红树植物耐盐基因的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物受盐碱和水分胁迫时,细胞质中积累大量有机渗透调节剂,如甘露醇、海藻糖、甜菜碱和脯氨酸等,而将细胞质中的无机渗透调节剂(主要是K~+)挤向液泡,使胞质与细胞(液泡)外环境维持渗透平衡,这样就避免了细胞质高浓度无机离子对酶和代谢的毒害。除维持细胞的正常膨压外,甜菜碱还具有无毒渗透保护剂的作用,能够稳定复杂蛋白质高级结构,从而使得许多代谢过程中的重要酶类在渗透胁迫下继续保持活性。
     甜菜碱是以胆碱为底物经两步酶催化氧化生成,催化第二步反应的是甜菜碱醛脱氢酶(betaine aldehyde dehydrogenase,BADH)。甜菜碱脱氢酶是一个限速酶,甜菜碱的增加与它的活性有关,因此BADH基因的有效表达可增强植物的耐盐性。自1981年从高等植物中首次分离得到BADH基因后,对BADH基因的研究报告陆续有报道。目前,已经先后从大肠杆菌、酵母以及多种高等植物中克隆到BADH基因的cDNA。据推测,单子叶植物的BADH基因可能位于微体中,而双子叶植物BADH基因位于叶绿体中。
     本文对红树植物BADH基因的克隆与分析进行了初步的探索,主要结果如下:
     1、采用CTAB法提取白骨壤总RNA,经1.0%琼脂糖凝胶电泳和OD_(260)与OD_(280)的检测,结果显示,28S rRNA条带亮度是18S rRNA条带亮度2倍以上,而且OD_(260)/OD_(280)值非常接近2.0,表明我们提取的白骨壤总RNA完整性较好,基本上没有发生降解;纯度较高,所含杂质很少,可用于后续实验中RT-PCR的进行。
     2、以提取的白骨壤总RNA为模板,用反转录酶反转录生成cDNA,利用简并引物,通过递减PCR(Touch down PCR)技术扩增出约250bp的BADH基因核心片段。经过比对,它和已报道的白骨壤BADH基因同源性高达80%。
     3、根据扩增得到的白骨壤BADH基因片段设计引物,分别进行3’RACE和5’RACE,扩增白骨壤BADH基因未知的3’端和5’端,并分别得到约350bp(3’RACE)和1.0kb(5’RACE)的特异性片段。测序和比对后,证实我们成功地扩增到了白骨壤BADH基因的3’端和5’端。
     4、在以上实验基础上,重新设计白骨壤BADH基因特异性引物,从白骨壤总RNA反转录生成的cDNA中扩增得到一条约1.5kb的特异性条带。经过测序和比对后,进一步确定成功克隆到白骨壤的BADH基因。BADH基因编码区全长1509bp,编码502个氨基酸。对BADH基因的分析发现,它与已报道的白骨壤BADH基因的同源性均在90%以上。
     5、用T4连接酶将pGBKT7和BADH基因连接起来,转入酵母AH109中,在含NaCl梯度浓度的SD-Trp培养基中生长,通过测量生长曲线发现,重组酵母AH109(pGBKT7-BADH)对NaCl的耐受度由原有的9%提高到14%,表明从白骨壤中扩增得到的BADH基因在酵母AH109中能有效转录并翻译出蛋白质,具有生物学活性。
Cell accumulates organic osmotic regulators in the cytoplast (Mannitol, trehalose, betaine and praline, for example), while inorganic osmotic regulators in the vacuole from the cytoplast (one and most of them is K~+), when the plant was stressed by salt or water. That will keep osmotic balance between the cytoplast and outsides (vacuole), avoiding the ion poison to the enzymes and metabolize when high concentration ion in the cytoplast. Beside keeping the cell normal swell press, the glycinebetaine(thereafter GB) can be a innocuity osmoprotectant and stablish the high structure of complex proteins. So the main enzymes in metabolize may keep activity under osmotic stress.
     In plants, it has reported that GB is synthesized by two steps. The second step is catalyzed by betaine aldehyde dehydrogenase (BADH). Betaine aldehyde dehydrogenase is a rate-limiting enzyme, and the effective expression of BADH gene will enhance the plant's salt-tolerance for referring to the betaine's increase. Researches about BADH gene were reported after the BADH gene isolated for the first time from high plant in 1981. cDNAs of BADH gene were cloned from E.coli, yeast and kinds of high plant. Monocotyledon's BADH genes are located on microsome and dicotyledon's BADH genes are located on choloroplast.
     This study aimed to explore the clone and analysis of BADH gene of mangrove. Main results are followed:
     1. The total RNA was extracted from Avicennia marina using CTAB, tested by 1.0% agrose gel electrophoresis and OD_(260)、OD_(280). The strength of 28S rRNA was over twice to the 18S rRNA from the electrophoresis. The value of OD_(260)/OD_(280) was very close to 2.0. It indicated that the total RNA we extracted had good integrality and high purity for non-degradation and low impurity.
     2. We got the cDNA with RNase from the extracted total RNA. A fragment about 250bp was amplified using a pair of degenerate primers by touch down PCR. It had a 80% homology to the reported BADH gene of Avicennia marina.
     3. Based on the fragment above, we designed primers and processed 3'RACE and 5'RACE respectively to amplified the unknown 3' terminus and 5' terminus of BADE gene. About 350bp(3'RACE) and 1.5kb(5'RACE) special fragments was amplified. Results of sequencing and analysis indicated that we obtained successfully the 3' RACE and 5' RACE of BADE gene.
     4. A pair of gene special primers was redesigned and a 1.5kb fragment was amplified from the cDNA reversed from the total RNA. The fragment was confirmed after sequencing and analysis. The coding section of BADE gene was 1509bp and coded a polypeptide of 502 amino acids. Analysis of BADE gene indicated high homology to other BADE gene, and over 90% homology to the reported Avicennia marina BADE gene.
     5. The BADE gene was ligated to pGBKT7 with T4 Ligase, and the recombined plasmid was transformed to Saccharomyces cerevisiae AH109. The tolerance to NaCl of recombined Saccharomyces cerevisiae AH109(pGBKT7-BADH) enhanced to 14% from 9%. It showed the protein transcriped and translated in recombined Saccharomyces cerevisiae AH109(pGBKT7-BADH) has biological activity.
引文
[1]沈义国,陈受宜.植物盐胁迫应答的分子机制[J].遗传,2001,23(4):365-369.
    
    [2]向旭,傅家瑞.脱落酸应答基因的表达调控及其与逆境胁迫的关系[J].植物学通报,1998,15(3):11-16.
    
    [3]毛桂莲,许兴,徐兆桢.植物耐盐生理生化研究进展[J].中国生态农业学报,2004,12(1):43-46.
    
    [4]林栖凤,李冠一.植物耐盐性研究进展[J].生物工程进展,2000,20(20):20-25.
    
    [5]俞嘉宁,山仑.LEA蛋白与植物的抗旱性[J].生物工程进展,2002,22(2):10-14.
    
    [6]李莹,张利民.植物甜菜碱及甜菜碱合成酶研究进展[J].杂粮作物,2006,26(3):191-193.
    
    [7]侯彩霞,於新建,李荣,等.甜菜碱稳定PS Ⅱ放氧中心外周多肽机理[J].中国科学,1998,28(4):355-361.
    
    [8]罗小敏,张迎迎,崔妍.甜菜碱在植物抗渗透胁迫中的功能及其作用机制[J].河北林果研究,2003,18(4):384-388.
    
    [9]单雷,赵双宜,夏光敏.植物耐盐相关基因及其耐盐机制研究进展[J].分子植物育种,2006,4(1):15-22.
    
    [10]刘振林,戴思兰.植物甜菜碱醛脱氢酶基因研究进展[J].西北农林科技大学学报(自然科学版),2004,32(3):104-112.
    
    [11]张艳敏.植物逆境应答的分子机制及转基因研究[J].河北农业科学,2003,7(4):33-39.
    
    [12]张俊莲,张金文,陈正华等.植物Na~+/H~+逆向转动蛋白与植物耐盐性的研究进展[J].草原与草坪,2005(4):3-8.
    
    [13]Arrillaga, GisbertS, Serrano, et al. Expression of the yeast HAL2 gene in tomoto increase the invitro salt tolerance oftransgenic progenies[J]. Plant Science, 1998, 136(2): 219-226.
    
    [14]张妍,王瑛,梁玉玲等.转LEA3基因水稻的抗性分析[J].河北农业大学学报,2005,28(5):
    
    [15]侯彩霞,汤章城.钾离子对盐诱导菠菜甜菜碱累积的影响[J].植物生理学报,1998,24(2):131-135.
    
    [16]马建华,郑海雷.植物耐盐的分子生物学基础[J].生物学杂志,2007,24(1):5-9.
    
    [17]段瑞君,易可可,吴平.拟南芥中一个类似钙调素蛋白的基因结构及其缺磷、缺钾诱导表达[J].植物生理与分子生物学学报,2005,31(5):520-526.
    
    [18]艾万东.高等植物调渗蛋白与耐旱耐盐基因工程[J].生物工程进展,1994,15(3):10-15.
    
    [19]钏国辉,王建林.外源甜菜碱对氯化钠胁迫下白菜叶片的保护效应[J].植物生理学报,1997,33(5):333-335.
    
    [20]何锶洁,董伟,李慧芬,等.转甜菜碱醛脱氢酶基因玉米及其耐盐性研究[J].高技术通讯,1999(2):50-52.
    
    [21]Wu Ray,Su Jin,Targolli J.Howto obtain optimal gene expression in transgenic plants[R].福建:中国第七次基因学术会议,1999.
    
    [22]Arrillaga, Gisbert S, Serrano, et al. Expression of the yeast HAL2 gene in tomoto increase the in vitro salttolerance oftransgenic progenies[J]. Plant Science, 1998, 136(2): 219-226.
    
    [23]SuginoM, HibinoT, TanakaY, etal. Overexpression of DnaK from a halotolerant cyanobacteriumAphanothece halophytica acquires resistance to salt stress in transgenic tobacco plants[J]. Plant Science, 1999,146(2): 81-88.
    
    [24]Tanaka Y, Hibino T, Hayashi Y, et al. Salt tolerance of transgenic rice overexpressing yeast mitochondrialMnSOD in chloroplasts[J]. Plant Science, 1999, 148(2): 131-138.
    
    [25]刘俊君,彭学贤,王海云.转基因植物烟草的甘露醇合成和耐盐性[J].生物工程学报,1996,12(2):206-210.
    
    [26]白宝璋,马景勇,陈颖.甜菜碱与植物抗性的关系[J].吉林农业大学学报,1993,15(4):99-102.
    
    [27]Liang Guangjian.Betaine can improve tolerance to low temperature in plant[J].Journal of Zhaoqing University, 2003, 24(2): 36-41.
    
    [28]梁峥,骆爱玲,赵原,等.干旱和盐胁迫诱导甜菜叶中的甜菜碱醛脱氢酶的积累[J].植物生理学报,1996,22(2):161-164.
    
    [29]Chen Xuqing, Zhang Xiaodong, Liang Rongqi, et al.Betaine improves LA-PCR amplification [J].Chinese Journal Biotechnology, 2004, 20(5): 715-718.
    
    [30]梁峥,赵原,汤岚,等.甜菜碱对呼吸酶的保护效应[J].植物学报,1994,36(12):947-951.
    
    [31]李秋莉,杨华,高晓蓉,等.植物甜菜碱合成酶的分子生物学和基因工程[J].生物工程进展,2002.22(1):84-87.
    
    [32]吴月亮,蔡明,蒋细旺等.植物甜菜碱合成相关酶及其基因工程研究进展[J].安徽农业科学,2007,35(18):5348-5349.
    
    [33]达来,韩晓燕,刘顺先.大肠杆菌(Escherichia coli)甜菜碱醛脱氢酶基因的克隆[J].内蒙古大学学报(自然科学版),1996,27(1):89-91.
    
    [34]马德钦,汤岚,吕文,等.甜菜碱醛脱氢酶基因的cDNA克隆[J].植物学通报,1995,12(1):47-48.
    
    [35]肖岗,张耕耘,刘凤华等.山菠菜甜菜碱醛脱氢酶基因研究[J].科学通报,1995,40(8):741-745.
    
    [36]Luo Ailing, Liu Jiayao, Ma Deqin, et al.Regulation of terminal oxidative pathway on BADH Gene expressionin wheat seedlings[J].Acta Phytophysiologica Sinica, 2001, 27(4): 345-348.
    
    [37]Li Yonghua , Zou Qi.The sequence of triticum aestivum betiane aldehyde dehydrogenase Gene??WBADH[J]. Journal of Plant Physiology and Molecular Biology, 2002, 28(6): 495-496.
    
    [38]余爱丽,姚伟,周会等.高粱BADH1基因的克隆与序列分析[J]农业生物技术学报,2005,13(2):256-257.
    
    [39]J. Legaria, R. Rajsbaum, R.A. Munoz-Clares, etc.Molecular characterization of two genes encoding betaine aldehyde dehydrogenase from amaranth.Expression in leaves under short-term exposure to osmotic stress or abscisic acid[J].Gene, 1998(218): 69-76.
    
    [40]曾华宗,郑成木.甘蔗抗旱生理测验及BADH基因PCR扩增的研究[J].热带作物学报,2003,24(1):55-58.
    
    [41]Takashi Hibino, Yu-Ling Meng, Youshinobu K, etc. Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumaulating mangrove Avicennia marina (Forsk.) Vierh.[J].Plant Molecular Biology, 2001(45): 353-363.
    
    [42]李秋莉,高晓蓉,袁晓东,等.一步PCR法快速扩增辽宁碱蓬甜菜碱醛脱氢酶cDNA 3’末端序列[J].遗传,2002,24(2):179-181.
    
    [43]陈秀娟,王峻岭,赵彦修等.中亚滨藜甜菜碱醛脱氢酶基因的表达特性[J].植物生理学,2001,27(4):309-312.
    
    [44]Yin Xiaojun, Zhao Yanxiu, Luo Da, etc.Expression of the betaine aldehyde dehydrogease (AcBADH) Gene and isolation of its promoter from the Halophyte Atriplex centralasiatica IIjin[J] Journal of Plant Physiology and Molecular Biology, 2002, 28(6): 479-484.
    
    [45]崔杰,李滨胜,史淑芝,等.植物甜菜碱醛脱氢酶基因工程研究进展[J].中国甜菜糖业,2006(1):40-44.
    
    [46]梁峥,马德钦,汤岚,等.菠菜甜菜碱醛脱氢酶基因在烟草中的表达[J].生物工程学报,1997,13(3):236-240.
    
    [47]洪青,何健,刘智,等.中度嗜盐细菌Halomonas sp.BYS-1甜菜碱醛脱氢酶基凶的克隆和表达[J].微生物学报,2004,44(1):72-74.
    
    [48]霍云谦,张艳敏,郭北海.导入外源甜菜碱醛脱氢酶基因BADH对小麦盐旱抗性的影响[J].河北农业科学,2003,7(1):1-4.
    
    [49]刘凤华,郭岩,谷冬梅,等.转甜菜碱醛脱氢酶基因植物的耐盐性研究[J].遗传学报,1997,24(1):54-58.
    
    [50]郭岩,张莉,肖岗,等.甜菜碱醛脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究[J].中国科学,1997,27(2):151-155.
    
    [51]丁占生,张艳敏,张光荣,等.外源甜菜碱醛脱氢酶(BADH)基因对小麦合成甜菜碱的影响[J].华北农学报(院庆专辑),2003(18):40-42.
    
    [52]Takashi F, KazuyaH, KeikoO, et al. Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley[J]. Physiologia Plantarum, 2008, 134(1): 22-30.
    
    [53]茹巧美,郑海雷,肖强.红树植物耐盐机理研究进展[J].云南植物研究,2006,28(1):78-84.
    
    [54]Huang Wei, Lin Qifeng, Li Guanyi, etc.Identification and expression analysis of the cyclorphilin gene in Kandelia candel under stress of salt[J].Acta Biologiae Experimentalis Sinica, 2003, 36(3): 209-214.
    
    [55]叶勇,卢昌义,胡宏友,等.三种泌盐红树植物对盐胁迫的耐受性比较[J].生态学报,2004,24(11):2444-2450.
    
    [56]Yamada A., SekiguchiM., MimuraT, etal. The Role of Plant CCT(?) in Salt- and Osmotic-Stress Tolerance[J].Plant and Cell Physiology, 2002, 43(6): 1043-1048.
    
    [57]Takemura T, Hanagata N, Dubinsky Z, et al. Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase from Bruguiera gymnorrhiz [J]. Trees-Struct. Funct, 2002(16)): 94-99.
    
    [58]周涵韬,林鹏.利用mRNA差别显示技术分离盐胁迫下红树植物白骨壤耐盐相关cDNA[J].生物工程学报,2002,18(1):51-54.
    
    [59]赵同标,赵新全,常智杰,等.相异物种同源基因cDNA的快速克隆.[J]生物技术通报,2003(5):13-15.
    
    [60]蔡欣,陈宏,汪虹英基于PCR的cDNA基因克隆技术研究进展[J].生物技术通讯,2004,15(6):623-625.
    
    [61]Li Qiuli, Liu Dawei, Gao Xiao, etc.Cloning of cDNA Encoding Choline Monooxgenase from Suaeda liaotungensis and Salt Tolerance of Transgenic Tobacco[J].Acta Botanica Sinica, 2003, 45(2): 242-247.
    
    [62]Li Quanzi, Li Xingguo, Sun Jiaqiang, etc.Isolaton and expression of an AGAMOUS homolog in the flower of cucumber (Cucumis sativas L.)[J].DeveIopmental and Reproductive Biology, 2000, 9(2): 69-76.
    
    [63]Huang Wei, Fang Xiaodong, Lin Qifeng, etc.Identification and expression analysis of a full-length cDNA encoding a Kandelia candel tonoplast intrinsic protein[J] .Chinese Journal of Biotechnology, 2003, 19(2): 147-152.
    
    [64]邢桂春,张成岗,魏汉东,等.采用RACE技术获得全长人新基因MAGE-D1[J].中国生物化学与分子生物学报,2001,17(2):203-208.
    
    [65]卜友泉,罗绪刚,刘彬,等.一步3’RACE快速构建鸡MnSOD全长cDNA克隆[J].遗传,2004,26(4):519-521.
    
    [66]金晓琳,饶贤才,张克斌,等.利用5’-RACE法扩增到钙通道基因的5’-端片段[J].微生物学杂志,1999,19(3):45-46.
    
    [67]李关荣,鲁成,夏庆友,等.cDNA末端快速扩增技术(RACE)的优化与改良[J].生命科学研究,2003.7(3): 189-197.
    
    [68]唐克轩,开国银,张磊,等.RACE的研究及其在植物基因克隆上的应用[J].复旦学报(自然科学版),2002, 41(6):704-709.
    
    [69]韩海勃,曹建平.RACE技术及其在寄生虫全长cDNA克隆中的应用[J].国外医学寄生虫病分册,2005, 32(1):14-18.
    
    [70]王玉刚,冯健男,沈倍奋.用RLM-RACE法克隆抗CD20单克隆抗体可变区基因及其信号及其信号肽基 因[J].细胞与分子免疫学杂志,2005,21(4):466-469.
    
    [71]蔡欣,吴建平,张利平,等.SSH和“越轨”RACE分子克隆技术[J].生命的化学,2004,24(3):257-259.
    
    [72]王少丽,盛承发,乔传令.cDNA末端快速扩增技术及其应用[J].遗传,2004,26(3):419-423.
    
    [73]樊红,李钰.克隆新基因cDNA全长的策略和方法[J].国外医学遗传学分册,2002,25(1):11-13.
    
    [74]李红,王孟薇,邵勇,等.利用RACE技术和生物信息学资源快速钓取多个侯选同源基因[J].生物技术通 讯,2001,12(4):257-259.
    
    [75]夏启中,张明菊.基因克隆觉方法简介[J].黄冈职业技术学院学报,2004,6(4):62-66.
    
    [76]邱为民,张思仲,武辉,等.一种新的cDNA末端快速扩增获取全长cDNA的方法[J].遗传,2001,23(5): 480-482.
    
    [77]周凯松,常宁,彭俊峰,等.真核生物中分享目的基因的方法及研究进展[J].山东商业职业技术学院学报, 2002,2(3):7-10.
    
    [78]Feng Li, Ren Maozhi, Luo Hongfa, etc.Isplation of Full-length cDNA and Promoter of Target Gene from Plant by Rapid Identification of Transcriptional Initiation Site (RITIS)[J].Molecular Plant Breeding, 2006, 4(1): 23-28.
    
    [79]方建茹,谢小梅.改进异硫氰酸/酚/氯仿一步法制备烟曲霉总RNA[J].江西中医学院学报,2005,17(3): 67-68.
    
    [80]杜仲叶和树皮总RNA的快速提取法[J].山地农业生物学报,2003,22(5):430-431.
    
    [81]蒋建雄,张天真.利用CTAB/酸酚法提取棉花组织总RNA[J].棉花学报,2003,15(3):166-167.
    
    [82]吴丽娟,黎燕,胡美茹,等.改进SDS-Phenol法快速提取细胞总RNA[J].第三军医大学学报,1999,21: 57-59.
    
    [83]胡国斌,梅兴国,刘怡.改良异硫氰酸胍一步法提取红豆杉细胞RNA[J].生物技术,2001,11(5):31- 33.
    
    [84]薛恒钢,胡宝成,刘爽,等.与抗辐射性相关蛋白AA12相互作用蛋白的筛选[J].生物技术通讯,2004,??15(5):460-463.
    
    [85]梁德勇,徐国恒,崔振中,等.RNA快速提取一步法的建立[J].北京医科大学学报,1999,31(5):461-463.
    
    [86]王玉成,薄海侠,杨传平瑚杨、柽柳总RNA提取方法的建立[J].东北林业大学学报,2003,31(5):99-100.
    
    [87]Ruan Xiaofeng, J. Wilhelm, Ma Fengwang.Modified RNA extraction from field woody plants for the routine detection of PDV and PNR SV in cherry by RT-PCR[J].Jour. of Northwest Sci-Tech Univ. of Agri. and For. (Nat. Sci.Ed.), 2004, 32(8): 7-12.
    
    [88]裴东,谷瑞升.几种提取木本植物中RNA方法的比较和改进[J].植物生理学通讯,2002,38(4):362-365.
    
    [89]史公军,侯喜林,王彦华.植物组织RNA的几种提取方法[J].西南农业学报,2005,18(2):225-227.
    
    [90]李宏,王新力.植物组织RNA提取的难点及对策[J].生物技术通报,1999(1):36-39.
    
    [91]王玉成,杨传平,姜静.木本植物组织总RNA提取的要点与原理[J].东北林业大学学报,2002,30(2):1-4.
    
    [92]李想,杨奇志,张飞雄.一种小量提取植物总RNA的有效方法[J].生物技术通报,2004(2):49-51.
    
    [93]徐昌杰,陈昆松,张波.柑橘组织RNA提取方法研究[J].果树学报,2004,21(2):136-140.
    
    [94]谷守芹,解灵君,范永山.植物组织总RNA提取的常用方法及优化策略[J].保定师范专科学校学报,2005,18(2):40-43.
    
    [95]徐亚浓,王学德,蒋淑丽,等.排除棉酚等干扰提取棉纤维细胞RNA方法的研究[J].棉花学报,2002,14(3):143-146.
    
    [96]张容,郑彦峰,吴瑶,等.一种简单有效的植物RNA提取方法[J].遗传,2006,28(5):583-586.
    
    [97]夏兰芹,郭三堆.棉花RNA的快速提取方法[J].棉花学报,2000,12(4):205-207.
    
    [98]杨亮,付丽娅,刘仲齐,等.富含多糖番茄果实组织中总RNA的有效提取方法[J].南开大学学报(自然科学版),2005,38(5):36-39.
    
    [99]李大力.一种从富含次生物质的植物中提取RNA的方法[J].南京理工大学学报,2001,25(5):547-549.
    
    [100]刘海,林德球,徐杰,等.一种适合于富含多糖和酚类物质的香蕉果实RNA提取方法[J].果树学报,2006,23(1):136-137.
    
    [101]周波,张旸,李玉花.富含多糖草莓果实总RNA提取方法的改进[J].生物技术通讯,2004,15(1):48-50.
    
    [102]李菁芳,黄劭毅,田仁鹏,等.一种适用于RT-PCR的杉树类植物中总RNA提取的方法[J].武汉植物学研究,2004,22(6):551-556.
    
    [103]肖洁凝,黄学林,黎茵.富含多糖和次生物质的芒果子叶总RNA的提取[J].中国生物工程杂志,2003,23(11):83-86.
    
    [104]杜中军,徐强,黄俊生.一种改进的富含多糖的芒果组织中完整总RNA提取方法[J].植物生理学通讯,2005,41(2):202-205.
    
    [105]王玉成,张国栋,姜静.一种适用范围广的总RNA提取方法[J].植物研究,2006,26(1):84-87.
    
    [106]袁明珠,温柔,刘吉升.几种植物材料中总RNA的提取[J].分子植物育种,2005,3(2):285-292.
    
    [107]白斌,张金文.马铃薯夫茎RNA提取及RT-PCR法克隆酸性转化酶基因[J].分子植物育种,2005,3(4):479-484.
    
    [108]刘志,杨永华.CTAB法提取中草药材滇紫草的总RNA[J].生物技术通讯,2004,15(4):372-373.
    
    [109]姚玉新,赵玲玲,郝玉金,等.改良热硼酸法高效提取苹果果实RNA[J].果树学报,2005,22(6):737-740.
    
    [110]鲁晓燕,赵英,孙文英.一种有效的葡萄叶片总RNA提取方法[J].新疆农业科学,2004,41(6):456-457.
    
    [111]戚金亮,马小娟,王丽,等.常规PCR与PACE结合法快速从cDNA文库中克隆基因[J].首都师范大学学报(自然科学版),2004,25(1):55-59.
    
    [112]孔凡晶,马有志,陈孝,等.差异显示和RACE技术的发展与应用[J].生物技术通报,2003(1):13-16.
    
    [113]汤三妹,杨娟,周秋莲.猕猴桃RNA提取与RT-PCR[J].生物技术通报,2005(5):67-71.
    
    [114]赵炜,郑佐华,毛裕民.全长cDNA的获得——RACE及其他方法进展[J].生命科学,1999,11(2):92-96.
    
    [115]张伟,刘新平,张景等.乙型肝炎病毒前区不同片段在酵母双杂交系统中的表达及对报告基因激活作用的检测[J].第四军医大学学报,2002,23(6):509-513.
    
    [116]李晓泽,姜静,李德斌等.重组大肠杆菌BL21(pET28a-eIF5A)的抗逆性分析[J].生物技术,2006,16(3):25-28.
    
    [117]刘广发,曾活水,陈启伟等.假单胞菌Na+/H+逆向转运蛋白基因nhaA的克隆与鉴定[J]遗传学报,2005,32(3):309-314.
    
    [118]A.亚当斯,D.E.戈特施林,C.A.凯泽等,刘子锋(译).酵母实验学方法实验指南[M].北京:科学出版社,2000.
    
    [119]顾金兰,王昌禄,程书梅等.耐盐酵母的选育及其遗传特性的初步研究[J].中国酿造,2005(06)
    
    [120]王弋博,李三相,李博等.耐盐酵母菌株的选育[J].青海大学学报(自然科学版),2002,20(6):39-41.
    
    [121]Haixia Xu, Xingyu Jiang, Kehui Zhan, et al. Functional characterization of a wheat plasma membrane Na~+/H~+ antiporter in yeast[J]. Archives of Biochemistry and Biophysics, 2008, 473 (1): 8-15.
    [122]Dongjin S, YoonDK, JiyoungL, et al. Athb-12, a homeobox-leucine zipper domain protein from Arabidopsis thaliana, increases salt tolerance in yeast by regulating sodium exclusion[J]. Biochemical and Biophysical Research Communications, 2004, 323 (2): 534—540.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700