表面等离子体分束器和亚波长金属阵列中的几种新颖效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本论文中,我们研究了两种单向性很好的表面等离子体激元(Surface Plasmon Polartions, SPPs)激发源,以及一种表面等离子体波导的分束器。提出了传统衍射光学中的离散塔尔博特(Talbot)效应在表面等离子体亚波长光学中的类比。研究了两种金属微纳结构的透射特性。
     首先,提出了一种基于单缝腔天线结构的定向SPPs激发源。通过改变两个金属膜之间的中心距离,可以调节SPPs激发的方向和强度,使其周期性的变化。变化周期利用法布里-珀罗(Fabry-Perot, F-P)干涉理论得到了很好的解释。通过选择合适的参数,最大的分束比可以达到24。因此,该结构可以作为单向性很好的SPPs激发源。并且发现狭缝的长度只影响SPPs的激发强度,对SPPs的分束比没有影响。提出了一种基于双缝腔天线结构的定向SPPs激发源。与单缝腔天线结构相比,其定向激发特性更好(最大分束比提高一个数量级);由于透过面的表面没有微结构修饰,其噪声小。两种定向SPPs激发源都具有可调性,单向性好,分束比周期性变化等特点。
     提出了一种含有节点腔的T型金属-绝缘体-金属(Metal-Insulator-Metal, MIM)波导,可以用其操控SPPs在波导中的传播。SPPs分束比可以随着节点腔位置的改变而呈现周期性变化。当分束比达到最大(或最小)时,可以利用其作为在SPPs波导中的定向激发器件。我们利用散射矩阵理论很好的解释了有限时域差分法(Finite-Difference Time-Domain, FDTD)数值计算的结果。
     提出了在亚波长金属波导阵列中存在的离散表面等离子体Talbot效应。与连续的表面等离子体Talbot效应相比,其Talbot自成像效应与入射场的周期性分布无关。Talbot距离可以缩小至亚波长尺寸。Talbot距离可以通过调节金属膜厚度和波导腔宽度而改变。极短的Talbot距离可以达到三分之一入射波长,这是由于相邻波导腔中表面等离子体之间的强耦合造成的。
     利用FDTD方法数值计算了亚波长金属腔阵列和含有凹槽修饰的狭缝阵列的透射特性。我们发现对于亚波长金属腔阵列,其透过峰是由F-P共振产生;透过谷是由于SPPs共振产生。对于复合的亚波长金属腔阵列,其透过峰会随着相邻腔之间距离的增加而产生红移,这是由于相邻腔之间的耦合减弱造成的。我们发现了对于含有凹槽修饰的狭缝阵列,其透过峰随着凹槽位置的变化而产生周期性的震荡。基于传输线理论的传输矩阵可以很好的解释透过谱的变化规律。
In this dissertation, we study the two kinds of therotical model for unidirectional excitation of the Surface Plasmon Polartions(SPPs), and a kind of surface plasmon polatitons waveguide splitter. We propose the plasmonic analogy of the discrete Talbot effect in the traditional diffractive optics. We study the transmission characters of two kinds of metallic nano-structure.
     First, we propose a kind of unidirectional SPPs source based on the single-slit cavity antenna structure. By tuning the central distance between the two metallic films, the excitation intensity and period vary periodically. The period can be explained very well by the theory of Fabry-perot interference. By choosing the suitable parameters, the maximum splitting ratio reaches 24. Thus, this structure can be used as a well unidirectional SPPs source. In addition,we propose another kind of unidirectional SPPs source based on the two-slits cavity antenna structure. Compared with the single-slit cavity antenna structure, its unidirectional excitation is better (the maximum splitting ratio is one order larger than the previous one). Because there is no nano-structre on the transsmion surface, its noise is low. Both of the two SPPs source possess adjustability, good unidirectional and periodical changes for SPPs splitting ratio.
     Second, we propose a T-shaped metal-insulator-metal (MIM) plasmonic waveguide with a joint cavity, which can manipulate the propagation of SPPs in waveguide. It is found that the SPPs splitting ratio changes periodically as the joint cavity is moved. When the splitting ratio reaches the maximum(or the mimimum), it can be used as a unidirectional excitation device in the plasmonic waveguide. We utilize the scattering matrix to explain the Finite-Difference Time-Domain(FDTD) results well.
     Third, we propose the discrete SPPs Talbot effect in the subwavelength metal waveguide arrays. Compared with the continuous SPPs Talbot effect, its self-imaging effect has nothing to do with the input period. The Talbot distance can be reduced to subwavelength size. The Talbot distance can be tuned by the thickness of the metallic film and the width of the waveguide. The ultra-short Talbot distance can be reduced to one third of the incident, which is due to the strong coupling between the SPPs in the adjacent waveguides.
     We calculate the transsmion charators of the subwavelength metallic cavity arrays and slit arrays with single cut by FDTD. For the subwavelength metallic cavity arrays, the transmission peaks originate from the F-P resonance; and the transmission dips originate SPPs resonance. For the compound subwavelength metallic cavity arrays, the transsmion peaks redshift with the increase of the distance between the neighbour cavities. For the subwavelength slit arrays with single cut, the transmission peaks changes with the cut position periodically. The law of the transmission variation can be explained by the transmission line theory very well
引文
1 W. L. Barnes, A. Dereux and T. W. Tebbsen. Surface Plasmon Subwavel-ength Optics. Nature, 2003, 424:824~830
    2 K. Kneipp, Y. Wang and H. Kneipp. Single Molecule Detection Using S-urface Enhaneed Raman Seattering(SERS). Phys. Rev. Lett. 1997,78:1667~1670
    3 S. M. Nie and S. Y. Emery. Probing Single Molecules and Single Nanop-artieles by Surface–Enhaneed Ramans Scattering. Science, 1997, 275:1102
    4 I. I. Smolyaninov. Quantum Fluctuations of the Refractive Index Near theInterfaee between a Metal and a Nonlinear Delectric. Phys.Rev.Lett. 2005,94:057403
    5 G. A. Wurtz, R. Pollard and A. V. Zayats. Optical Bistability in Nonline-ar Surface Plasmon Polaritonic Crystals. Phys. Rev. Lett. 2006, 97:057402
    6 P. Q. Kik, S. A. Maier and H. A. Atwater. Image Resolution of Surface-Plasmon-Mediated Near-Field Focusing with Planar Metal Films in Three Dimensions Using Finite-Linewidth Dipole Source. Phys. Rev. B, 2004,69:45418
    7 K. Kneipp, H. Kneipp and I. Itzkan. Surface-enhanced Ramans Scatteringand Biophysics. J. Phys: Condens. Matt. 2002, 14:R597~624
    8 Kreibig. Optical properties of metal clusters. Berlin: Springer.
    9 A. M. Shehegrov and I. V. Novikov, A. A. Maradudin. Scattering of Sur-face Plasmon Polaritons by a Cireularly Symmetrie Surface Defect. Phys.Rev. Lett. 1997, 78:4269
    10 M. Xiao, A. V. Zayats and J. Siqueiros. Scattering of Surface Plasmon Polariton by Dipoles Near a Surface: Optical Near-Field Localization.Phys.Rev. B, 1997, 55:1824~1837
    11 W. H. Weber and G. W. Ford. Optical Electric-Field Enhancement at a Metal Surface Arising From Surface-Plasmon Excitation. Opt. Lett. 1981, 6:122
    12 E. Kretschmann and H. Raether. Radiative Decay of Nonradiative SurfacePlasmons Excited by Light. Z. Naturforsch. A. 1968, 23:2135~2136
    13 A. Otto. Exitation of Nonradiative Surface Plasma Waves in Silver by th-e Method Offrustrated Total Reflection. Z. Phys. 1968, 216:398
    14 R. H. Ritchie and E. T. Arakawa, J. J. Cowan and R. N. Hamm. SurfacePlasmon Resonance Effect in Grating Diffraction. Phys. Rev. Lett. 1968,21:1530~1533
    15 B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye and D. W. Pohl. Local Excitation, Scattering, and Interference of Surface Plasmons, Phys. Rev. Lett. 1996, 77:1889~1892
    16 H. Ditlbacher. Fluorescence Imaging of Surface Plasmon Fields. Appl. Phys. Lett. 2002, 80:404~406
    17 V. G. Veselago. The Electrodynamics of Substance with Simultaneously Negative Value ofεandμ. Sov. Phys. Usp. 1968, 10(4):509
    18 J. B. Pendry. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett.2000, 85:3966~3969
    19 J. T. Shen and P. M. Platzman. Near Field Imaging with Negative Diele-ctric Constant Lenses. Appl. Phys. Lett. 2002, 80:3268
    20 D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna and J. B. Pendry. Limitations on Subdiffraction Imaging with a Negative Refractive Index Slab, Appl. Phys. Lett. 2003, 82:1506
    21 Z. Ye. Optical Transmission and Reflection of Perfect Lenses by Left H-anded Materials, Phys. Rev. Lett. 2003, 67(19):193106
    22 M. W. Feise, Peter J. Bevelacqua, and J. B. Schneider. Effects of Surfac-e Waves on the Behavior of Perfect Lenses. Phys. Rev. B,2003,66:035113
    23 P. G. Kik, S. A. Maier and H. A. Atwater. Image Resolution of Surface-Plasmon-Mediated Near-Field Focusing with Planar Metal Films in Three Dimensions Using Finite-Linewidth Dipole Sources. Phys. Rev. B, 2004, 69:045418
    24 L. Chen, S. L. He and L. F. Shen. Finite-Size Effects of a Left-Handed Material Slab on the Image Quality, Phys. Rev. Lett. 2004, 82(1):104404
    25 D. O. S. Melville, R. J. Blaikie and C. R. Wolf. Submicron Imaging with a Planar Silver Lens. Appl. Phys. Lett. 2004, 84:4403
    26 W. S. Cai, D. A. Genov and V. M. Shalaev. Superlens Based on Metal- Dielectric Composites. Phys. Rev. B, 2005, 72:193101
    27 N. Fang, Z. L. Liu, T. J. Yen and X. Zhang. Regenerating Evanescent Waves from a Silver Superlens. Opt. Express, 2003, 11(7):682~687
    28 N. Fang, H. Lee, C. Sun and X. Zhang. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science, 2005, 308:534
    29 R. Merlin. Eadiationless Electromagnetic Interference: Evanescent Field Lenses and Perfect Focusing. Science, 2007, 317:927
    30 A. Grbic, L. Jiang and R. Merlin. Near-Field Plates: Focusing with Patte-rned Surfaces. Science, 2008, 320:511
    31 V. Intaraprasonk and S. H. Fan. Wave-Vector Space Picture for Radiation-less Focusing and Beaming. Opt. Lett. 2009, 34:2967~2969
    32 H. F. Shi and L. J. Guo. Design of Plasmonic Near Field Plate at Optic-al Frequency. Appl. Phys. Lett. 2010, 96:141107
    33 M. Quinten, A. Leitner, J. R. Krenn and F. R. Aussenegg. Electromagnet-ic Energy Transport via Linear Chains of Silver Nanoparticles. Opt. Lett.1998, 23(17):1331~1333
    34 A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. Koel and A. A. G. Requicha. Local Detection of Electromagnetic Energy TransportBelow the Diffraction Limit in Metal Nanoparticle Plasmon Waveguides. Nat. Mater. 2003, 2:229~232
    35 D. Sarid. Long-Range Surface-Plasma Waves on Very Thin Metal Films. Phys. Rev. Lett. 1981, 47(26):1927~1930
    36 R. Charbonneau, N. Lahoud, G. Mattiussi and P. Berini. Demonstration ofIntegrated Optics Elements Based on Long-Ranging Surface Plasmon Pol-aritons. Opt. Express, 2005, 13(3):977~984
    37 S. Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi and P. Berini. Demonstration of Bragg Gratings Based on Long Ranging Surface Plasm-on Polariton Waveguides Opt. Express, 2005, 13(12):4674~4682
    38 A. Boltasseva, S. Bozhevolnyi, I. Sondergaar, T. Nikolajsen and K. Leosson. Compact Z-Add-Drop Wavelength Filters for Long-Range Surface Pla-smon Polaritons. Opt. Express, 2005, 13(11):4237~4243
    39 A. Boltassev, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen and S. I.Bozhevolnyi. Integrated Optical Components Utilizing Long-Range SurfacePlasmon Polaritons. J. Light. Tech. 2005, 23(1):413~422
    40 T. Nikolajsen, K. Leosson and S. Bozhevolnyi. In-Line Extinction Modul-ator based on Long-Range Surface Plasmon Polaritons. Opt. Comm. 2005,244:455~459
    41 T. Nikolajsen, K. Leosson and S. Bozhevolnyi. Surface Plasmon PolaritonBased Modulators and Switches Operating at Telecom Wavelengths. Appl.Phys. Lett. 2005, 85(24):5833~5835
    42 B. Wang and G. P. Wang. Simulations of Nanoscale Interferometer and Array Focusing by Metal Heterowaveguides. Opt. Express, 2005, 13(26): 10558~10563
    43 D. F. P. Pile, T. Ogawa, D. Gramotnev, Y. Matsuzaki, K. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi and M. Fukui. Two-DimensionallyLocalized Modes of a Nanoscale Gap Plasmon Waveguide. Appl. Phys. Lett.2005, 87:261114
    44 G. Veronis and S. Fan. Guided Subwavelength Plasmonic Mode Supportedby a Slot in a Thin Metal Film. Opt. Lett. 2005, 30(24):3359~3361
    45 S. I. Bozhevolnyi, V. S. Volkov, E. Devaux and T. W. Ebbesen. ChannelPlasmon-Polariton Guiding by Subwavelength Metal Grooves. Phys. Rev. Lett. 2005, 95:046802
    46 E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno and S. I.Bozhevolnyi. Channel Plasmon-Polaritons: Modal Shape, Dispersion, and Losses. Opt. Lett. 2006, 31(23):3447~3449
    47 D. F. P. Pile and D. K. Gramotnev. Plasmonic Subwavelength Waveguides:Next to Zero Losses at Sharp Bends. Opt. Lett. 2005, 30(10):1185~1187
    48 S. Bozhevolnyil, V. S. Volkov, E. Devaux, J. Laluet and T. W. Ebbesen. Channel Plasmon Subwavelength Waveguide Components Including Interf-ereeometers and Ring Resonators. Nature, 2006, 440:508~511
    49 V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Laluet and T. W. Ebbesen.Wavelength Selective Nanophotonic Components Utilizing Channel Plasm-on Polaritons. Nano. Lett. 2007, 7(4):880~884
    50 L. Chen, J. Shakya and M. Lipson. Subwavelength Confinement in an In-tegrated Metal Slot Waveguide on Silicon. Opt. Lett. 2006, 31(14): 2133~2135
    51 M. Nezhad, K. Tetz and Y. Fainman. Gain Gssisted Propagation of Surfa-ce Plasmon Polaritons on Planar Metallic Waveguides. Opt. Express, 2004,12(17):4072~4079
    52 S. Maier. Gain-Assisted Propagation of Electromagnetic Energy in Subwa-velength Surface Plasmon Polariton Gap Waveguides. Opt. Comm. 2006, 258:295~299
    53 M. A. Noginov, G. Zhu, M. Bahour, J. Adegoke, C. E. Small, B. Ritzo, V. P. Drachev and V. M. Shalaev. Enhancement of Surface Plasmons in an Ag Aggregate by Optical Gain in a Dielectric Medium. Opt.Lett. 2006,31(20):3022~3024
    54 A. V. Krasavin, A. V. Zayats and N. Zheludev. Surface Plasmon Enhanc-ed Spontaneous emission Rate of InGaN/GaN Quantum Wells Probed byTime-resolved Photoluminescence Spectroscopy. J. Opt. Pure: Appl. Opt. 2005, 7:85
    55 P. Andrew and W. L. Barnes. Energy Transfer across a Metal Film Medi-ated by Surface Plasmon Polaritons. Science, 2004, 306:1002
    56 K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai and Y. Kawakami. Surface Plasmon Enhanced Spontaneous Emission Rate of InGaN/GaNQuantum Wells Probed by Time-Resolved Photoluminescence Spectroscopy.Appl. Phys. Lett. 2005, 87:071102
    57 X. G. Luo and T. Ishihara. Surface Plasmon Resonant Interference Nanol-ithography Technique. Appl. Phys. Lett. 2004, 84:4780
    58 E. A. Bezus, D. A. Bykov, L. L. Doskolovich and I. I. Kadomin. Diffra-ction Gratings for Generating Varying-period Interference Patterns of Surf-ace Plasmons. J. Opt. Pure: Appl. Opt. 2008, 10:095204
    59 Y. Y. Lim, S. Kim, H. Kim, J. Jung and B. Lee. Interference of SurfacePlasmon Waves and Plasmon Coupled Waveguide Modes for the Patterni-ng of Thin Film. IEEE J. Quantum Electronics, 2008, 44:305~311
    60 X. W. Guo, J. L. Du and Y. K. Guo. Large-Area Surface-Plasmon Polari-ton Interference Lithography. Opt. Lett. 2006, 17:2613~615
    61 X. F. Yang, B. B. Zeng, C. G. Wang and X. G. Luo. Breaking the Feat-ure Sizes Down to Sub-22nm by Plasmonic Interference Lithography Usi-ng Dielectric-Metal Multilayer. Opt. Express, 2009, 17:21560~21565
    62 Y. Xiong, Z. W. Liu and X. Zhang. Projecting Deep-Subwavelength Patt-erns from Diffraction-Limited Masks Using Metal-Dielectric Multilayers. Appl. Phys. Lett. 2008, 93:111116
    63 T. Xu, Y. H. Zhao, J. X. Ma, C. T. Wang, J. H. Cui, C. L. Du, and X.G. Luo. Sub-Diffraction-Limited Interference Photolithography with Meta-material. Opt. Express, 2008. 18:13579~13584
    64 X. Z. Wei, X. G. Luo, X. C. Dong and C. L. Du. Localized Surface Pl-asmon Nanolithography with Ultrahigh Resolution. Opt. Express, 2007, 15:14177~14183
    65 T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, andX. Luo. Localizing Surface Plasmons with a Metal-Cladding Superlens forProjecting Deep-Subwavelength Pattern. Appl. Phys. B, 2009, 97:175~179
    66 Y. Xiong, Z. W. Liu and X. Zhang. A Simple Design of Fat Hyperlens for Lithography and Imaging with Half-Pitch Resolution down to 20nm. Appl. Phys. Lett. 2009, 94:203108
    67 J. B. Pendry, L. Martin-Moreno and F. J. Gareia-vidal. Mimicking Surfac-e Plasmons with Structure Surface. Science, 2004, 305:847~848
    68 A. R. Hibbins, B. R. Evans and J. R. Sambles. Experimental Verifieationof Designer Surfaee Plasmon. Science, 2005, 308:670-672
    69 F. J. Gareia-vidal and J. J. Saenz. Electromagnetie Surface Modes in Str-ucture Perfect Conductor Surfaces. Phys. Rev. Lett. 2005, 95:233901
    70 M. Qiu. Photonic Band Structures for Surface Waves on Struetured MetalSurfaces. Opt. Express, 2008, 13:7583
    71 A. J. Davies. The Finite Element Method [M]. 1980. Oxford: Clarendon Press.
    72 N. Motita. Integral Equation Methods for Electromagnetic. 1991. ArteehHouse: Boston London
    73 C. Hafner. The 3d Electromagnetic Wave Simulator [M]. 1993. Chichester:Wiley.
    74 M. Born and E. Wolf. Principles of Optics [M]. 1999. Cambridge University Press
    75 Goodman J W. Introduction to Fourier Optics [M]. 1968. McGraw-Hill.
    76葛德彪.电磁场时域有限差分方法[M]. 2002.西安电子科技大学出版社.
    77 Z. S. Sacks, D. M. Kingslad, D. M. Lee and J. F. Lee. A Perfectly Mat-ched Anisotropic Absorber for Use as an Absorbing Boundary Condition.IEEE Trans. Antennas Propagat. 1995, 43(12):1460~1463
    78 S. D. Gendney. Anisotropic Perfectly Matched Layer Absorbing Media forthe Truncation of FDTD Lattices. IEEE Trans. Antennas Propagat. 1996, 44(12):1630~1639
    79 Q. Q.Gan, B. Guo, G. F. Song, L. H. Chen, Z. Fu, Y. J. Ding and F. J.Bartoli. Plasmonic Surface-Wave Splitter. Appl. Phys. Lett.2007,90:161130
    80 Q. Q. Gan, Z. Fu, Y. J. Ding and F. J. Bartoli. Bidirectional Subwavele-ngth Slit Splitter for THz Surface Plasmons. Opt. Express, 2007,15:18050~18055
    81 Z. Fu, Q. Q. Gan, K. L. Gao, Z. Q. Pan and F. J. Bartoli. Numerical Investigation of a Bidirectional Wave Coupler Based on Plasmonic BraggGratings in the Near Infrared Domain. J. Lightwave. Technol. 2008, 26: 3699~3703
    82 S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. C. Jeong, C. Byeon,J. H. Kang, Q. H. Park and D. S. Kim. Directional Control of Surface Plasmon Polariton Waves Propagating Through an Asymmetric Bragg Res-onator. Appl. Phys. Lett. 2009, 94:063115
    83 H. Cagayan and E. Ozbay. Surface Wave Splitter Based on Metallic Grat-ings with Sub-Wavelength Aperture. Opt. Express, 2008, 16:19091~19096
    84 J. Wang, X. S. Chen and W. Lu. High-Efficiency Surface Plasmon Polar-iton Source. J. Opt. Soc. Am. B, 2009, 36(B):139~142
    85 M. D. He, J. Q. Liu, Z. Q. Gong, Y. F. Luo, X. S. Chen and W. Lu. P-lasmonic Splitter Based on the Metal-Insulator-Metal Waveguidewith Peri-odic Grooves. Opt. Comm. 2010, 283:1784~178
    86 T. Xu, Y. H. Zhao, D. C. Gan, C. T. Wang, C. L. Du and X. Luo. Dir-ectional Excitation of Surface Plasmons with Subwavelength Slits. Appl. Phys. Lett. 2008, 92:101501
    87 F. Lopez-Tejera, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E.Devaux, T. W. Ebbesen, J. R. Kenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber and A. Dereux. Efficient Unidirectional Nano-slit Couplers for Surface Plasmons. Nature Phys. 2007, 3:324~328
    88 G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal and X. Zhang. Controllingthe Phase and Amplitude of Plasmon Sources at a Subwavelength Scale. Nano. Lett. 2009, 9:327
    89 Y. X. Cui and S. L. He. Enhancing Extraordinary Transmission of Light Through a Metallic Nanoslit with a Nanocavity Antenna. Opt. Lett. 2009,34(1):16~18.
    90 W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy and X. Zhang. Flying Plasmonic Lens in the Near Field for High-Speed Nanolithography.Nanotechnology, 2008, 3(12):733~737
    91 Q. Q. Gan, G. F. Song, G. H. Yang, Y. Xu, J. X. Gao, Y. Li, Q. Cao, L.H. Chen, H. W. Lu, Z. H. Chen, W. Zeng and R. J. Yan. Near-Field Sc-anning Optical Microscopy with an Active Probe. Appl. Phys. Lett. 2006,88(12):121111
    92 Q. Q. Gan, Y. J. Ding and F. J. Bartoli.“Rainbow”Trapping and Relea-sing at Telecommunication Wavelength. Phys. Rev. Lett. 2009, 102(5):056801
    93 E. D. Palik. Handbook of Optical Constants of Solids. 1995. Academic Press, London.
    94 B. Wang and G. P. Wang. Plasmon Bragg Re?ectors and Nanocavities onFlat Metallic Surfaces. Appl. Phys. Lett. 2005, 87:013107
    95 Y. J. Chang and G. Y. Lo. A Narrowband Metal-Multi-Insulator-Metal W-aveguide Plasmonic Bragg Grating. IEEE Photon. Tech. Lett. 2010, 22(9):634~636
    96 Q. F. Zhu, D. Y. Wang and Y. Zhang. Enlargement of the Band Gap in the Metal-Insulator-Metal Heterowaveguide. Opt. Comm. 2009, 282(6):1116~1119
    97 Z. H. Han, E. Forsberg and S. L. He. Surface Plasmon Bragg Gratings Formed in Metal-Insulator-Metal Waveguides. IEEE Photon. Tech. Lett. 2007, 19(2):91-93.
    98 Y. K. Gong, X. M. Liu and L. R. Wang. High-Channel-Count Plasmonic Filter with the Metal-Insulator-Metal Fibonacci-Sequence Gratings. Opt. Lett. 2010, 35(3):285~587
    99 A. Hosseini and Y. Massouda. Nanoscale Surface Plasmon Based Resonat-or Using Rectangular Geometry. Appl. Phys. Lett. 2007, 90:181102
    100 S. Xiao, L. Liu and M. Qiu. Resonator Channel Drop Filters in a Plasm-on Polaritons Metal. Opt. Express, 2006, 14:2932~2937
    101 H. F. Talbot. Facts Relating to Optical Science. Philos. Mag. 1936, 9:401~407
    102 L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. W. Rolston, and D. W. Phillips. Temporal Matter-Wave-Dispersion Talbot Effect. Phys. Rev. Lett. 1999, 83:407~541
    103 L. Liu. Talbot and Lau Effects on Incident Beams of Arbitrary Wavefrontand Their Use. Appl. Opt. 1989, 28:4668~4678
    104 A. W. Lohmann and J. Thomas. Making an Array Illuminator Based on the Talbot effect Appl. Opt. 1990, 29:337~4340
    105 L. Liu. Lau cavity and phase locking of laser arrays. Appl. Opt. 1989, 23: 1312~1314
    106 M. R. Dennis, N. I. Zheludev and F. J. Garc′?a de Abajo. The Plasmon Talbot Effect. Opt. Express, 2007, 15:692~9700
    107 W. W. Zhang, C. L. Zhao, J. Y. Wang and J. S. Zhang. An Experiment-al Study of the Plasmonic Talbot Effect. Opt. Express, 2009, 17: 19757~19762
    108 A. G. Edelmann, S. F. Helfert, and J. Jahn. Analysis of the Self-ImagingEffect in Plasmonic Multimode Waveguides. Appl. Opt. 2010, 49(7):1~10
    109 A. A. Maradudin and T A Leskova. The Talbot Effect for a Surface Pla-smon Polariton. New J. Phys. 2009, 11:033004
    110 D. V. Oosten, M. Spasenovic and L. Kuipers. Nanohole Chains for Direc-tional and Localized Surface Plasmon Excitation. Nano. Letters, 2010, 10:286~290
    111 R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides and G. Stegeman. Discrete Talbot Effect in Waveguide Arrays. Phys. Rev. Lett. 2005, 95:053902
    112 M. Feit and J. Fleck. Light Propagation in Graded-Index Optical Fibers. Appl. Opt. 1978, 17: 3990~3998
    113 X. Fan, G. Wang, J. Lee and C. T. Chan. All-Angle Broadband NegativeRefraction of Metal Waveguide Arrays in the Visible Range: Theoretical Analysis and Numerical Demonstration Phys. Rev. Lett. 2006, 97:073901
    114 Y. M. Liu, G. Bartal, D. A. Genov and X. Zhang. Subwavelength Discre-te Solitons in Nonlinear Metamaterials. Phys. Rev. Lett. 2007, 99:153901
    115 L. Verslegers, P. B. Catrysse, Z. F. Yu and S. H. Fan. Deep Subwavele-ngth Focusing and Steering of Light in an Aperiodic Metallic WaveguideArray. Phys. Rev. Lett. 2009, 103:033902
    116 W. Lin, X. Zhou, G. Wang and C. Chan. Spatial Bloch Oscillations ofPlasmons in Nanoscale Metal Waveguide Arrays. Appl. Phys. Lett. 2007, 91:243113
    117 T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio and P. Wolff. Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays. Nature (London), 1998, 391:667
    118 K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L.Kuipers. Strong Influence of Hole Shape on the Extraordinary Transmissi-on Through Periodic Arrays of Subwavelength Holes. Phys. Rev. Lett. 2004, 92:183901
    119 R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem and K. L.Kavanagh. Strong Polarization in the Optical Transmission through Ellipti-cal Nanohole Arrays. Phys. Rev. Lett. 2004, 92:037401
    120 K. L. van der Molen, K. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. vanHulst and L. Kuipers. Role of Shape and Localized Resonance in Extraordinary Transmission Through Periodic Arrays of Subwavelength H-ole: Experiment and Theory. Phys. Rev. B, 2005, 72:045421
    121 H. Cao and A. Nahata. Influence of the Aperture Shape on the Transmis-sion Properties of a Periodic Array of Subwavelength Aperture. Opt. Express, 2004, 12:3664
    122 A. Krishnan, T. Thio, T. J. Kim, H. J. lezec, T. W. Ebbesen and P. A. Wolff, Evanescently Coupled Resonance in Surface Plasmon Enhanced Tr-ansmission. Opt. Comm. 2001, 200:1~7
    123 Q. Wang, J. Li, C. Huang, C. Zhang and Y. Zhu. Enhanced Optical Tra-nsmission through Metal Films with Rotation-symmetrical Hole Arrays. Appl. Phys. Lett. 2005, 87:091105
    124 J. M. Vigoureux. Analysis of the Ebbesen Experiment in the Light of E-vanescent Short Range Diffraction. Opt. Comm. 2001, 198:257~263
    125 E. Altewischer, C. Genet and M. P. van Exter. Polarization Tomography of Metallic Nanohole Arrays. Opt. Lett. 2005, 30:90~92
    126 A. Degiron, H. Lezec and W. Barnes. Effects of Hole Depth on Enhanc-ed Light Transmission through Subwavelength Hole Arrays. Appl. Phys. Lett. 2002, 81:4327~4329
    127 X. Shou, A. Agrawal and A. Nahata. Role of Metal Film Thickness on the Enhanced Transmission Properties of a Periodic Array of Subwavelen-gth Aperture. Opt. Express, 2005, 13:9834~9840
    128 A. K. Azad and W. Zhang. Resonance Terahertz Transmission in Subwav-elength Metallic Hole Arrays of Sub-skin-depth Thickness. Opt. Lett. 2005, 30:2945~2947
    129 M. Sarrazin and J. P. Vigneron. Optical Properties of Tungsten Thin Fil-ms Perforated with a Bidimensional Array of Subwavelength Holes. Phys.Rev. E, 2003, 68:016603
    130 J. G. Rivas, C. Schotsch, P. Bolivar and H. Kurz. Enhanced Transmissionof Thz Radiation through Subwavelength Holes. Phys. Rev. B, 2003, 68: 201306
    131 J. G. Rivas, C. Janke, P. Bolivar and H. Kurz. Transmission of Thz Rad-iation through Insb Gratings of Subwavelength Apertures. Opt. Express, 2005, 13:847~859
    132 A. K. Azad, Y. Zhao and W. Zhang. Transmission Properties of TerahertzPulses through an Ultrathin Subwavelength Silicon Hole Array. Appl.Phys.Lett. 2005, 86:141102
    133 T. Matsui, Z. V. Vardeny, A. Agrawal, A. Nahata and R. Menon. Resona-ntly Enhanced Transmission through a Periodic Array of Subwavelength Apertures in Heavily Doped Conducting Polymer Films. Appl. Phys. Lett.2006, 88:071101
    134 K. L. van der Molen, F. B. Segerink and N. F. van Hulst, L.Kuipers. In-fluence of Hole Size on the Expraordinary Transmission Through Subwa-velength Hole Arrays. Appl. Phys. Lett. 2004, 85:4316
    135 S. M. Williams, A. D. Stafford, and T. M. Rogers. Extraordinary InfraredTransmission of Cu-coated Arrays with Subwavelength Apertures: Hole S-ize and the Transition from Surface Plasmon to Waveguide Transmission.Appl. Phys. Lett. 2004, 85:1472~1474
    136 J. A. Porto, F. J. Garcia-Vidal and J. B. Pendry. Transmission Resonanceson Metallic Gratings with Very Narrow Slits. Phys. Rev. Lett. 1999, 83:2845
    137 H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen and H. J. Lezec S-urface Plasmons Enhance Optical Transmission through Subwavelength H-oles. Phys. Rev. B, 1998, 58:6779~6782
    138 H. J. Lezec and T. Thio. Diffracted Evanescent Wave Model for Enhanc-ed and Suppressed Optical Transmission through Subwavelength Hole Arr-ays. Opt. Express, 2004, 12:3629~3651
    139 H. T. Liu and P. Lalanne. Microscopic Theory of the Extraordinary Opti-cal Transmission. Nature, 2008, 452:728~731
    140 D. C. Skigin and R. A. Depine. Transmission Resonances in Metallic Co-mpound Gratings with Subwavelength Slits. Phys. Rev. Lett. 2005, 95:217402
    141 Y. H. Wang, S. Q. Wang, Y. Zhang and S. T. Liu. Transmission ThroughMetallic Array Slits with Perpendicular Cuts. Opt. Express, 2009, 17:5014~5022
    142 C. Li, Y. S. Zhou, Y. H. Wang and F. H. Wang. Wavelength Squeeze ofSurface Plasmon Polariton in a Subwavelength Metal Slit. J. Opt. Soc.Am.B, 2010, 27:59~63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700