100%低地板车牵引传动系统分析与控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
100%低地板车以其独有特点和优势,广泛应用于城市轨道交通领域,具有广阔的市场前景。本文详细分析100%低地板车的特殊传动方式和由此带来的导向问题,结合牵引电机控制,深入分析研究了独立轮对传动系统的主动导向和牵引控制策略,获得以下重要成果,为我国在这一领域的研究,提供一种研究思路与方法。
     本文详细分析了轮轨间的蠕滑作用力,建立了传统刚性轮对和独立轮对运动方程,推导出纵向蠕滑力对直线对中和曲线导向的作用机理。从电气控制的角度出发,提出了独立轮对主动导向控制方法,构建一种新的100%低地板车辆牵引控制策略。基于转矩和转速导向控制,结合牵引控制策略,把牵引控制与导向控制融为一体,仿真结果验证了该方法具有理想的控制效果。
     牵引电机的精确控制是实现独立轮对主动导向的关键。Γ~(-1)等效电路适合于磁场定向控制分析,并在此基础上提出了基于电流电压混合模型的定子磁链定向控制方式,该方式可以根据电机的运行速度分别采用电流和电压模型并能平滑过渡,在全速度范围内稳定运行。在两侧纵向电机动态参数不一致的情况下,所提出的电流分布控制可以有效降低参数带来的影响,设计速度补偿器的参数可以保证其稳定性与稳态性能,实现独立轮对的协调统一控制。
     基于Γ~(-1)等效模型,提出了一种利用扩展卡尔曼滤波(Externded Kalman Filter,EKF)的无速度传感器控制方法。该方法简化了状态矩阵,减小EKF的计算量,并把参数的变化归到测量和状态噪声中,提高控制精度。分析了死区时间和开关管压降对电机定子电压影响,得出一种定子电压校正方案,准确估算定子电压,提高EKF磁链观测器精度。实验结果验证了上述方法在较宽的范围内达到满意的控制性能。
     根据实际运营要求,设计了100%低地板车牵引、制动特性曲线,并结合具体的线路条件设计了一套牵引计算软件。该软件可以模拟列车在实际线路中最大工况运行的牵引一惰行一制动全过程,并计算牵引电机、牵引变流器的电流、功率等电气参数,为列车运营设计提供了参考依据。最后设计了电机对拖实验系统,并给出主电路、控制电路的设计方法与相关实验结果,实验结果验证了所提出的理论与设计。
100% Low Floor Vehicle (100% LFV) have a lot of merits which make the adoption of 100% LFVs an ideal selection in the field of Urban Railway Transportation. All these starting from the origin of 100% LFV, this paper goes into the analysis of its peculiar traction mode, together with that of the steering problem arising from such mode. Combined with motor control, its traction system and traction control strategy are thoroughly studied, offering a supplement to the shortage of such research in the domestic academic field concerned, and a design approach at the same time.
     In this paper, the conventional rigid wheelsets and independent wheelsets are analyzed and compared, from which is derived the conclution that Longitudinal Creep Force (LCF) is key in the direction of wheelset. Since there is no such force with independent wheelset, the wheelset is lack in direction ability. This paper proposes the active guiding approach based on torque and velocity, respectively, from the aspects of electrical control approach and with Field Oriented Control Scheme (FOC). The active guiding based on torque, which asserts different torque to the left and right wheels; motivate the wheels to generate the orientation torque needed. The active guiding based on velocity controls the left and right wheels velocity to manipulate the vehicle along the center line of tracks. In this paper, a control system for 100% LFV is introduced, combining the guiding control based on torque and velocity, as well as the traction control scheme of vehicles. With this control system, the traction and guiding control of vehicles can easily be realized with existing converters on board, and related simulated results are also presented in one part of this paper.
     TheΓ~(-1) equivalent circuit is suitable for the analysis of field oritated scheme, thus all the control scheme analysis in this paper is based onΓ~(-1) equivalent circuit. In this paper, the merits and shortcomings of current and voltage models are analyzed and compared, and there is also an expiation to the reason for the imbalance of these FOC schemes together with the corresponding influencing factors. Finally, a closed-loop stator flux observer is put forward and FOC with it is looked into in this paper.
     Dynamic parameters on both sides of longitudinal traction system in independent wheelsets are inconsistency; the proposed distribution current control can effectively reduce the impact of parameters changes. The speed compensator can guarantee its stability and steady-state performance, to achieve harmonization of the independent wheelsets control.
     Based on theΓ~(-1) equivalent circuit, a sensorless control scheme for FOC is proposed with Extended Kalman Filter (EKF), which simplifies state matrix, relieves the computational burden of EKF, and improves the control accuracy by treating the variation of parameters as measuring and state noises. With the model of converter, the real-time stator voltage of traction motor is calculated and the influences on such voltage from dead time and voltage dropdown on switches are analyzed. A correction algorithm for stator voltage is put forward according to such influencing factors, which will improve the accuracy of EKF flux observer, and such theory has been proved to be true in a wide speed range of traction motor. Based onΓ~(-1) equivalent circuit, this paper puts forward a speed-sensor-less scheme with EKF, which simplify the state matrix, relieves the computing burden on EKF, treats the parameter drift as measurement and state noise, improves control accuracy and acts as a back-up redundancy in LFV.
     The traction and braking curves of 100% LFV are designed in this paper, meeting operational requirements. What's more, a set of traction computing software based on definite railway conditions has been developed. This software is available with the simulation of traction-coasting-braking operation under a maximum load along real railway, with the calculation of current and power of traction motor and converters, which will act as a reference of the operational design of a real system. At last, a double-motor mutual traction experiment platform is also designed and built, of which the topology of main power circuit and the structure of control system are thoroughly explained in this paper. All related experimental results are also presented therein, proving the approaches put forward in this paper.
引文
[1]曾乙申.轻轨运输系统[C].第一届轨道系统教育成果发表研讨会.2000.
    [2]李芾,张丽平,黄运华.城市轻轨车辆发展及其应用前景[J].西南交通大学学报,2002,37(2):111-116.
    [3]王新国,张松江.低地板轻轨车辆的现状及发展[J].电力机车与城轨车辆,2003(4):47-49.
    [4]Brand C.,Preston J.Technical and Financial Characteristics of Public Transport Systems[M].University of Oxford,Transport Studies Unit,2001.
    [5]朱剑月,程祖国,罗雁云,等.低地板轻轨交通系统[J].城市轨道交通研究,2003,6(5):13-16.
    [6]Fraser G.R.,Leafy R.J.,Marianeschi M.,et al.Intergating new Light Rail Vehicle Technology into Mature Infrastructure[C].Experience,Economics,and Evolution-From Starter Lines to Growing Systems.9th National Light Rail Transit Conference.Portland:2003:119-131.
    [7]Hattori Shigenori.Trams Making Way for Light Rail Transit[J].Japan Railway & Transport Review,2004(38):30.
    [8]张丽平,李芾,等.国外城市轻轨发展及应用概况[J].国外铁道车辆,2001,38(3):1-6.
    [9]allen B.Applicability of Low-Floor Light Rail Vehicles in North America[M].Washington,D.C.:National Academy Press,1995.
    [10]李明.城市轻轨车辆选型及动力学性能研究[D].西南交通大学,2004.
    [11]Griffin T.Center Truck Performance on Low-Floor Light Rail Vehicles[M].Washington,D.C.:Transportation Research Board,2006.
    [12]庞洁.100%低地板轻轨车转向架模态分析[D].大连交通大学,2006.
    [13]鲍维千.独立车轮在低地板轻轨车辆上的应用[J].内燃机车,2001(1):12-17.
    [14]Fraser G.r.,Morse G.t.Low floor LRVs for Boston's Green Line-technical features and challenges[C].Railroad Conference,1997.Boston,MA,USA:1997:115-124.
    [15]俞展猷.现代化的低地板轻轨车辆[J].中国铁路,2004(3):52-54.
    [16]陈宁.欧洲轻轨车研究[J].国外铁道车辆,2000,37(2):6-14.
    [17]Tamotsumasuda,祝华,阎锋.日本低地板轻轨车辆转向架的研制[J].国外铁道车辆,2005,42(3):26-28.
    [18]刘绍勇(编译).日本土佐低地板电车[J].现代城市轨道交通,2005(6):55-57.
    [19]Hoshi M.,Yamaguchi M.,Ookubo Y.,et al.First 100%Domestic Low-Floor Tram[J].Mitsubishi Heavy Industries,Ltd.Technical Review,2006,43(1).
    [20]金一丹,王湘涛.Q6W—1型六轴双铰接70%低地板城市轻轨车总体方案[J].长沙电力学院学报:自然科学版,2002,17(1):67-70.
    [21]熊崴.轻轨车辆的关键技术和发展方向[J].城市公共交通,2005(7):22-23.
    [22]张定贤.几种低地板面轻轨车走行部分[J].电力机车技术,1999(2):43.
    [23]Porter D.1.,Cobb L.m.Qualification testing of Portland's low floor light rail vehicle[C].Railroad Conference,1997.,Proceedings of the 1997 IEEE/ASME Joint.1997:221-235.
    [24]黄运华,傅茂海,卜继玲,等.独立轮对发展及其应用前景[J].电力机车与城轨车辆,2003(4):8-11.
    [25]李芾,黄运华.独立旋转车轮的发展及其在轻轨车辆上的应用[J].国外铁道车辆,2002,39(1):1-5.
    [26]刘寅华,李芾,傅茂海,等.内侧悬挂式转向架的发展及应用[J].国外铁道车 辆,2005,42(6):24-28.
    [27]Mastinwalches.波茨坦市的COMBINO轻轨车[J].电气牵引,2003(1):18-22.
    [28]P J.,Busturia J.M.,Goodall R.M.Control strategies for active steering of bogie-based railway vehicles[J].Control Engineering Practice,2002,10(9):1005-1012.
    [29]Gretzschel Moritz,Bose Lutz.A new concept for integrated guidance and drive of railway running gears[J].Control Engineering Practice,2002,10(9):1013-1021.
    [30]任利惠.独立车轮导向技术研究[D].同济大学,2006.
    [31]Sathm E.,周贤全.独立轮转向架的动力学[J].国外铁道车辆,1995(1):39-43.
    [32]Mei T.x.,Goodall R.m.Robust control for independently rotating wheelsets on a railway vehicle using practical sensors[J].Control Systems Technology,IEEE Transactions,2001,9(4):599-607.
    [33]Goodall Roger.Advanced Control and Monitoring for Railway Vehicles for the suspensions and running gear[C].Excellence in railway systems engineering and integration.Derby:2005.
    [34]Selamat H.,Yusof R.,Goodall R.m.Self-tuning control for active steering of a railway vehicle with solid-axle wheelsets[J].Control Theory & Applications,IET,2008,2(5):374-383.
    [35]马志文.电力牵引交流传动互馈实验系统的研究[D].北京交通大学,2007.
    [36]高爽.地铁车辆构造与维修管理[M].北京:中国铁道出版社,2003.
    [37]连级三.电传动机车概论[M].西南交通大学出版社,2001.
    [38]Yano M.,Iwahori M.Transition from slip-frequency control to vector control for induction motor drives of traction applications in Japan[C].Power Electronics and Drive Systems.2003:1246-1251.
    [39]Hu Hu,Yong Dong Li,Yi Zeng.Direct torque control of induction motor for railway traction in whole speed range[C].IECON 02[Industrial Electronics Society,IEEE 2002 28th Annual Conference of the].2002:2161-21663.
    [40]Depenbrock M.Direct self-control(DSC) of inverter-fed induction machine[J].Power Electronics,IEEE Transactions on,1988,3(4):420-429.
    [41]Bharadwaj Aravind Sourirajan.Vector controlled induction motor drive systems[D].Virginia polytechnic Institute and state University,1993.
    [42]Yuki K.,Hemmi T.,Hasebe T.,et al.Application of speed seusorless control to railway traction field[C].Power Conversion Conference.2002:1033-1038.
    [43]rajashekara K.,kawamura A.,matsue K.Sensorless control of AC Drives[M].NY:IEEE,2006.
    [44]Bose B.K.Modem Power Electronics and AC Drives[M].Upper Saddle River,NJ:Prentice Hall,2002.
    [45]Hinkkanen M.Analysis and design of full-order flux observers for sensorless induction motors[J].Industrial Electronics,IEEE Transactions on,2004,51(5):1033-1040.
    [46]Frenzke T.,Piepenbreier B.Position-sensorless control of direct drive permanent magnet synchronous motors for railway traction[C].Power Electronics Specialists Conference,2004.PESC 04.2004 IEEE 35th Annual.2004:1372-13772.
    [47]李剑飞,尹泉,等.基于扩展卡尔曼滤波器的异步电机转速辨识[J].电工技术学报,2002,17(5):40-44.
    [48]Rowan T.M.,Kerkman R.J.,Leggate D.A simple on-line adaption for indirect field orientation of an induction machine[J].Industry Applications,IEEE Transactions on Industry Applications,IEEE Transactions on Industry Applications,IEEE Transactions on,1991,27(4):720-727.
    [49]Depenbrock M.,Evers C.Model-based speed identification for induction Machines in the whole operating range[J].Industrial Electronics,IEEE Transactions on,2005,53(1):31-40.
    [50]Li-cheng Zai,Demarco C.L.,Lipo T.A.An extended Kalman filter approach to rotor time constant measurement in PWM induction motor drives[J].Industry Applications,IEEE Transactions on Industry Applications,IEEE Transactions on Industry Applications,IEEE Transactions on,1992,28(1):96-104.
    [51]Bennett S.M.,Pattnn R.J.,Daley S.Sensor fault-tolerant control of a rail traction drive[J].Control Engineering Practice,1999,7(2):217-225.
    [52]Schna J.,钟连泉.低地板轻轨车的“积木”式模块设计[J].国外铁道车辆,2000,37(6):1-6.
    [53]金学松.轮轨蠕滑理论及其试验研究[D].成都:西南交通大学,1999.
    [54]陈泽深,王成国.铁道车辆动力学与控制[M].第1版.北京:中国铁道出版社,2004.
    [55]张定贤.机车车辆轨道系统动力学[M].第1版.北京:中国铁道出版社,1996.
    [56]金学松,张雪珊,张剑,等.轮轨关系研究中的力学问题[J].机械强度,2005,27(4):408-418.
    [57]Bureika G.,Lingaitis L.P.,?Mikaliunas.Investigation of dynamic models of independently rotating wheels of wagons[J].Transport,2004,19(1):28-31.
    [58]Dulckipati R.v.,Swamy S.Narayana,Osman M.o.m.Independently rotating wheel systems for railway vehicles-a state of the art review[J].Vehicle System Dynamics,1992,21(2):297-330.
    [59]任利惠.独立车轮导向技术研究[D].上海:同济大学,2006.
    [60]Bosso N.,Soma A.,Gugliotta A.Introduction of a wheel-rail and wheel-roller contact model for independent wheels in a multibody code[C].ASME Railroad Conference.2002:151-159.
    [61]Goodall R.m.,Li H.Solid axle and independently-rotating railway wheelsets-A control engineering assessment of stability[J].Vehicle System Dynamics,2000,33(1):57-67.
    [62]Goodall R.M.,Kort W.Mechatronic developments for railway vehicles of the future[J].Control Engineering Practice,2002,10(8):887-898.
    [63]Mei T.X.,Nagy Z.,Goodall R.M.,et al.Mechatronic solutions for high-speed railway vehicles[J].Control Engineering Practice,2002,10(9):1023-1028.
    [64]Goodall R.,Mei T.x.Mechatronic strategies for controlling railway wheelsets with independently rotating wheels[C].Advanced Intelligent Mechatronics.2001:225-230.
    [65]饶忠.列车牵引计算[M].北京:中国铁道出版社,2001.
    [66]TB/T 1407-1998.列车牵引计算规程.中华人民共和国铁道部.
    [67]Perez Javier,Mauer Lutz,Busturia Jesus M.Design of active steering systems for bogie-based railway vehicles with independently rotating wheels[C].Vehicle system dynamics.2002:209-220.
    [68]P J.,Busturia J.M.,Mei T.X.,et al.Combined active steering and traction for mechatronic bogie vehicles with independently rotating wheels[J].Annual Reviews in Control,2004,28(2):207-217.
    [69]汤蕴缪,史乃.电机学[M].第2版.北京:机械工业出版社,2005.
    [70]IEEE standard test procedure for polyphase induction motors and generators[J].IEEE Std 112-1996,1997.
    [71]Sullivan C.R.,Chaofu K.,Acker B.M.,et al.Control systems for induction machines with magnetic saturation[J].Industrial Electronics,IEEE Transactions on,1996,43(1):142-152.
    [72]胡崇岳.现代交流调速技术[M].机械工业出版社,2003.
    [73]Hoffmann F.,Koch S.Steady state analysis of speed sensorless control of induction machines[C].Industrial Electronics Society,1998.IECON '98.Proceedings of the 24th Annual Conference of the IEEE.1998:1626-16313.
    [74]Slemon Gordon R.Modelling of Induction Machines for Electric Drives[J].IEEE Trans on Industry Applications,1989,25(6):1126-1131.
    [75]姚玮,施文济.异步电机的三种动态等效电路[J].电机与控制应用,2006,33(7):21-24.
    [76]de w Doncker R.,w Novotny D.The universal field oriented controller[J].Industry Applications,IEEE Transactions on,1994,30(1):92-100.
    [77]李永东.交流电机数字控制系统[M].北京:机械工业出版社,2003.
    [78]Ottersten Rolf.On Control of Back-to-Back Converters and Seusorless Induction Machine Drives[D].Goteborg:Chalmers University of Technology,2003.
    [79]Khambadkone A.M.,Holtz J.Vector-controlled induction motor drive with a self-commissioning scheme[J].Industrial Electronics,IEEE Transactions on,1991,38(5):322-327.
    [80]Toliyat H.A.,Levi E.,Raina M.A Review of RFO Induction Motor Parameter Estimation Techniques[J].Power Engineering Review,IEEE,2002,22(7):52-52.
    [81]Matsuo Takayoshi,Lipo Thomas A.A Rotor Parameter Identification Scheme for Vector-Controlled Induction Motor Drives[J].Industry Applications,IEEE Transactions on,1985,IA-21(3):624-632.
    [82]Wang C.,Novotny D.W.,Lipo T.A.An automated rotor time-constant measurement system for indirect field-oriented drives[J].Industry Applications,IEEE Transactions on,1988,24(1):151-159.
    [83]Rowan T.M.,Kerkman R.J.,Leggate D.A simple on-line adaption for indirect field orientation of an induction machine[J].Industry Applications,IEEE Transactions on,1991,27(4):720-727.
    [84]Consoli A.,Scarcella G.,Testa A.Slip frequency detection for indirect field oriented control drives[C].Industry Applications Conference,2001.Thirty-Sixth IAS Annual Meeting.Conference Record of the 2001 IEEE.2001:118-1241.
    [85]Dong Seong Oh,Hwi Beom Shin,Myung Joong Youn.A new slip gain adaptation algorithm for indirect field-oriented drive systems[J].Industrial Electronics,IEEE Transactions on,1991,38(4):303-307.
    [86]Ying-yu Tzou,Shore-ting Yeh,Hua Wu.DSP-based rotor time constant identification and slip gain auto-tuning for indirect vector-controlled induction drives[C].Industrial Electronics,Control,and Instrumentation,1996.,Proceedings of the 1996 IEEE IECON 22nd International Conference on.1996:1228-12332.
    [87]GB/T 16318-1996.旋转牵引电机基本实验方法.国家技术监督局.
    [88]Depenbrock M.,Klaes N.R.Determination of the induction machine parameters and their dependencies on saturation[C].Industry Applications Society Annual Meeting,1989.,Conference Record of the 1989 IEEE.1989:17-221.
    [89]Hu J.,Wu B.New integration algorithms for estimating motor flux over a wide speed range[C].Power Electronics Specialists Conference,1997.PESC '97 Record.,28th Annual IEEE.1997:1075-10812.
    [90]Jansen P.L.,Lorenz R.D.,Novotny D.W.Observer-based direct field orientation:analysis and comparison of alternative methods[J].Industry Applications,IEEE Transactions on,1994,30(4):945-953.
    [91]Du T.,Vas P.,Stronach A.F.,et al.Application of Kalman Filters and Extended Luenberger Observers in Induction Motor Drives[C].Intelligent Motion Proceedings.1994.
    [92]Yaonan Wang,Jiantao Lu,Shoudao Huang.Speed Sensorless Vector Control of Induction Motor Based on the MRAS Theory[C].IPEMC.2004:645-648.
    [93]沈滢,郝荣泰.异步牵引电机磁场定向控制解耦算法的研究[J].铁道学报,2003,25(1):26-29.
    [94]周志刚.一种感应电机的解耦控制方法[J].中国电机工程学报,2003,23(2):121-125.
    [95]Zhengshi Wang.High performance computation for flux and speed estimation of vector controlled adjustable-speed drives[D].The Hong Kong Polytechnic University,2005.
    [96]刁利军,刘志刚,郝荣泰.能量回馈式PWM整流器并网的工程设计方法[J].电工技术学报,2005,20(11):75-79.
    [97]Chang G.-.,Espinosa-perez G.,Mendes E.,et al.Tuning rules for the PI gains of field-oriented controllers of induction motors[J].Industrial Electronics,IEEE Transactions on,2000,47(3):592-602.
    [98]韩利,温旭辉,郭希铮.电压源逆变器输出电压重构技术研究[J].电力电子技术,2007,41(11):94-96.
    [99]Tung-hai Chin,Nakano M.,Hirayama T.Accurate measurement of instantaneous values of voltage,current and power for power electronics circuits[C].Power Electronics Specialists Conference,1998.PESC 98 Record.29th Annual IEEE.1998:302-3071.
    [100]Yu X.,Dunnigan M.w.,Williams B.w.Phase voltage estimation of a PWM VSI and its application to vector-controlled induction machine parameter estimation[J].Industrial Electronics,IEEE Transactions on,2000,47(5):1181-1184.
    [101]Ben-brahim L.The analysis and compensation of dead-time effects in three phase PWM inverters[C].Industrial Electronics Society,1998.IECON '98.Proceedings of the 24th Annual Conference of the IEEE.1998:792-7972.
    [102]陈桂兰.交流异步电机无速度传感器矢量控制方法及其在电动汽车中的应用研究[D].中国科学院研究生院(电工研究所),2005.
    [103]Frenzke Thorsten,Hoffmann Frank,Langer Hans Georg.Speed Sensorless Control of Traction Drives-Experiences on Vehicles[C].EPE.1999.
    [104]王娟,谢谦.牵引计算在地铁车辆中的应用[J].电力机车与城轨车辆,2003(6):46-48.
    [105]Rahman Md Ziaur.An investigation of traction motor characteristics for electric and hybrid electric vehicle application[D].TEXAS A&M UNIVERSITY,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700