数字通信信号调制方式自动识别技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
调制方式是区分不同性质通信信号的一个重要特征。所谓调制方式的自动识别,指的是在给定一段未知调制信息的接收信号的前提下,不需要人工干预就可以判断出通信信号的调制方式,并估计出相应的调制参数。调制方式的自动识别不论是在军事应用还是民用或商业应用上都具有重大意义。
     通信信号调制识别的研究已经开展了将近20年,目前已有的算法大致可以分为基于假设检验的最大似然方法和基于特征提取的模式识别方法。多数基于假设检验的最大似然类方法具有较高的计算复杂度并且对模型失配问题较为敏感,这在很大程度上限制了它们在实际通信环境中的应用;另一方面,基于特征提取的模式识别方法,通常形式简单易于实现,在适当条件下可以获得近似最优的识别性能,而且在模型失配的情况下性能较为稳健,具有较高的实用性。数字通信信号的调制方式自动识别问题直到现在仍然是一个活跃且富有挑战性的研究课题。
     本文集中研究数字通信信号的调制方式自动识别问题,预期的目标是得到性能稳定、复杂度低、在实际环境中表现良好的调制识别算法。本文首先对现有算法进行了全面的总结,指出了每一类方法的特点和适用环境,以及它们存在的不足,并指出了调制识别问题的难点所在和研究方向。在此基础上,本文完成的工作主要有:
     ●研究了数字通信信号的谱线特征。采用不同调制方式的数字通信信号经非线性变换后,往往在频谱上呈现出不同的离散谱线特征。本文详细分析了常见数字调制方式的平方谱与四次方谱的谱线特征,从理论上推导了谱线的成因、位置和强度。仿真实验表明,信号谱线特征在不同信噪比及多径衰落信道环境下具有良好的稳健性。
     ●提出了一种针对恒包络数字通信信号的调制方式识别方法,其主要特点是不需要符号速率、载波初相、定时同步等先验信息,而且还能够区分线性调制和非线性调制。仿真实验表明本文的方法在较低信噪比条件下仍可以获得较高的正确识别率,具有很强的实用性。
     ●提出了一种多进制CPM信号的调制阶数识别方法。该方法分析了多进制CPM信号与二进制CPM信号的谱线特征之间的联系,并在此基础上实现了多进制CPM信号的调制阶数识别。
     ●研究高阶累量特征在调制识别问题中的应用。考察了高阶累量的估计误差性能以及影响估计性能的因素,在此基础上讨论调制识别问题中对累量形式与阶数的选择方法。
     ●提出了一种适用于多径衰落环境下的高阶PSK/QAM信号识别方法。该方法结合分级盲均衡处理技术对信道多径衰落效应的干扰进行有效抑制,并选择合适的累量组合形式完成调制识别。仿真实验证明,在一定信噪比条件的保证下,该方法对调制阶数较高的信号仍然可以获得近似于100%的正确识别概率。
     ●作为调制识别的辅助技术,提出了一种适合于全响应CPM信号的线性盲均衡与调制指数盲估计的联合算法。该算法在使用线性均衡器对CPM信号进行均衡的同时,可以对未知调制指数进行准确的估计。算法的性能在计算机仿真实验中得到验证。
     ●提出了一种针对单通道混合信号的调制识别方法。该方法首先分析推导了信号谱线特征与高阶累量特征在混合信号模型中的变化情况,然后在此基础上构建分类特征量,提出了针对单通道两路混合信号的调制识别方法。该方法尤其对解决PCMA信号的识别问题有重要意义。
Modulation scheme is one of the most important characteristics used to distinguish communication signals. So called automatic modulation classification (AMC) specifies that, given a received communication signal with unknown modulation information, the modulation type and relevant modulation parameters of the communication signal can be identified without any manipulation. The research of automatic modulation classification is of significance in both militarily and civilian applications.
     Research on automatic modulation classification has been carried out for at least two decades, and two general classes of AMC algorithms can be crystallized, likelihood-based (LB) and feature-based (FB). The former usually suffer from computational complexity, and are sensitive to model mismatches. This limits their practical application. The FB approach, on the other hand, is simple to implement, with near-optimal performance, when designed properly, and robust to model mismatches. In general, AMC is an active and challenging task so far.
     The focus of our study in this dissertation is on the automatic modulation classification of digital communication signals. The classification algorithm with robust performance, low computation complexity and high practical is expected achieved. In the dissertation, a comprehensive survey of current AMC techniques in a systematic way is provided. For different algorithms, the main characteristics are described and the bottle-necks are highlighted. Based on it, some further research topics are point out. The main contribution of this dissertation can be summarized as follows:
     Spectrum line features of digital communication signals are analyzed. With the nonlinearities applied to the complex envelope of the digital communication signals, signals of different modulation schemes always manifest themselves in spectrum line feature. A complete theoretical analysis for the square and quartic spectrum line feature is carried out. The spectrum line's existence, position and amplitude are deduced. Computer simulation results indicate that the spectrum line can properly be extracted even in the serious noisy and multi-path fading environments.
     A novel modulation classification approach for constant modulus digital modulation signals is proposed. The proposed approach doesn't need the prior knowledge of symbol rate, carrier phase, timing recovery, and so on, and can classify the linear and nonlinear digital modulation schemes. Simulation result illustrate that the proposed approach can achieve satisfying classification performance even when the SNR is lower, which shows the proposed approach is feasible and practical.
     A modulation order recognition algorithm for M-ary CPM signals is proposed. The relationship of spectrum line feature between M-ary and binary CPM signals is deduced. Based on it, the modulation order can be recognized correctly for M-ary CPM signals.
     We investigated the application of higher order cumulant in AMC. Estimation error performance and affected factors of higher order cumulant are reviewed, and the strategy of selection of cumulant order is pointed out.
     A new approach to classification of higher order PSK/QAM signals in multipath fading environments is presented. The proposed approach, in which the two-step equalization strategy and higher-order cumulants based classifier are adopted, can effectively classify the PSK and higher-order QAM signals. The performance of proposed approach is evaluated by the computer simulations, which shows it has better classification ability.
     As an auxiliary technique, a joint algorithm for blind equalization and modulation index estimation of full-response CPM signals is proposed. The new algorithm, based on the analysis of solutions to the traditional CM criterion with input of CPM signals, can simultaneously achieve blind equalization of channel and estimation of unknown modulation index. Simulation results illustrate the performance of the algorithm.
     We proposed an effective modulation classification algorithm aimed at single-channel mixed communication signals. The diversification of cumulant and spectrum line feature of mixed signals is analyzed. Then they are utilized to active the classification of common digital modulation types. This modulation classification algorithm can help supply model information for PCMA system models.
引文
[1] Liedtke F F. Computer simulation of an automatic classification procedure for digitally modualted communication signals with unknown parameters [J]. IEEE Trans. Signal processing, 1992,40(6): 311-32.
    
    [2] Wei W, Mendel J M. Maximum-likelihood classification for digital amplitude-phase modulations [J]. IEEE Trans. on Communications, 2000,48(2): 189-193.
    [3] Wei W, Mendel J M. A new maximum-likelihood method for modulation classification [C]. IEEE Proc. of ASILOMAR, 1996, 26: 1132-1136.
    [4] Abdi A, Dobre O A, Choudhry R, et al. Modulation classification in fading channels using antenna arrays [C]. IEEE Proc. in MILCOM, 2004, 1: 211-217.
    [5] Beidas B F, Weber C L. Higher-order correlation-based approach to modulation classification of digitally frequency-modulated signals [J]. IEEE Journal on Selected Areas in Communications, 1995, 13(1): 89-101.
    [6] Beidas B F, Weber C L. Asynchronous classification of MFSK signals using the higher order correlation domain [J]. IEEE Trans. on Communications, 1998,46(4): 480-493.
    [7] Long C, Chugg K, Polydoros A. Further results in likelihood classification of QAM Signals [C]. in Proc. of MILCOM, 1994: 57-61.
    [8] Dobre O A, Abdi A, Bar-Ness, Y, et al. Blind modulation classification: a concept whose time has come [C]. in IEEE Proc. in ISSAWWC, 2005: 223-228.
    [9] Dobre O A, Zarzoso J, Bar-Ness Y, et al. On the classification of linearly modulated signals in fading channel [C]. Proc. in CISS, 2004: 442-445.
    [10] Panagiotou P, Anastasopoulos A, Polydoros A. Likelihood ratio tests for modulation classification [C]. IEEE Proc. in MILCOM, 2000, 2: 670-674.
    
    [11] Raheli R, Polydoros A, Ching-Kae T. Per-Survivor processing: a general approach to MLSE in uncertain environments [J]. IEEE Trans. on Communications, 1995, 43(234):354-364.
    
    [12] Hong L, Ho K C. Modulation classification of BPSK and QPSK signals using a two element antenna array receiver [C]. IEEE Proc. in MILICOM, 2001, 1: 118-122.
    
    [13] Dobre O A, Bar-Ness Y, Wei S. Higher-order cyclic cumulants for high order modulation classification [C]. IEEE Proc. in MILCOM, 2003, 1:112-117.
    
    [14] Dobre O A, Bar-Ness Y, Wei S. Robust QAM modulation classification algorithm using cyclic cumulants [C]. IEEE Proc. in WCNC, 2004, 2: 745-748.
    [15] Tadaion A A, Derakhtian M, Gazor S, et al. Likelihood ratio tests for PSK modulation classification in unknown noise environment [C]. IEEE Proc. in CCECE/CCGEI, 2005:151-154.
    [16] Hong L, Dobre O A, Bar-Ness, Y, et al. Quasi-hybrid likelihood modulation classification with nonlinear carrier frequency offsets estimation using antenna arrays [C]. IEEE Proc. in MILCOM, 2005, 1: 570-575.
    [17] Lay N E, Polydoros A. Modulation classification of signals in unknown ISI environments [C]. IEEE Proc. in MILCOM, 1995, 1: 170-174.
    [18] Sils J A. Maximum-likelihood modulation classification for PSK/QAM [C]. IEEE Proc.in MILCOM, 1999:57-61.
    [19] Kim K, Polydoros A. Digital modulation classification: the BPSK versus QPSK case [C].IEEE Proc. in MILCOM, 1998: 431-436.
    [20] Polydoros A, Kim K. On the detection and classification of quadrature digital modulations in broad-band noise [J]. IEEE Trans. on Commun., 1990, 38: 1199-1211.
    [21] Huang C Y, Polydoros A. Likelihood methods for MPSK modulation classification [J].IEEE Trans. on Commun., 1995,43: 1493-1504.
    [22] Sapiano P C, Martin J D. Maximum likelihood PSK classifier [C]. IEEE Proc. in ICASSP, 1996: 1010-1014.
    [23] Beidas B F, Weber C L. Higher-order correlation-based classification of asynchronous MFSK signals [C]. IEEE Proc. in MILCOM, 1996: 1003-1009.
    [24] Chugg K M, Long C S, Polydoros A. Combined likelihood power estimation and multiple hypothesis modulation classification [C]. IEEE Proc. in ASILOMAR, 1995:1137-1141.
    [25] Hong L, Ho K C. An antenna array likelihood modulation classifier for BPSK and QPSK signals [C]. IEEE Proc. in MILCOM, 2002: 647-651.
    [26] Lamontagne R. Modulation Recognition: An Overview [C]. Proc. in NTIS, 1991, No:N92-20159/9/HDM.
    [27] Azzou E E, A.K.N. 1996. Automatic modulation recognition of communication signals [M]. Kluwer Academic Publishers Norwell.
    [28] Mustafa H, Doroslovacki M. Effects of symbol rate on the classification of digital modulation signals [C]. IEEE Proc. in ICASSP, 2005, 5:437-440.
    [29] Assaleh K, Farrell K, Mammone R J. A new method of modulation classification for digitally modulated signals [C]. IEEE Proc. in MILCOM, 1992, 1: 712-716.
    [30] Lu Mingquan, Xiao Xianci. AR modeling based features extraction of multiple signals for modulation recognition[C].IEEE Proc.in Signal Processing,1998,2:1385-1388.
    [31]Swami A,Sadler B M.Hierarchical digital modulation classification using cumulants[J].IEEE Trans.on Communications,2000,48(3):416-429.
    [32]Chen Weidong,Yang Shaoquan.Recursive classification of MQAM signals based on higher order cumulants[J].JOURNAL OF ELECTRONICS(CHINA),2002,19(3):417-422.
    [33]Le M C,Boiteau D M.Modulation classification by means of different orders statistical moments[C].IEEE Proc.in MILCOM,1997,3:1387-1391.
    [34]Wei D,Youzheng W,Jing W.Joint power estimation and modulation classification using second- and higher statistics[C].IEEE Proc.in WCNC,2002,1:155-1581.
    [35]Gardner W A,Spooner C M.The cumulant theory of cyclostationary time-series.Ⅰ.Foundation[J].IEEE Trans.on Signal Processing,1994,42(12):3387-3408.
    [36]Dandawate A V,Giannakis G B.Asymptotic theory of mixed time averages and kth-order cyclic-moment and cumulant statistics[J].IEEE Trans.on Information Theory,1995,41(1):216-232.
    [37]Marchand P,Le M C,Lacoume J.Classification of linear modulations by a combination of different orders cyclic cumulants[C].IEEE Proc.in Signal Processing Workshop,1997,1:47-51.
    [38]Marchand P,Lacoume J,Le M C.Multiple hypothesis modulation classification based on cyclic cumulants of different orders[C].IEEE Proc.in ICASSP,1998,4:2157-2160.
    [39]Giannakis G B,Tsatsanis M K.Time-domain tests for Gaussianity and time-reversibility [J].IEEE Trans.on Signal Processing,1994,42(12):3460-3472.
    [40]Akmouche W.Detection of multicarrier modulations using 4th-order cumulants[C].IEEE Proc.in MILCOM,1999,1:4352-4361.
    [41]Davidson K L,et al.Feature-based modulation classification using circular statistics[C].IEEE Proc.in MILCOM,2004,2:765-771.
    [42]Zhu Q,Kam M,Yeager R.Non-parametric identification of QAM constellations in noise[C].IEEE Proc.in ICASSP,1993,4:1870-1874.
    [43]Wood S L,Ready M J,Treichler J R.Constellation identification using the Radon transform[C].IEEE Proc.in ICASSP,1988,1:1878-1881.
    [44]Ho K C,Prokopiw W,Chan Y T.Modulation identification by the wavelet transform[C].IEEE Proc.in MILCOM,1995,2:886-890.
    [45]周琳,杨绍全.时.频分析算法在通信信号调制识别中的应用[J].航天电子对抗,2002.5:40-45.
    [46]Boashash B,Ristic B.Polynomial time-frequency distributions and time-varying higher order spectra:application to the analysis of multicomponent FM signals and to the treatment of multiplicative noise[J],Signal Processing,1998,67(1):1-23.
    [47]Jiang Y,Zhang Z Y,Qiu P L.Modulation classification of communication signals[C].IEEE Proc.in MILCOM,2004,3:1470-1476.
    [48]纪勇,徐佩霞.基于小波变换的数字信号符号率估计[J].电路与系统学报,2003,8(1):12-15.
    [49]Hero A O,Hadinejad-Mahram H.Digital modulation classification using power moment matrices[C].IEEE Proc.in ICASSP,1998,6:3285-3288.
    [50]Hadinejad-Mahram H,Hero A O.Robust QAM modulation classification via moment matrices[C].IEEE Proc.in PIMRC,2000,1:133-1371.
    [51]Swami A,Sadler B.Modulation classification via hierarchical agglomerative cluster analysis[C].IEEE Proc.in Signal Processing Advances in Wireless Communications,1997,1:141-144.
    [52]Xiaoming H,Donoho D.A simple and robust modulation classification method via counting[C].IEEE Proc.in ICASSP,1998,6:3289-3292.
    [53]Donoho D L,Huo X.Large-sample modulation classification using Hellinger representation[C].IEEE Proc.in Signal Processing Advances in Wireless Communications,1997,1:133-136.
    [54]Halsey T C,Jensen M H.Kadanoff L P,et al.Fractal measures and their singularities:The characterization of strange sets[J].Physical Review A,1986,33(2):1141-1147.
    [55]吕铁军,郭双冰.调制信号的分形特征研究[J].中国科学:E辑,2001,31(6):508-513.
    [56]Hippenstiel R,El-Kishky H,Radev E On time-series analysis and signal classification -part Ⅰ:fractal dimensions[C].IEEE Proc.in Signals,Systems and Computers,2004,2:2121-2125.
    [57]吕铁军.魏平,肖先赐.基于分形和测度理论的信号调制识别[J].电波科学学报,2001,16(1):123-127.
    [58]Kaspar F,Schuster H G.Easily calculable measure for the complexity of spatiotemporal patterns[J].Physical Review A,1987,36(2):842.
    [59]吕铁军,郭双冰等.基于复杂度特征的调制信号识别[J].通信学报,2002,23(1):111-115.
    [60]Flusser J.Classification of degraded signal by the method of invariants[J].IEEE Signal Pressing,1997,60:243-249.
    [61]Paris B P,Orsak G C,Chen H,et al.Modulation classification in unknown dispersive environments[C].IEEE Proc.in ICASSP,1997:1169-1172.
    [62]Hsue S Z,Soliman S S.Automatic modulation recognition of digitally modulated signals[C].IEEE Proc.in MILCOM,1989:645-649.
    [63]Hsue S Z,Soliman S S.Automatic modulation classification using zero crossing[C].IEE Proc.in Radar Signal Process.,1990,137:459-464.
    [64]Yang Y,Soliman S S.Optimum classifier for M-ary PSK signals[C].IEEE Proc.in ICC,1991:1693-1697.
    [65]Yang Y,Liu C H.An asymptotic optimal algorithm for modulation classification[J].IEEE Commun.Lett.,1998,2:117-119.
    [66]Yang Y,Soliman S S.A suboptimal algorithm for modulation classification[J].IEEE Trans.on Aerosp.Electron.Syst.,1997,33:38-45.
    [67]Yang Y,Soliman S S.Statistical moments based classifier for MPSK signals[C].IEEE Proc.in GLOBECOM,1991:72-76.
    [68]Soliman S S,Huse S Z.Signal classification using statistical moments[J].IEEE Trans.on Commun.,1992,40:908-916.
    [69]Yang Y,Soliman S S.An improved moment-based algorithm for signal classification[J].Signal Process.,1995,43:231-244.
    [70]Sapiano P C,Martin J,Holbeche R.Classification of PSK signals using the DFT of phase histogram[C].IEEE Proc.in ICASSP,1995:1868-1871.
    [71]Ho K C,Prokopiw W,Chan Y T.Modulation identification of digital signals by the wavelet transform[C].IEE Proc.in Radar,Sonar Navig.,2000,47:169-176.
    [72]Hong L,Ho K C.Identification of digital modulation types using the wavelet transform [C].IEEE Proc.in MILCOM,1999:427-431.
    [73]Swami A,Barbarossa S,Sadler B.Blind source separation and signal classification[C].IEEE Proc.in ASILOMAR,2000:1187-1191.
    [74]Martret C,Boiteau D M.Modulation classification by means of different order statistical moments.IEEE Proc.in MILCOM,1997:1387-1391.
    [75]Spooner C M.Classification of cocharmel communication signals using cyclic cumulants[C].IEEE Proc.in ASILOMAR,1995:531-536.
    [76]Spooner C M,Brwon W A,Yeung G K.Automatic radio-frequency environment analysis[C].IEEE Proc.in ASILOMAR,2000:1181-1186.
    [77]Spooner C M.On the utility of sixth-order cyclic cumulants for RF signal classification [C].IEEE Proc.in ASILOMAR,2001:890-897.
    [78]Dobre O A,Abdi A,Bar-Ness Y,et al.Selection combining for modulation recognition in fading channels[C].IEEE Prec.in MILCOM,2005:2499-2505.
    [79]Yu Z,Shi Y Q,Su W.M-ary frequency shift keying signal classification based on discrete Fourier transform[C].IEEE Proc.in MILCOM,2003:1167-1172.
    [80]陈健.通信信号自动识别方法[J].电路与系统学报,2005,10(5):102-109.
    [81]Kremer S C,Shiels J.A testbed for automatic modulation recognition using artificial neural networks[C].IEEE Proc.in Electrical and Computer Engineering,1997,1:67-70.
    [82]Zhao Yaqin,Ren Guanghui,Wang Xuexia,et al.Automatic digital modulation recognition using artificial neural networks[C].IEEE Proc.in Neural Networks and Signal Processing,2003,1:257-260.
    [83]Hassibi B,Stork D G,Wolff G J.Optimal brain surgeon and general network pruning [C].IEEE Proc.in Neural Networks,1993,1:293-299.
    [84]刘少新,杨宗凯.基于神经网络的在线调制自动识别[J].微计算机信息,2006,2(6):303-304.
    [85]Zhilu W,et al.Automatic Digital Modulation Recognition Based on Support Vector Machines[C].IEEE Proc.in ICNN&B,2005,2:13-15.
    [86]Wu Dan,Gu Xuemai,Guo Qing.Classification using a novel support vector machine fuzzy network for digital modulations in satellite communication[C].IEEE Proc.in Wireless Commun.,Networking and Mobile Computing,2005,1:508-512.
    [87]Wei W,Mendel J M.A fuzzy logic method for modulation classification in nonideal environments[J].IEEE Trans.on Fuzzy Systems,1999,7(3):333-344.
    [88]Lopatka J,Pedzisz M.Automatic modulation classification using statistical moments and a fuzzy classifier[C].IEEE Proc.in WCCC-ICSP,2000,3:1500-1506.
    [89]Koutsogiannis G S,Soraghan J.Classification and de-noising of communication signals using kernel principal component analysis(KPCA)[C].IEEE Proc.in ICASSP,2002,2:1677-1680.
    [90]Reichert J.Automatic classification of communication signals using higher order statistics[C].IEEE Proc.in ICASSP,1992:221-224.
    [91]范海波,杨志俊,曹志刚.卫星通信常用调制方式的自动识别[J].通信学报,2004,25(1):140-149.
    [92]Gracie K,Lodge J.Carrier estimation for SSB modulated speech[C].IEEE Proc.in ICWC,2003:278-286.
    [93]Liu S,Zhang L,Wang Z.Classification of OQPSK-type signals by detecting offset-timing between I/Q samples[C].IEEE Proc.of ICSP,2006:16-20.
    [94]M.K.Simon.夏云,孙威.2006.高带宽效率数字调制及其在深空通信中的应用[M].北京:清华大学出版社.
    [95]Laurent P A.Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulse(AMP)[J].IEEE Trans.on Commun.,1986,34(2):150-160.
    [96]Napolitano A,Spooner C M.Cyclic spectral analysis of continuous-phase modulated signals[J].IEEE Trans.on Signal Processing,2001,49(1):30-44.
    [97]Gardner W A.1987.Statistical Spectral Analysis:A Nonprobabilistic Theory[M].Englewood Cliffs,N J:Prentice-Hall.
    [98]Bianchi P,Loubaton P,Sirven F.On the blind estimation of the parameters of continuous phase modulated signals[J].IEEE Journal on Selected Areas in Communications,2005,23(5):944-962.
    [99]Chan Y,Gadbois L,Yansouni P.Identification of the modulation type of a signal[C].IEEE Proc.in ICASSP,1985:838-841.
    [100]Mengali U,Morelli M.Decomposition of M-ary CPM signals into PAM waveforms[J].IEEE Trans.on Information Theory.1995,41(5):1265-1275.
    [101]Fonollosa J R,Fonollosa J A.Estimation of the modulation index of CPM signals using higher-order statistics[C].IEEE Proc.in ICASSP,1993,4:268-271.
    [102]Nikias C L,Petropulu A P.1993.Higher-order spectra analysis:A nonlinear signal processing framework[M].New Jersey:prentice-Hall.
    [103]张贤达.1996.时间序列分析.高阶统计量方法[M].清华大学出版社.
    [104]Wang J,Song H.Digital Modulation Classification based on Constellation[J].Journal of Communications,2004,25:166-173.
    [105]Xi S,Wu H C.Robust Automatic Modulation Classification Using Cumulant Features in the Presence of Fading Channels[C].IEEE Proc.in WCNC,2006,2094-2097.
    [106]Chen W.Classify the Signals by Cumulant Invariant[J].Journal of Xidian University,2002,29:229-232.
    [107]Godard D N.Self-Recovery equalization and carrier tracking in two-dimensional data communication systems[J].IEEE Trans.on Commun.1980,28(11):1867-1875.
    [108]dingzhi对CMA的性能分析
    [109]Yang J,Werner J J,Dumont G A.The multimodulus blind equalization and its generalized algorithm[J].IEEE Journal on Sel.Areas in Commun.,2002,20:997-1015.
    [110]Godard D N,Thirion P E.Method and device for training an adaptive equalizer by means of an unknown data signal in a QAM transmission system.U.S.Patent,4 227152,1980[P].
    [111]Feder M,Catipovic J A.Algorithms for joint channel estimating and data recovery -application to underwater communications[J].IEEE Oceanic Eng.,1991,16:42-55.
    [112]Riba J,Vazquez G.Parameter estimation of binary CPM signals[C].IEEE Proc.in ICASSP,2001:2561-2564.
    [113]Cirpan H,Tsatasnis M K.Blind receiver for nonlinearly modulated signals in multipath [C].IEEE Proc.in SPAWC,1997:828-832.
    [114]Kaleh G K,Vallet R.Joint parameter estimation and symbol detection for linear or nonlinear unknown channels[J].IEEE Trans.on Commun.1994,42(7):2406-2413.
    [115]Nguyen H,Levy B C.Blind and semi-blind equalization of CPM signals with the EMV algorithm[J].IEEE Trans.on Signals Process.2003,51(10):2650-2664.
    [116]Ding Z,Kennedy R A,Anderson B D,et al.Ill-Convergence of Godard blind equalizers in data communication systems[J].IEEE Trans.on Commun.1991,39(9):1313-1327.
    [117]Bianchi P,Loubaton P.On the blind equalization of continuous phase modulated signals using the constant modulus criterion[J].IEEE Trans.on Signal Process.2007,55(3):1047-1062.
    [118]Houcke S,Chevreuil A.Characterization of the undesirable global minima of Godard criterion:Case of noncircular symmetric complex signals[J].IEEE Trans.on Signal Process.2006,54(5):1917-1922.
    [119]万坚,许华,朱中梁.基于独立分量分析的成对载波多址分离新算法.通信学报,2006,8:26-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700