无公用轴独立旋转车轮车辆动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
独立旋转车轮转向架车辆由于不存在轮轨纵向蠕滑,故具有较高的蛇行运动临界速度,对高速机车车辆具有很大的潜在应用价值;同时,由于车轴可做成曲轴或采用无公用轴,其可实现城市轨道轻轨交通车辆的部分低地板或全低地板,国内外机车车辆研究人员在这方面进行了大量的理论研究和试验研究。独立旋转车轮通常有两种形式:有公用轴和无公用轴。其均在城市轨道交通车辆中有成功的应用,有公用轴独立旋车轮转向架车辆在国外已应用于不同轨距的铁路联运,但对无公用轴独立旋转车轮车辆,除西班牙的Talgo列车外能在正线铁路上运营和实行不同轨距铁路的联运外,国内外尚不多见;除转向架采用无公用轴独立旋转车轮外,其它结构与传统客车基本相同的这种无公用轴独立旋转车轮转向架车辆应用在正线上的可行性,国内在这方面的理论研究还不多见,本文将对该型车辆在直线上的横向动力学作一些理论探索。
     论文主要将传统轮对变换无公用轴独立旋转车轮,除轴箱和构架结构发生变化外,车辆的其它结构和尺寸基本不变。为了便于比较,建立了传统车辆、有公用轴独立旋车轮转向架车辆、无公用轴独立旋车轮转向架车辆的横向动力学模型,利用一种快速的方法推导了其运动微分方程,利用Newmark显式积分法求解系统非线性微分方程,该积分法具有过程简捷,且使用时无需求解高阶微分方程组,显著地提高了计算速度。文中采用Fortran95编制了这三种模型的程序,在程序中除整数外,其它实数全部采用双精度类型,提高了计算精度。在此基础上,详细分析了三种车辆的临界速度和在直线上的主要动力学性能。最后,分析了主要悬挂参数对无公用轴独立旋车轮转向架车辆性能的影响。
     研究结果表明:无公用轴独立旋车轮转向架车辆具有较高的临界速度,比传统车辆具有更好的横向动力学性能。其8个车轮在运行中均偏向轨道中心线,车轮的摇头角比传统车辆的小一个数量级,但当其一系纵向刚度小于某一值时,摇头角和摇头角速度有扩大的趋势。
Without longitudinal creep,the critical velocity of hunting is higher to railway vehicle with independently rotating wheel(IRW),this may be potential application to high-speed locomotive and vehicle ;In the meantime, By virtue of crank axle and even no axle ,it can solve partial or complete low floor in right rails. Researchers on locomotive and vehicle have accomplished a lot of study in theory and experiment at home and abroad in this area. IRW usually includes two kinds: common axle and non-common axle, they have been used in light rails, common axle IRW vehicle has been run in different gauges railway at abroad. But to non-common axle IRW vehicle, few train can be seen on the trunk railway except spanlish Talgo train;That vehicle like traditional passenger except that truck uses non-common axle IRW is adopted on the trunk railway is hardly reported theoretically, this thesis will make a probe in this area to the vehicle on the tangent track.
    In this thesis, traditional wheelsets are replaced by non-common axle IRW, other structure and size of truck and car body do not change basically expect frame and beaningbox.In order to compare conveniently, dynamical models of traditional vehicle,common axle and non-common axle vehicle are established ,dynamical differential equations are attained by a kind of faster method ;To solve the vehicle system equation of motion for nonlinear ,this thesis use Newmsrk's explicit method as a numerical integration method to simplify the integration process, when adopting this algorithm, the solution of high order equation is no longer necessary and the computational time will be greatly reduced; program of three kinds model are programmed by Fortran95,in these program, other real number use double precise except integer to improve precise .On this basis ,critical velocity and main dynamical preference of those model are analysized at detail. Finally, dynamical response of non-common axle IRW vehicle are analysized
    with the change of main suspension parameter.
    Study show that non-common axle IRW vehicle has higher critical velocity and better lateral dynamical performance in comparison with traditional vehicle.
    
    
    Its eight wheels lean to track center in the course of running and its yaw angle is more magnitude than traditional vehicle.But the vaule of yaw angle and its velocity have the trend to rise when first longitudinal suspension staffness is lower certain vaule.
引文
[1] 王福天.车辆系统动力学[M] .第2版.北京:中国铁道出版社,1994
    [2] 严隽耄.车辆工程[M] .第2版.北京:中国铁道出版社,1999
    [3] 詹斐生.机车动力学[M] .北京:中国铁道出版社,1990
    [4] Vijay K. Garg, Rao V. Dukkipati. Dynamic of Railway Vehicle System. Canada: Academic Press, 1984
    [5] 黄运华,李芾,傅茂海.独立旋转车轮转向架曲线性能研究[J],中国铁道科学,2001,(2)
    [6] 黄运华,李芾,张丽平.独立轮对在轻轨车辆上的应用[J] .交通运输工程学报刊,2001,1(2)
    [7] 张丽平.轻轨车辆动力学数字仿真[D] .成都:西南交通大学,2002
    [8] 黄运华.基于独立旋转车轮的变轨距转向架研究[D].成都:西南交通大学,2003
    [9] F.Frederich.独立轮转向架的动力性能[J].国外铁道车辆,1992,(3):27~34
    [10] F. Frederich. A Bogie Concept for the 1990s. Railway Gazette International. 1988, (9): 583~585
    [11] 王伯铭.独立旋转车轮系统特点及应用前景[J].电力机车技术,2001,(3)
    [12] 杨照久.国际联运的难题.轨距不同[J].铁道知识,1999,(6)
    [13] 贺启庸.独立旋转车轮的进展[J].世界铁路,1994,(4):5-7
    [14] 赵云生.低地板轻轨转向架[J].铁道车辆,2001增刊
    [15] 王伯铭.轻轨车辆走行部的特点[J].铁道车辆,1999,37(12):16—17,49
    [16] 张厚胜.独立轮转向架的研制[J].铁道车辆,1999,37(9):35~37
    [17] 沈培德.可控独立轮转向架[J].铁道学报,1997增刊,28~37
    [18] 张丽平,李芾.独立旋转车轮轮轨蠕滑率研究[J] .中国铁道科学,2002,23(4):18~23
    [19] 池茂儒,王开文等.磁流体耦合轮对转向架曲线通过性能的研究[J].铁道学报,2002,24(4):28~33
    [20] 池茂儒,王开文等.磁流变耦合轮对的研究[J].中国铁道科学,2002,23(6):55~59
    [21] 池茂儒,王开文等.磁流体耦合轮对转向架动力学性能的研究[J].西南交通大学学报,2002,37(6):664~668
    
    
    [22] 池茂儒,王开文等.磁流变耦合轮对耦合度对轮轨横向力的影响[J].铁道学报,2003,25(1):30~33
    [23] 池茂儒,王开文等.磁流体耦合轮对转向架直线稳定性的研究[J].同济大学学报,2003,(2)
    [24] 黄运华,李芾,傅茂海.变轨距转向架方案及其动力学特性研究[J].铁道学报,2002,(6)
    [25] 黄运华,李芾.铁道车辆轮对变轨距技术研究[J].铁道车辆,2002,(7)
    [26] 黄运华,李芾,傅茂海.新型变轨距客车转向架结构及动力学性能分析[J].西南交通大学报,2003,(4)
    [27] 黄运华,李芾,傅茂海.一种新型轨距可变转向架及其动力学性能分析[J] .中国铁道科学,2003,(4)
    [28] 李芾,黄运华,傅茂海.变轨距转向架的发展及其方案选型研究[J].铁道机车车辆,2001,(3)
    [29] 鲍维千.我国轻轨车选型的有关问题[J].机车电传动,2001,(2)
    [30] 鲍维千.独立车轮在低地板轻轨车辆上的应用[J] .内燃机车,2001,(1)
    [31] 罗世辉.轨道车辆独立车轮的动力学分析[J].铁道学报,1999,21(5):15~19
    [32] 罗世辉.一种非径向调整独立车轮走行部的结构分析[J].城市轨道交通研究,1999,(2)
    [33] 陈泽深.独立车轮转向架的导向原理(1)[J] .铁道机车车辆,1998,(4):1~11
    [34] 陈泽深.独立车轮转向架的导向原理(2)[J] .铁道机车车辆,1999,(1):16~22
    [35] 文彬,陈泽深,王成国.高速车辆拖动式独立车轮轮对的研究(1)[J].铁道车辆.2000,(6):6~8
    [36] 文彬,陈泽深,王成国.高速车辆拖动式独立车轮轮对的研究(2)[J] .铁道车辆.2000,(7):12~14
    [37] 叶志森,沈钢.独立轮踏面外形的设计[J].铁道车辆,2003,41(1)
    [38] 翟婉明.车辆—轨道耦合动力学[M] .第2版.北京:中国铁道出版社,2002
    [39] 彭国伦.Fortran95程序设计[M] .北京:中国电力出版社,2002
    [40] 王勇.三大件转向架货车非线性稳定性研究[D] .成都:西南交通大学,1998
    
    
    [41] H.Claus, W.Schiehlen. Modeling and Simulation of Railway Bogie Structure Vibrations. Vehicle System Dynamics Supplement 28. 1998, 538~552
    [42] Fu Li. Beitrag zur Anhebung der Streckenkapazitt durch tlberlange Güterztüge. Der Rheinisch-Westflischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigre Dissertation. 1998
    [43] 任尊松等.独立轮对车辆通过小半径曲线动力分析[J].中国交通研究与探索.中国民航出版社,2001:807~810
    [44] Eisaku Satho, Masayuki Miyamoto, Katoshi Fukazawa, Takeshi Hayase. Dynamics of a Bogie with Independently Rotating Wheels-A Case of Trailing Bogie. QR of RTRI. 1994, 35(2): 83~88
    [45] Panagin, R. The use of independent wheels for the elimination of lateral instability of railway vehicles. Ingegneria Ferroviaria. 1978, 33(2): 143~150
    [46] B.M.Eickhoff and R.F.Harvey. Theoretical and Experimental Evaluation of Independently Rotating Wheels for Railway Vehicles. The Dynamics of Vehicles on Roads and on Tracks. 1989:190~201
    [47] Koyanagi, Shiro. The stability of motion of the independently rotating wheel-axle. Japanese National Research Quarterly Reports. 1971, 12(1): 29~33
    [48] Koyanagi, Shiro. The Dynamics of guided independently rotating wheel trucks. Japanese National Research Quarterly Reports. 1981, 22(1): 19~25
    [49] Dukkipati,R.V. Bahgat,B.M. and Osman, M.O.M. Comparative performance analysis of conventional and damper coupled wheelsets. ASME paper no. :82-WA/RT-13
    [50] A.K.W.Ahmed, S.Sankar. Lateral Stability Behavior of Railway Freight Car System With Elasto-Damper Coupled Wheelset: Part 2-Truck Model. Journal of Mechanisms,Transmissions,and Automation in Design. 1987, 109(12): 500~507
    [51] S.J.Dyke, B.F.Spencer Jr.M.K.Sain and J.D.Carlson. Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction. Smart Materials and Structures. 1996, 5: 565~575
    [52] B.F.Spencer, S.J.Dyke, Jr.M.K.Sain,et al. Phenomenological Model of a Magnetorheological Damper. Journal of Engineering Mechanics, ASCE,
    
    1997, 123(3): 230~238
    [53] Anonymous. Talgo target is 250km/h. Railway Gazette International. 1989: 799~800
    [54] G.R.Doyle, R.H.Prause. Hunting Stability of Rail Vehicles with Torsionally Flexible Wheelsets. Transactions of the ASME(Journal of Engineering for Industry). 1977, (2): 10~17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700