用户名: 密码: 验证码:
频率域盲信号分离理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信号特征提取是机械故障诊断的基础,直接影响到机械故障诊断的正确性,它的理论发展与技术进步与信号处理相关学科的研究发展密不可分。本文在分析传统信号处理方法不足的基础上,展开了对盲信号分离(一种新的信号处理技术)的理论研究。
     本文首先在综述盲信号分离的发展史后,指出盲信号分离在应用中存在的两个主要难点,即源数估计以及相关源信号的盲分离,并提出了观测信号盲分离处理框架。
     为了全面了解盲信号分离的理论基础,本文介绍了盲信号分离理论中所涉及到的基本概念、求解的限制条件以及盲信号分离三种混合模型,着重阐述了线性瞬时混合三个经典算法的盲分离原理。
     针对独立源信号盲分离,本文在分析观测信号功率谱密度所包含的物理意义基础上,提出一种新的基于功率谱密度的算法。该算法最大的特点在于,当传感器数与源数关系不明确情况下(或大于、或小于、或等于),根据观测信号的功率谱密度函数的比值,得到混合矩阵。通过所得的混合矩阵判定观测信号是完备混合、超定混合还是欠定混合,并由此进一步获得分离矩阵。该算法避免了一般经典算法难以处理的问题,即源信号的概率密度函数估计以及优化过程中解的收敛性和不稳定性问题。
     为了解决盲信号分离在应用中出现的源数估计问题,本文提出了两种源数估计方法。第一种是基于功率谱密度的源数估计法,它主要是通过聚类观测信号的功率谱密度矩阵的列向量来估计源数。这种算法具有目前所有其它源数估计算法所不具备的优势,即不需要在传感器数大于源数条件下估计源数,具有较强的实用性。但理论上在估计相关源信号时,该算法只能估计上下界,不能做出精确估计;第二种是基于非负矩阵分解(Non-negative Matrix Factorization: NMF)的源数估计法。它主要是利用NMF在分解矩阵时不受信号独立性影响的特性,直接通过观测信号的幅频系数矩阵估计任意源信号的数量,但该算法要求传感器数大于等于源数。这两种算法均通过仿真和实际观测信号加以验证。
     对于相关源信号的盲分离,本文提出了2种算法。第一种是受限非负矩阵分解法。它同样是利用NMF不受信号独立性影响的优良性质,从混合信号幅频系数矩阵中求得混合矩阵,进而获得分离矩阵。针对NMF在分解矩阵过程中存在解的不唯一性,本文首先基于NMF确定源数,然后在对相关源信号盲分离实质研究的基础上,提出运用NMF分离混合信号时对目标函数加以源信号相关性约束,从而求得混合矩阵。该算法对相关源信号具有较强的分离性能;第二种是分步去共频法,该算法主要是利用共频与非共频在源信号相关矩阵非对角元素与对角元素的相对比值不同,分步从观测信号中找出共频并从中剔除,由非公共频率成分按独立源信号盲分离算法求分离矩阵,具有较好的分离性能。本文对这两种算法的分离性能进行了仿真对比,同时也进行了噪声干扰下的对比仿真,指出两种算法的优缺点。
     本论文的研究不仅对盲信号分离理论的发展和完善具有重要的理论意义,而且对将该研究成果应用于实际观测信号的盲分离具有重要的现实意义和实用价值。
The signal feature extraction is the base of machinery fault diagnosis, directly influences the diagnosis correctness. And its theory development and technology improvement are correlative deeply with signal processing. In this thesis, after the defects of traditional signal processing are analyzed, blind signal separation, a new signal processing technical, is made theoretical researches on.
     First the development history about blind signal separation (BSS) is summarized in the thesis. Then the two main difficulties, i.e. the estimation of the number of sources and the blind separation of correlated source, are pointed out in the application of BSS. And the processing frame of BSS is proposed.
     The basic concepts, the limit conditions and three mixture models are introduced, in order to understand the theory of BSS overall. The blind separation principles of three classical algorithms for the linear, instantaneous combinations are importantly described.
     On the base of analyzing the physics meaning of power spectral density (PSD) for observation signal, a new BSS method based on PSD for blind separation of independent source is proposed. The best characteristic of this algorithm is that when the relation between the number of sensors and of sources is unknown (either greater than or smaller than or equal to), the mixture matrix is got by the ratio of observation signal PSD. According to the matrix, it can be assured that the observation signal belongs to one of three mixtures, namely the complete mixture, over-determined mixture and under-determined mixture, and the separation matrix is found. The algorithm avoids some difficult questions for some classical algorithms, that is, the estimation of probability density function for source, the convergence and un-stableness in the optimization and so on.
     Two algorithms are proposed to solve the estimation of the number of sources in application BSS. One is the method based on PSD, namely, through clustering the column vector of PSD matrix for observation signals, the number of sources is estimated. The algorithm needs not the condition that the number of sensors is greater than the number of the sources, which the other algorithms need. Hence, it has good practicability. However, the round of the number of correlated sources can be estimated theoretically, and the exact value can not be got. The second is the method based on non-negative matrix factorization (NMF). Applying the feature of NMF which is not influenced by source signal independence, the number of any sources can be directly estimates by the frequency amplitude matrix of observation signals. However the algorithm requires that the number of sensors must be greater than the number of sources. The effectiveness of the proposed two methods is verified by simulation and real experiments data.
     Two algorithms are proposed for the blind separation of correlated source. One is the method based on constrained non-negative matrix factorization. It takes advantage of the good feature of NMF and finds the mixture matrix from the frequency amplitude matrix of source. Due to non-uniqueness of solution for NMF, after the blind separation nature of correlated source is studied, adding the aim function to the constraint for the correlation of sources, the mixture matrix is got by NMF. The algorithm has good separation performance for the correlated source. The second is the method that the common frequencies are removed from observation signals step by step and the non-common frequencies are applied to separate observation signals. Comparing the ratio values of non-diagonal and diagonal element for common frequency and non-common frequency, the common frequency is found and removed from mixture signal one by one. At last, through the non-common frequencies, the separation matrix is got and the sources are extracted by the classical BSS algorithms. The method is without the limitation which the second has, and has good separation performance. The two algorithms are compared by simulation in the thesis, and the influence of noise on the estimation of number of sources is done. The advantages and shortcomings for these methods are pointed out.
     The achievements of this thesis are significant for the development of the BSS theory. Also, it is practical and valuable to apply these achievements to the blind separation for real signals.
引文
[1] Lu, B and Upadhyaya, B R. Monitoring and fault diagnosis of the steam generator system of a nuclear power plant using data-driven modeling and residual space analysis [J]. Annals of Nuclear Energy, 2005, 32(9):897-912
    [2]杨叔子,丁洪,史铁林等.基于知识的诊断推理[M].北京:清华大学出版社,1993.
    [3]钟秉林,黄仁,贾民平.机械故障诊断学[M].北京:机械工业出版社,1997.
    [4] Qu L, Xu G. The fault recognition problem in engineering diagnostics [J]. Insight, 1997, 39(8): 569~574
    [5]徐敏,黄邵毅.设备故障诊断手册—机械设备状态检测和故障诊断[M].西安:西安交通大学出版社,1998.
    [6] Collacott R A.机械故障的诊断与情况监测.孙维东,麦松江,邓续魁等[M].北京:机械工业出版社,1986.
    [7]周东华,叶银忠.现在故障诊断与容错控制[M].北京:清华大学出版社,2000
    [8]陈进.机械设备振动监测与故障诊断[M].上海:上海交通大学出版社,1999
    [9]陈进.信号处理在机械设备故障诊断中的应用(连载)[J].振动与冲击.1999, 18(3):91-93
    [10] Newland D E. Wavelet analysis of vibration, part 1: theory [J], ASME Journal of Vibration and Acoustics, 1994, 116(4):406-416
    [11]张宪达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1999
    [12]张宪达.时间序列分析---高阶统计量方法[M].北京:清华大学出版社,1996
    [13]陈进.机械设备故障诊断与现代信号处理技术[J],振动工程学报,1998, 11(S1):7~10
    [14]郝志华.基于局域波法和盲源分离的故障诊断方法应用研究.大连理工大学博士学位论.2005
    [15] Ye H, Zhang P, Ding S X, Wang G. A time-frequency domain fault detection approach based on parity relation and wavelet transform. Proceedings of the 39th IEEE Conference on Decision and Control, 2000(4): 4156~4161
    [16] Forrester B D. Use of the Wigner-Ville distribution in helicopter transmission fault detection. ASSPA-89, Adelaide, Australia, 17-19 April
    [17] Yesilyurt I. Gearbox fault detection and severity assessment using vibration analysis. PhD Thesis, 1997, Manchester School of Engineering, Mechanical Engineering Dept, The University of Manchester.
    [18] Baydar N, Ball A D. Detection of gear failures using wavelet transform andimproving its capability by principal component analysis. The 14th International Congress on Condition Monitoring and Diagnostic Engineering Management, 3-6 September 2001, Manchester, UK, 411-418.
    [19]李力,屈梁生.二阶循环统计量在机械故障诊断中的应用[J].西安交通大学学报.2002, 36(9):943-946
    [20]张桂才.基于高阶统计分析的机械故障特征提取技术研究.华中科技大学博士学位论文.2001
    [21] Lyon R.H. Machinery noise and diagnostics [M]. Boston: Butterworths, 1987
    [22]焦卫东.基于独立分量分析的旋转机械故障诊断方法研究.浙江大学博士学位论文.2003
    [23]轩建平,来五星,史铁林,杨叔子.500测点汽轮发电机组分布式状态监测系统关键技术的研究[J].中国机械工程,1999,10(3):310-313
    [24]刘琚,何振亚.盲源分离和盲反卷积[J].电子学报. 2002, 30(4):570-576
    [25] Pope K J, Bogner R E. Blind signal separation I. linear, instantaneous, combinations[J], Digital Signal Processing, 1996, 6:5-16
    [26] Pope K J, Bogner R E. Blind signal separation I. linear, convolutive, combinations [J], Digital Signal Processing, 1996, 6:17-28
    [27] Cruces-Alvarez S A, Cichocki A, Amari S. From blind signal extraction to blind instantaneous signal separation: Criteria, Algorithms, and Stability [J], IEEE Trans. on Neural Networks, 2004, 15(4):859-873
    [28] Herault J, Jutten C. Space or time adaptive signal processing by neural network models[J], International Conference on Neural Networks for Computer, Snowbird, USA, 1986
    [29] Burel G. Blind separation of sources---a nonlinear neural algorithm [J], Neural Networks, 1992, 5(6):937-947
    [30] Cichocki A, Moszczynski L. New learning algorithm for blind separation of sources[J], Electronic Letter, 1992, 28(2):1986-1987
    [31] Jutten C, Guerin A, Nguyen Thi, H L. Adaptive optimization of neural algorithms [J], Lect. Notes Computer Sci. 1991, 540:54-61
    [32] Cardoso J F. Source separation using higher order moments [J], in Proc. of ICASSP, Glasgow, UK,1989:2109-2112
    [33] Tong L, Soon V C, Huang Y F, et al. AMUSE: A new blind identification algorithm [J], In International Conference on Acoustics, Speed and Signal Processing, 1990:1784-1787
    [34] Tong L, Liu R W, Soon V C. Indeterminacy and identifiability of blind identification[J], IEEE Trans. on Circuits and Systems,1991,38(5):499-506
    [35] Cardoso J F. Blind beamforming for non-Gaussian signals [J], IEEE Proceedings-F, 1993, 12,140(6):224-230
    [36] Comon P. Independent component analysis, a new concept? [J], Signal Processing, 1994, 36(3):287-314
    [37] Gaeta M, Lacoume J L. Source separation without a priori knowledge: the maximum likelihood solution [J], Proc. EUSIPCO conf. Barcelona, Elsevier, Amsterdam, 1990:621-624
    [38] Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution [J], Neural Computation, 1995,7(6):1129-1159
    [39] Amari S, Cickocki A, Yang H H. A new learning algorithm for blind signal separation [J]. Advance in Neural Information Processing Systems, Cambridge, MA: MIT Press., 1996,8:657-663
    [40] Cardoso J F. Infomax and maximum likelihood for blind source separation [J], IEEE Signal Processing Letters, 1997, 4(4):112-114
    [41] Hyv?rinen A. Fast and robust fixed-point algorithms for independence component analysis [J], IEEE Trans. on Neural Networks, 1999, 10(3):626-634
    [42] Cardoso J F, Laheld B. Equivariant adaptive source separation [J], IEEE Trans. Signal Processing, 1996, 44:3017-3029
    [43] Fèvotte C, Doncarli C. Two contributions to blind source separation using time-frequency distribution [J], IEEE Signal Processing Letters, 2004,11(3):386-389
    [44] Belouchrani A, Abed-Meraim K, Amin M G, and Zoubir A. Joint-antidiagonalization for blind source separation [J], in Proc. ICASSP, 2001(5):2789–2792.
    [45] Jafari M G, Alty S R, Chambers J A. New natural gradient algorithm for cyclostationary sources [J], IEE Proc.-Vis. Image Signal Process, 2004, 150(2):62-68
    [46] Ferréol A, Chevalier P. On the behavior of current second and higher order blind source separation methods for cyclostationary sources [J], IEEE Trans. Signal Processing, 2000, 48(6):1712–1725
    [47] Xiang Y, Yu W S, Zheng H, Nahavandi S. Blind separation of cyclostationary signals from instantaneous mixtures [J], Proc. Of the 5th world congress on intelligent control and automation, Hangzhou, P.R. China, June 15-19,2004
    [48] Lee T W, Girolami M, Sejnowski T. Independent component analysis using an extended informax algorithm for mixed sub-Gaussian and super-Gaussian sources [J], Neural Computing, 1998, 11(2):417-441
    [49] Cichocki A, Amari S. Adaptive Blind Signal and Image Processing[M]. New York: Wiley, 2002
    [50] Cao J T, Murata N, Amari S, Cichocki A, Takeda T. A robust approach to independent component analysis of signals with high-level noise measurements [J], IEEE Trans. on Neural Networks, 2003, 14(3):631-645
    [51]张洪渊,史习智.一种任意信号源盲分离的高效算法[J].电子学报.2001, (10):1392-1396
    [52] Dogan M C, Mendel J M. Single Sensor Detection and Classification of Multiple Sources by Higher-Order Spectra [J], IEE proceedings. Part F. Radar and signal processing, 1991, 140:350-355,
    [53] Cardoso J F. Super-symmetric decomposition of the fourth-order cumulant tensor: blind identification of more sources than sensors [J], Proceedings of the ICASSP, Toronto, 1991: 3109-3112
    [54] Lathauwer L, Comon P, Moor B. ICA algorithms for 3 sources and 2 sensors [J], Sixth Signal Processing Workshop on Higher Order Statistics, Caesarea, Israel, 1999:116-120.
    [55] Comon P. Blind identification and source separation in 2×3 under-determined mixtures [J]. IEEE Transaction on Signal Processing, 2004,52(1):11-22
    [56] Murray J F, Kreutz-Delgado K. An improved FOCUSS-based learning algorithm for solving sparse linear inverse problems [J]. 35th Conference on Signals, Systems and Computers. Asilomar, 2001:347-351
    [57] Vielva L, Erdogmus D, Principe J C. Underdetermined blind source separation using a probabilistic source sparsity model [J], Proceedings of Conf. on ICA and Signal Separation, San Diego, California, 2001:675-679
    [58] Vielva L, Erdogmus D, Pantaleon C, et al. Underdetermined blind source separation in a time-varying environment [J], Proc. ICASSP2002, Orlando, Florida, 2002:3049–3052
    [59] Li Y G, Cichocki A, Amari S. Sparse component analysis for blind source separation with less sensors than sources [J], 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), Nara, 2003:89–94
    [60] Yeredor A. Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation [J], IEEE Trans. on Signal Processing, 2002, 50:1545-1553
    [61] Hurri J, Hyv?rinen A. Temporal and spatiotemporal coherence in simple-cell responses: a generative model of natural image sequences [J], Network: Computation in Neural Systems, 2003, 14(3):527–551.
    [62] Hyv?rinen A, Hurri J. Blind separation of sources that have spatiotemporal variance dependencies [J], Signal Processing, 2004(84):247– 254
    [63] Aghabozorgi M R, Doost-Hoseini A M. Blind separation of jointly stationary correlated sources [J], Signal Processing, 2004(84):317– 325
    [64] Lathauwer L D, Moor B D, Vandewalle J. A technique for higher-order only blind source separation [J], In Proc. ICONIP, Hongkong, 1996
    [65] Hyv?rinen A. Gaussian moments for noisy independent component analysis [J], IEEE Signal Processing Letters, 1999, 6(6):145-147
    [66] Cao J, Murata N, Amari S, et al. A robust approach to independent component analysis of signals with high-level noise measurements [J], IEEE Trans. on Neural Networks, 2003, 14(5):631-645
    [67] Davies M. Identifiability issues in noisy ICA [J], IEEE Signal Processing Letters, 2004, 11(5):470-473
    [68] Hoff T P, Lindgren A G, Kaelin A N. Transpose properties in the stability and performance of the classic adaptive algorithms for blind source and deconvolution [J], Signal Processing, 2000, 89(9):1807-1822
    [69] Vigneron V, Aubry L, Jutten C. General conditions of stability in blind source separation models and score function selection [J], Neurocomputing, 2004(62): 65-78
    [70] Zhao Y, Zheng J. Particle swarm optimization algorithm in signal detection and blind extraction [J], Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
    [71] Zheng P, Liu Y, Tian L, Cao Y. A blind source separation method based on diagonalization of correlation matrices and genetic algorithm [J], Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, China. 2004, 6:2127-2132
    [72]张贤达,朱孝龙,保铮.基于阶段学习的盲信号分离.中国科学(E辑) [J]. 2002, 32(5):693-703
    [73] Lou S T, Zhang X D. Fuzzy-based learning rate determination for blind source separation [J], IEEE Trans. on Fuzzy Systems. 2003, 11(3):375-383
    [74] Burel G. Blind separation of source: a nonlinear neural algorithm [J], Neural Networks, 1992, 5(6),937-947
    [75] Parra L C. Symplectic nonlinear component analysis [J], Adavances in Neural Information Processing Systems, MA: MIT Press., 1996,8,437-443
    [76] Pajunen P, Hyv?rinen A, Karhunen J. Nonlinear blind source separation by self-organization maps [J], In Proc. in Neyral Information Processing, Berlin,springer, 1996, 2:1207-1210
    [77] Taleb A, Jutten C. Source separation in post nonlinear mixtures: an entropy-based algorithm [J]. In Proc. of ICASSP, Seattle, Washington, 1998:2089-2092
    [78] Martinez D, Bray A. Nonlinear blind source separation using kernels [J], IEEE Trans. on Neural Networks, 2003, 14(1):228-235
    [79]刘琚,聂开宝,何振亚.非线性混合信号的可分离性及分离方法研究[J].电子与信息学报.2003, 25(1):54-61
    [80] Matsuoka K, Nakashima S. Minimal distortion principle for blind source separation [J], In Proc. ICA, 2001,12:722–727.
    [81] Douglas S C, Sun X. Convolutive blind separation of speech mixtures using the natural gradient [J], Speech Commun. 2003,39:65–78.
    [82] Nomura T, Eguchi M, et al. An extension of the herault-jutten network to signal including delays for blind separation [J], In proc. of IEEE Workshop on Neural Networks for Signal Processing, Kyoto, 1996
    [83] Thi H N, Jutten C. Blind source separation for convolution mixtures [J], Signal Processing, 1995, 45(2);209-229
    [84] Tokkola K. Blind separation of delayed sources based on information maximization [J], In Proc. of ICASSP, Atlanta, ICASSP, 1996:3509-3512
    [85] Lee T W, Bell A J, and Orglmeister R. Blind source separation of real world signals [J], In Proc. ICNN, 1997, 6:2129-2135.
    [86] Parra L, Spence C. Convolutive blind separation of nonstationary sources [J], IEEE Trans. Speech Audio Processing, 2000, 8(5):320-327.
    [87] Schobben L, Sommen W. A frequency domain blind signal separation method based on decorrelation [J], IEEE Trans. Signal Processing, 2002, 60(8):1855-1865.
    [88] Asano F, Ikeda S, Ogawa M, et al. A combined approach of array processing and independent component analysis for blind separation of acoustic signals [J], In Proc. ICASSP, 2001, 5:2729-2732.
    [89] Kurita S, Saruwatari H, Kajita S, et al. Evaluation of blind signal separation method using directivity pattern under reverberant conditions [J], In Proc. ICASSP, 2000, 6:3140-3143.
    [90] Murata N, Ikeda S, Ziehe A. An approach to blind source separation based on temporal structure of speech signals [J], Neurocomputing, 2001, 41(10):1-24.
    [91] Sawada H, Mukai R, Araki S, et al. A Robust and Precise Method for Solving the Permutation Problem of Frequency-Domain Blind Source Separation [J], IEEE Trans. on Speech and Audio Processing, 2004, 12(9):530-538
    [92] Karhunen J, Hyv?rinen A. Application of neural blind separation to signal and imageprocessing [J], In Proc. ICASSP, Germany: Munich,1997:131-134
    [93] Sahlin H, Broman H. Separation of real-world signal [J], Signal Processing, 1998, 64(2):103-113
    [94] Lee J H, Jung H Y, Lee T W, et al. Speech feature extraction using ICA, Brain science research center and department of electrical engineering [J], Korea Advanced Institute of Science and Technology
    [95] Porrill J, Stone J V, Berwick J, et al. Analysis of optical imaging data using weak models and ICA [J], Based on a workshop held after the 1999 Intenrational Conference on Artificial Neural Networks (ICANN)
    [96] Vigario R, Sarela J, Oja E. Searching for in independence in electromagnetic brain waves [J], Based on a workshop held after the 1999 Intenrational Conference on Artificial Neural Networks (ICANN)
    [97] Gaeta M, Harroy F, Lacoume J A. Utilization de statistiques d’ordre superieur pour la separation de sources vibrantes [J], In Proc. 1st Int. Conf. Acoustical and Vibratory Surveillance Methods and Diagnostic Techniques, 1992.
    [98] Gelle G, Colas M, Delaunay G. Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis [J], Mechanical System Signal Processing, 2000, 14(3):427-442.
    [99] Ypma A, Leshem A, Duin R P W. Blind separation of rotating machine sources: bilinear forms and convolutive mixtures [J], Neurocomputing, 2002, (49):349-368
    [100]焦卫东,杨世锡,吴昭同.机械声源信号的带通滤波盲分离[J].振动工程学报.2003, 16(3):344-348
    [101]陈仲生,杨拥民,沈国际.独立分量分析在直升机齿轮箱故障早期诊断中的应用[J].机械科学与技术.2004, 23(4):481-483
    [102] Li L, Qu L S. Machine diagnosis with independent component analysis and envelope analysis[J], Proceedings of the IEEE ICIT, Bangkok, Thailand, 2002:1360-1364
    [103]季忠,金涛,杨炯明,秦树人.基于独立分量分析的消噪方法在旋转机械特征提取中的应用[J].中国机械工程.2005, 16(1):50-53
    [104]郭明,谢磊,何宁,王树青.一种基于ICA-SVM的故障诊断方法[J].中南工业大学学报(自然科学版).2003, 34(8):447-450
    [105]李志农,丁启全,吴昭同等.盲系统辨识与故障诊断[J].浙江大学学报(工学版).2003, 37(3):215-220
    [106]杨世锡,焦卫东,吴昭同.独立分量分析基网络应用于旋转机械故障特征抽取与分类[J].机械工程学报.2004, 40(3):45-48
    [107] Ypma A, Leshem A, Duin R P W. Blind separation of rotating machine sources:bilinearforms and convolutive mixtures [J], Neurocomputing-Special Issue on ICA/BSS, 2002
    [108] Castella M, Pesquet J C, Petropulu A P. A family of frequency- and time-domain contrasts for blind separation of convolutive mixtures of temporally dependent signals [J], IEEE Trans. on Signal Processing, 2005, 53(1):107-120
    [109]刘琚,聂开宝,何振亚.非线性混叠信号的可分离性及分离方法研究[J].电子与信息学报.2003, 25(1):54-61
    [110] Hyv?rinen A. Survey on independent component analysis, Lab. of Computer and Information Science, Helsinki University of Technology. P.O.Box 5400, FIN-02015 HUT, Finland.
    [111] Adel B, Karim AM, Cardoso J F, et al. A blind source separation technique using second-order statistics [J], IEEE Trans. on Signal Processing, 1997, 45(2):434-444
    [112] Gharieb R R, Cichocki A. Second-order statistics based blind source separation using a bank of subband filters [J], Digital Signal Processing, 2003(13):252-274
    [113]吴军彪,陈进,钟平等.机械噪声故障特征提取的盲分离法与小波提纯法[J].上海交通大学学报.2003, 37(5):765-769
    [114]诺顿M P.工程噪声和振动分析基础[M].北京:航空工业出版社.1993
    [115] Ypma A. Learning methods for machine vibration analysis and health monitoring, Doctor Thesis: 90-9015310-1
    [116] Lyon R H. Machinery noise and diagnostics[M], Butterworths, Boston, 1987
    [117] Hyv?rinen A, Oja E. Independent component analysis: algorithms and applications [J], Neural Computation, 2000(13):411-430
    [118]张贤达,保铮.盲信号分离[J].电子学报.2001, 29(12):1766-1771
    [119] Hyv?rinen A, Oja E. A fast fixed-point algorithm for independent component analysis [J], Neural Computation, 1997, 9(7):1483-1492
    [120] Hachem W, Desbouvries F, Loubaton P. MIMO channel blind identification in the presence of spatially correlated noise [J], IEEE Trans. on Signal Processing, 2002, 50(3):651-661
    [121]浙江大学数学系高等数学教研组.概率论与数理统计[M].北京:高等教育出版社.1984
    [122]檀志斌.线性盲信号分离中多信号源少观测源问题的研究.中国科技大学硕士学位论文.2004
    [123] Shi Z W, Tang H W, Liu W Y, et al. Blind source separation of more sources than mixtures using generalized exponential mixture models [J], Neurocomputing, 2004 (61): 461-469.
    [124]屈梁生,何正嘉.机械故障诊断学[M].上海:上海科学技术出版社.1986
    [125] Ypma A, Pajunen P. Rotating machine vibration analysis with second-order independent component analysis [J], In: Proceedings of ICA’99, 1999:37-42
    [126] Aghabozorgi M R, Doost-Hoseini A M. Blind separation of jointly stationary correlated sources [J], Signal Processing, 2004(84):317-325
    [127] Hyv?rinen A, Karhunen J, Oja E. Independent component analysis. New York: Wiley, 2001.
    [128]焦卫东,杨世锡,吴昭同.基于源数估计的旋转机械源盲分离[J].中国机械工程,2003, 14(14):1184-1187
    [129]章新华,张安清,孙剑平.一种信号源数目的盲估计方法[J].系统工程与电子技术,2001, 29(9):9-11
    [130] Murty S,Kompella. A technique to determine the number of incoherent sources to the response of a system [J], Mechanical System and Signal Processing, 1994,8(4):363-380
    [131] Strang G. Linear algebra and its applications [M], San Diego: Harcourt Brace Jovanovich, 1988
    [132] Ypma A. Vibration measurement dataset. http://www. ph.th.tudelft.nl/ ~ypma/ mechanical. html, 1999-12-08.
    [133] Lee D D, Seung H S. Learning of the Parts of Object by Non-negative Matrix Factorization [J], Nature, 1999, 401(10):788-791.
    [134]汪鹏.非负矩阵分解:数学的奇妙力量[J].计算机教育.2004,10:38-40
    [135] Buciu I, Pitas I. Application of non-negative and local non negative matrix factorization to facial expression recognition [J], Proceedings of the 17th International Conference on Pattern Recognition, 2004
    [136] Kuo C H. Blind primary colorant spectral separation combining ICA and POCS non-negative matrix factorization [J], ICASSP, 2004
    [137] Liu W X, Zheng N N, You Q B. Nonnegative matrix factorization and its applications in pattern recognition [J], Chinese Science Bulletin, 2006(51):17-18
    [138] Smaragdis P, Brown J C. Non-negative matrix factorization for polyphonic music transcription [J], IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, 2003
    [139]苗启广,王宝树.基于非负矩阵分解的多聚焦图像融合研究[J].光学学报.2005, 25(6):755-759
    [140] Zheng Z L, Yang J. Non-negative matrix factorization with Log Gabor wavelets for image representation and classification [J], Journal of Systems Engineering andElectronics, 2005, 16(4):738-745
    [141]陈为刚,戚飞虎.可行方向算法与模拟退火结合的NMF特征提取方法[J].电子学报.2003, (31)12A:2190-2193
    [142] Lee D, Seung H S. Algorithms for non-negative matrix factorization [J], Advances in Neural Information Processing, MIT Press, 2001:556-562
    [143] Cichocki A, Zdunek R, Amari S. New algorithm for non-negative matrix factorization in applications to blind source separation [J], ICASSP, 2006: 621-624
    [144] Wang B, Zhou H, Zhang L M. Blind decomposition of mixed pixels using constrained non-negative matrix factorization [J], Proceedings of IEEE, 2005:3757-3760
    [145] Zhang J Y, Wei L, Wang Y. Computational decomposition of molecular signatures based on blind source separation of non-negative dependent sources with NMF [J], IEEE 8th Workshop on Neural Networks for Signal Processing, 2003:409-418
    [146] Bazarra M S, Sherali H D, Shetty C M. Nonlinear programming [M], John Wiley & Sons Inc. 1993
    [147] Cardoso J F. Multidimensional independent component analysis [J], In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seattle, WA, 1998.
    [148] Hyv?rinen A, Hoyer P O. Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces [J], Neural Computation, 2000, 12(7): 1705-1720
    [149] Bach F R, Jordan M I. Tree-dependent component analysis, In: Uncertainty in Artificial Intelligence [J], Proceedings of the Eighteenth Conference, UAI, 2002
    [150] Hurri J, Hyv?rinen A. Temporal and spatiotemporal coherence in simple-cell responses: a generative model of natural image sequences [J], Network: Computation in Neural Systems, 2003, 14(3): 527-551.
    [151] Hyv?rinen A, Hurri J. Blind separation of sources that have spatiotemporal variance dependencies [J], Signal Processing, 2004(84): 247-254
    [152]杨世锡,焦卫东,吴昭同.应用JADE盲分离算法分离统计相关源[J].振动工程学报,2003, 16(4):498-501
    [153]于寅.高等工程数学(第二版)[M].武汉:华中科技大学出版社,2000
    [154]卢文祥,杜润生.机械工程测试?信息[M]?信号分析.武汉:华中科技大学出版社,1991
    [155]龚剑,朱亮.MATLAB 5.x入门与提高[M].北京:清华大学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700