method for group multiple attribute decision making under linguistic environment [J]. Fuzzy Sets and Systems, 2007, 158(14):1608-1617.
    [127]Wu Q, Law R. The complex fuzzy system forecasting model based on fuzzy SVM with triangular fuzzy number input and output [J]. Expert Systems with Applications, 2011, 38(10):12085-12093.
    [128]Wu Z B, Xu J P. Consensus reaching models of linguistic preference relations based on distance functions [J]. Soft Computing, 2012,16(4):577-589.
    [129]Xia M M, Xu Z S. Hesitant fuzzy information aggregation in decision making [J]. International Journal of Approximate Reasoning, 2011,52(3):395-407.
    [130]Xia M M, Xu Z S, Chen N. Induced aggregation under confidence levels [J]. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2011, 19 (2):201-227.
    [131]Xia M M, Xu Z S, Chen N. Some hesitant fuzzy aggregation operators with their application in group decision making [J]. Group Decision and Negotation, 2013,22(2): 259-279.
    [132]Xu Z S, Da Q L. The uncertain OWA operator [J]. International Journal of Intelligent Systems, 2002,17(6):569-575.
    [133]Xu Z S. A method based on linguistic aggregation opertaors for group decision making with linguistic preference relations [J]. Information Sciences, 2004,166(1-4):19-30.
    [134]Xu Z S. On method for uncertain multiple attribute decision making problems with uncertain multiplicative preference information on alternatives [J]. Fuzzy Optimization and Decision Making, 2005a,4(2):131-139.
    [135]Xu Z S. Deviation measures of linguistic preference relations in group decision making [J]. Omega, 2005b,33(3):249-254.
    [136]Xu Z S. A note on linguistic hybrid arithmetic averaging operator in multiple attribute group decision making with linguistic information [J]. Group Decision and Negotiation, 2006,15(6):593-604.
    [137]Xu Z S. Dependent uncertain ordered weighted aggregation operators [J]. Information Fusion,2008a,9(2):310-316.
    [138]Xu Z S. Group decision making based on multiple types of linguistic preference relations [J]. Information Sciences,2008b,178(2):452-467.
    [139]Xu Z S. Au automatic approach to reaching consensus in multiple attribute group decision making [J]. Computer & Industrial Engineering, 2009,56(4):1369-1374.
    [140]Xu Z S, Yager R R. Intuitionistic and interval-valued intutionistic fuzzy preference relations and their measures of similarity for the evaluation of agreement within a group [J]. Fuzzy Optimization and Decision Making, 2009,8(2):123-139.
    [141]Xu Y L, Yeung J F, Chan A P C, Chan D W M, Wang S Q, Ke Y J. Developing a risk assessment model for PPP projects in China-a fuzzy syntheic evaluation approach [J]. Automation in Construction,2010,19(7):929-943.
    [142]Xu Y J, Da Q L. Standard and mean deviation methods for linguistic group decision making and their applications [J]. Expert Systems with Applications, 2010,37(8): 5905-5912.
    [143]Xu Z S, Xia M M. Distance and similarity measures for hesitant fuzzy sets [J]. Information Sciences,2011a,181(11):2128-2138.
    [144]Xu Z S, Xia M M. On distance and correlation measures of hesitant fuzzy information [J]. International Journal of Intelligent Systems,2011b, 26(5):410-425.
    [145]Xu Z S, Xia M M. Hesitant fuzzy entropy and cross-entropy and their use in multiattribute decision-making [J]. International Journal of Intelligent Systems,2012, 27(9):799-822.
    [146]Yager R R. Dempster-shafer belief structures with interval valued focal weights [J]. International Journal of Intelligent Systems, 2001,16(4):497-512.
    [147]Yager R R. Level sets and the extension principle for interval valued fuzzy sets and its application to uncertainty measures [J]. Information Sciences, 2008,178(18): 3565-3576.
    [148]Yang X B, Yu D J, Yang J Y, et al. Dominance-based rough set approach to incomplete interval-valued information system [J]. Data & Knowledge Engineering, 2009,68(11): 1331-1347.
    [149]Yang X B, Zhang M. Dominance-based fuzzy rough approach to an interval-valued decision system [J]. Frontiers of Computer Science in China, 2011,5(2):195-204.
    [150]Yang X P, Song H G, Li T J. Decision making in incomplete information system based on decision-theoretic rough sets [C]. In: J. T. Yao et al. (Eds.):RSKT 2011, LNCS 6954, 2011:495-503.
    [151]Yang X P, Yao J T. Modelling multi-agent three-way decisions with decision-theoretic rough sets [J]. Fundamenta Informaticae, 2012,115(2-3):157-171.
    [152]Yao Y Y, Wong S K M, Lingras P. A decision-theoretic rough set model [C]. In:Z. W. Ras, M. Zemankova, M. L. Emrich (Eds.):Methodologies for Intelligent Systems, 5, New York:North-Holland,1990:17-24.
    [153]Yao Y Y, Wong SKM.A decision theoretic framework for approximating concepts [J]. International Journal of Man-machine Studies,1992,37(6):793-809.
    [154]Yao Y Y. Information granulation and approximation in a decision-theoretical model of rough sets [C]. In: Polkowski, L., Pal, S.K., and Skowron, A. (Eds):Rough-Neural Computing:Techniques for Computing with Words, Berlin:Springer, 2003a:491-518.
    [155]Yao Y Y. Probabilistic approaches to rough sets [J]. Expert system, 2003b, 20(5):287-297.
    [156]Yao Y Y. Decision-theoretic rough set models [C]. In:J.T. Yao et al.(Eds):RSKT2007, LNAI4481, Berlin:Springer, 2007:1-12.
    [157]Yao J T, Herbert J P. Web-based support systems with rough set analysis [C]. In:M. Kryszkiewicz et al. (Eds.):RSEIP 2007, LNAI 4585, Berlin: Springer, 2007:360-370.
    [158]Yao Y Y. Probabilistic approaches to approximations [J]. International Journal of Approximate Reasoning, 2008,49(2):255-271.
    [159]Yao Y Y, Zhao Y. Attribute reduction in decision-theoretic rough set models [J]. Information sciences,2008,178(17):3356-3373.
    [160]Yao Y Y. Three-way decision: an interpretation of rules in rough set theory[C]. In:P. Wen et al.(Eds.):RSKT 2009, LNCS 5589,2009:642-649.
    [161]Yao Y Y. Three-way decisions with probabilistic rough sets [J]. Information Sciences, 2010,180(3):341-353.
    [162]Yao Y Y, Zhou B. Navie bayesian rough sets [C]. In:J. Yu, et al.(Eds.):RSKT 2010, LNAI 6401, Berlin:Springer, 2010:719-726.
    [163]Yao Y Y. The superiority of three-way decisions in probabilistic rough set models [J]. Information Sciences,2011a,181(6):1080-1096.
    [164]Yao Y Y. Two semantic issues in a probabilistic rough set model [J]. Fundmenta Informaticae,2011b,108(3-4):249-265.
    [165]Yao Y Y, Deng X F. Sequential three-way decisions with probabilistic rough sets [C]. In: Proceedings of the 10th IEEE International Conference on Cognitive Informatics and Cognitive Computing, Canada, 2011:120-125.
    [166]Yao Y Y. Three-way decisions using rough sets [C]. In:G. Peters et al. (Eds.), Rough Sets:Selected Methods and Applications in Management and Engineering, Advanced Information and Knowledge Processing, 2012a:79-93.
    [167]Yao Y Y. An outline of a theory of three-way decisions [C]. In:Proceedings of the 6th International Conference on Rough Sets and Knowledge Technology, LNAI 7414, 2012b:1-16.
    [168]Yen K K, Ghoshray S, Roig G. A linear regression model using triangular fuzzy number coefficients [J]. Fuzzy Sets and Systems, 1999,106(2):167-177.
    [169]Young R C. The algebra of many-valued quantities [J]. Mathematische Annalen,1931, 104(1):260-290.
    [170]Yu H, Chu S S, Yang D C. Autonomous knowledge-oriented clustering using decision-theoretic rough set theory [C]. In: J. Yu et al. (Eds.):RSKT2010, LNAI 6401, Berlin: Springer, 2010:687-694.
    [171]Yue Z L. An approach to aggregating interval numbers into interval-valued intuitionistic fuzzy information for group decision making [J].Expert Systems with Application, 2011,38(5):6333-6338.
    [172]Zadeh L A. Fuzzy sets [J]. Information and Control, 1965,8(3):338-353.
    [173]Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning-I [J]. Information Sciences, 1975,8(3):199-249.
    [174]Zhang J J, Wu D S, Olson D L. The method of grey related analysis to multiple attribute decision making problems with interval numbers [J]. Mathematical and Computer Modelling, 2005,42(9-10):991-998.
    [175]Zhao Y, Wong S K M, Yao Y Y. A note on attribute reduction in the decision-theoretic rough set model [C]. In:C.C. Chan et al. (Eds.):RSCTC2008, LNCS5306, Berlin: Springer, 2008:61-70.
    [176]Zhao Y, Wong S K M, Yao Y Y. A note on attribute reduction in the decision-theoretic rough set model [J]. Transactions on Rough Sets (?), 2011,6499:61-70.
    [177]Zhao W Q, Zhu Y L. An email classification scheme based on decision-theoretic rough set theory and analysis of email security [C]. In:Proceedings of 2005 IEEE Region 10 TENCON,2005:1-6.
    [178]Zhou B, Yao Y Y. In search for effective granularity with DTRS [C]. In:Proceedings of the 9th IEEE International Conference on Cognitive Informatics (ICCI10),2010: 464-470.
    [179]Zhou B, Yao Y Y, Luo J G. A three-way decision approach to email spam filtering [C]. In: A. Farzindar and V. Keselj (Eds):Canadian AI 2010, LNAI 6085, Berlin:Springer, 2010:28-39.
    [180]Zhou B. Multi-calss decision-theoretic rough sets [J]. International Journal of Approximate Reasoning, 2013, DOI:10.1016/j.ijar.2013.04.006.
    [181]Zhu B, Xu Z S, Xia M M. Hesitant fuzzy geometric bonferroni means [J]. Information Sciences,2012,205:72-85.
    [182]Zhu B, Xu Z S. Consistency measures for hesitant fuzzy linguistic preference relations [J]. IEEE Transactions on Fuzzy Systems, 2013, DOI:10.1109/TFUZZ.2013.2245136.
    [183]Ziarko W. Variable precision rough set model [J]. Journal of Computer and System Sciences,1993,46(1):39-59.
    [184]安利平,吴育华,仝凌云.一种基于粗糙集理论的规则获取算法[J].管理科学学报,2001,4(5):74-78.
    [185]安利平.基于粗集理论的多属性决策分析[M].北京:科学出版社.2008.
    [186]陈晓红,阳熹.一种基于三角模糊数的多属性群决策方法[J].系统工程与电子技术,2008,30(2):278-282
    [187]陈子春,秦克云.区间值信息系统在变精度相容关系下的属性约简[J].计算机科学,2009,36(3):163-166.
    [188]陈侠,刘香芹.基于区间数决策矩阵的评判专家水平分析方法[J].运筹与管理,2010,19(5):101-117.
    [189]陈骥,苏为华.区间指标的排序评价方法及应用[J].统计研究,2011,28(5):84-88.
    [190]程发新,杨姝颖.语言判断矩阵偏好决策中群体对某方案满意度识别算法[J].运筹与管理,2008,17(1):53-56.
    [191]党耀国,刘思峰,刘斌.基于区间数的多指标灰靶决策模型的研究.中国工程科学,2005,7(8):31-35.
    [192]樊治平,陈发动,张晓.考虑决策者心理行为的区间数多属性决策方法[J].东北大学学报(自然科学版),2011,32(1):136-139.
    [193]高岩,周德群,刘晨琛,章玲.基于关联的三角模糊数直觉模糊集成算子及其应用[J].系统工程理论与实践,2012,32(9):1964-1972.
    [194]巩在武,刘思峰.三角模糊数互补判断矩阵的一致性及其排序研究[J].控制与决策,2006,21(8):903-907.
    [195]巩增泰,史战红.基于覆盖的概率粗糙集模型及其Bayes决策[J].模糊系统与数学,2008,22(4):142-148.
    [196]韩敏,张俊杰,彭飞,等.一种基于多决策类的贝叶斯粗糙集模型[J].控制与决策,2009,24(11):1615-1619.
    [197]胡寿松,何亚群.粗糙决策理论与应用[M].北京:北京航空航天大学出版社.2006.
    [198]胡启洲,于莉,张爱萍.基于三元区间数的多指标决策方法[J].系统管理学报,2010,19(1):25-30.
    [199]黄兵,胡作进,周献中,模糊信息系统知识约简的分辨函数法[J].系统工程与电子技术,2008,30(11):2164-2166.
    [200]贾修一,商琳,陈家骏.决策风险最小化属性约简[J].计算机科学与探索,2011a,5(2):155-160.
    [201]贾修一,李伟,商琳,陈家骏.一种自适应求三枝决策中决策阈值的算法[J].电子学报,2011b,39(11):2520-2525.
    [202]贾修一,商琳,周献中,梁吉业,苗夺谦,王国胤,李天瑞,张燕平.三支决策理论与应用[M].南京:南京大学出版社.2012.
    [203]菅利荣.面向不确定性决策问题的杂合粗糙集方法与应用[M].北京:科学出版社.2008.
    [204]姜艳萍,樊治平.三角模糊数互补判断矩阵排序的一种实用方法[J].系统工程,2002,20(2):89-92.
    [205]李光金,刘永清.具有三角模糊数要素的DEA模型[J].系统工程学报,1996,11(4):37-44.
    [206]李秀红,张东升.(α,β)-粗糙集模型中阀值的确定与解释[J].山东大学学报(工学版),2006,36(2):81-85.
    [207]李华雄,刘盾,周献中.决策粗糙集模型研究综述[J].重庆邮电大学学报(自然科学版),2010,22(5):624-630.
    [208]李华雄,周献中,李天瑞,王国胤,苗夺谦,姚一豫.决策粗糙集理论及其研究进展[M].北京:科学出版社.2011.
    [209]李香英.区间犹豫模糊熵和区间犹豫模糊相似度[J].计算机工程与应用,2013,http://www.cnki.net/kcms/detail/11.2127.TP.20130220.1555.005.html.
    [210]李华雄,周献中,黄兵,赵佳宝.决策粗糙集与代价敏感分类[J].计算机科学与探索,2013,7(2):127-135.
    [211]刘爱学,李永明,史忠科.一种基于语言变量的MCDM问题的决策方法[J].系统工程,2001,19(5):28-32.
    [212]刘进生,王绪柱,张宝玉.区间数排序[J].工程数学学报,2001,18(4):103-109.
    [213]刘秀梅,赵克勤.基于联系数不确定性分析的区间数多属性决策[J].模糊系统与数学,2010,24(5):141-148.
    [214]刘盾,姚一豫,李天瑞.三枝决策粗糙集[J].计算机科学,2011,38(1):246-250.
    [215]刘盾,李天瑞,李华雄.区间决策粗糙集[J].计算机科学,2012a,39(7):178-214.
    [216]刘盾,李天瑞,梁德翠.模糊数决策粗糙集[J].计算机科学,2012b,39(12):25-29.
    [217]刘培德,张新.直觉不确定语言集成算子及在群决策中的应用[J].系统工程理论与实践,2012,32(12):2704-2711.
    [218]米据生,吴伟志,张文修.基于变精度粗糙集理论的知识约简方法[J].系统工程理论与实践,2004,1:76-81.
    [219]苗夺谦,李道国.粗糙集理论、算法与应用[M].北京:清华大学出版社.2008.
    [220]牛彦涛,黄国和,张晓萱,杨勇平.区间数线性规划及其区间解的研究[J].运筹与管理,2010,19(3):23-29.
    [221]孙海龙,姚卫星.区间数排序方法评述[J].系统工程学报,2010,25(3):304-312.
    [222]王君,樊治平.知识管理者能力的一种模糊多指标评价方法[J].系统工程理论方法应用,2003,12(3):279-283.
    [223]王珏,刘三阳,张杰,刘振华.基于粗集的模糊信息系统有序规则获取[J].系统工程与电子技术,2004,26(6):825-828.
    [224]王育红,党耀国.基于灰色关联系数和D-S证据理论的区间数投资决策方法[J].系统工程理论与实践,2009,29(11):128-134.
    [225]王晓,陈华友,刘兮.基于离差的区间二元语义多属性群决策方法[J].管理学报,2011,8(2):301-305.
    [226]卫贵武.不确定语言多属性决策的组合方法[J].模糊系统与数学,2008,22(4):106-111.
    [227]卫贵武.几类模糊多属性决策方法研究[D].西南交通大学博士研究生学位论文.2009.
    [228]吴江,黄登仕.区间数排序方法综述[J].系统工程,2004,22(8):1-4.
    [229]徐泽水.对方案有偏好的三角模糊数型多属性决策方法研究[J].系统工程与电子技术,2002,24(8):9-20.
    [230]徐泽水,孙在东.一类不确定型多属性决策问题的排序方法[J].管理科学学报,2002,5(3):35-39.
    [231]徐泽水.基于FOWA算子的三角模糊数互补判断矩阵排序法[J].系统工程理论与实践,2003,10:86-89.
    [232]徐泽水,达庆利.区间型多属性决策的一种新方法[J].东南大学学报(自然科学版),2003,33(4):498-501.
    [233]徐泽水.不确定多属性决策方法及应用[M].北京:科学出版社.2004.
    [234]徐泽水.基于语言标度中术语指标的多属性群决策法[J].系统工程学报,2005,20(1):84-88.
    [235]徐泽水.语言多属性决策的目标规划模型[J].管理科学学报,2006,9(2):9-17.
    [236]徐玖平,吴巍.多属性决策的理论和方法[M].北京:清华大学出版社.2006.
    [237]徐泽水.基于语言信息的决策理论与方法[M].北京:科学出版社.2008.
    [238]杨静,邱菀华.基于投影技术的三角模糊数型多属性决策方法研究[J].控制与决策,2009,24(4):637-640.
    [239]姚升保,徐敏.群组决策中三角模糊数互补判断矩阵的相容性及方案排序研究.中国管理科学,2012,20(5):152-156.
    [240]于洪,储双双.一种基于决策粗糙集的自动聚类方法[J].计算机科学,2011,38(1):221-224.
    [241]曾文艺,罗承忠,肉孜阿吉.区间数的综合决策模型[J].系统工程理论与实践,1997,11:48-50.
    [242]张兴芳,张兴伟.区间数的排序及其在系统决策中的应用[J].系统工程理论与实践,1999,7:112-115.
    [243]张兴芳,管恩瑞,孟广武.区间值模糊综合评判及其应用[J].系统工程理论与实践,2001,12:81-116.
    [244]张文修,吴伟志,梁吉业,李德玉.粗糙集理论与方法[M].北京:科学出版社.2001.
    [245]张园林,匡兴华.一种基于多粒度语言偏好矩阵的多属性群决策方法[J].控制与决策,2008,23(11):1296-1300.
    [246]张尧,樊治平.基于概率测度的不确定语言多属性决策方法及应用[J].运筹与管理,2009,18(6):65-69.
    [247]张尧,樊治平.权重信息不完全的语言多属性群决策方法[J].东北大学学报(自然科学版),2010,31(4):597-600.
    [248]张楠,苗夺谦,岳晓冬.区间值信息系统的知识约简[J].计算机研究与发展,2010,47(8):1362-1371.
    [249]张茂军,秦学志,南江霞.基于三角直觉模糊数的欧式期权二叉树定价模型[J].系统工程理论与实践,2013,33(1):34-40.
    [250]赵卫东,李旗号,盛昭瀚.区间值属性不完全信息下的数据挖掘[J].系统工程理论方法应用,2001,10(2):136-149.
    [251]赵文清,朱永利,高伟.一个基于决策粗糙集理论的信息过滤模型[J].计算机工程 与应用,2007,43(7):185-194.
    [252]朱宁宁,朱建军,丁叶,刘思峰.基于语言评价信息的快速集结方法研究[J].中国管理科学,2009,17(4):121-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700