夏、秋季黄河口及其邻近海域大中型浮游动物群落生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用2009年7月(夏季)和2010年9月(秋季)两个航次在黄河口及其邻近水域进行调查所采集的浮游动物样品,对研究水域浮游动物的种类组成、丰度和优势种进行了探讨;采用多元统计方法分析了该水域浮游动物的群落结构和生物多样性,探讨了浮游动物群落与环境因子间的关系,以期为该海区浮游动物的长期变化研究提供基础资料。
     两个航次共计鉴定各种类浮游动物63种,浮游幼虫16类,合计种类数为79(详见种类名录)。其中,原生动物2种;水螅水母19种;栉水母1种;浮游甲壳动物共计36种,其中,桡足类20种,占浮游甲壳动物种类组成的55.6%;枝角类2种;等足类1种;端足类2种;涟虫1种;糠虾10种;十足类2种;毛颚类1种;被囊类2种;浮游幼虫16类。浮游动物的主要类群为浮游甲壳动物、刺胞动物和浮游幼虫等。
     夏季,调查水域浮游动物的平均丰度为303.8 ind/m~3,高值区主要位于调查海区北部近岸水域;秋季,调查海区浮游动物的平均丰度为为229.6 ind/m~3,高值区主要分布于调查海区的北部。夏季浮游动物丰度高于秋季。桡足类、浮游幼虫和毛颚类是数量最丰富的类群,浮游动物总丰度的变动主要由这3个类群的分布决定。
     夏季,调查海区浮游动物平均湿重生物量为325.1 mg/m~3,生物量呈现在河口及其北部水域较高,在研究海区东部和南部较低的分布格局;秋季,平均湿重生物量为924.1 mg/m~3,调查海区东北部水域生物量较高,南部水域较低。夏季航次的浮游动物优势种为:中华哲水蚤、小拟哲水蚤、强壮箭虫、真刺唇角水蚤和长尾类幼虫。秋季航次的浮游动物优势种为:锡兰和平水母、球型侧腕水母、中华哲水蚤、背针胸刺水蚤和强壮箭虫。
     多元统计分析显示,黄河口海区的浮游动物群落存在显著差异。可分为组群Ⅰ近河口群落、组群Ⅱ沿岸水群落和组群Ⅲ冲淡水群落。浮游动物群落结构受环境因子的影响显著,且在不同季节随着冲淡水位置的移动,浮游动物群落也呈现季节性的变化。浮游动物丰度和环境因子的相关性分析显示:夏季影响浮游动物分布的主要非生物因子为表层盐度和水深;秋季影响浮游动物分布的主要因子为底层温度、底层盐度和水深。
     夏季,调查海区浮游动物种类数、香农-威纳指数、均匀度指数和丰富度指数的平均值分别为:21、2.6、0.6和2.5。秋季调查海区浮游动物种类数、香农-威纳多样性指数、均匀度指数和丰富度指数的平均值分别为:15、2.3、0.5和1.8。夏季航次浮游动物种类数、香农-威纳指数和丰富度指数均高于秋季航次。
Zooplankton community structure and its influencing factors were studied by means of multi-variable and bio-environmental analysis based on the samples collected in the Yellow River Estuary and its adjacent waters during two survey cruises which was conducted in summer (Jul. 2009) and in autumn (Sep. 2010) separately. The research can provide important fundamental information for the long-term monitoring of zooplankton structure ecology in the Yellow River Estuary.
     A total of 63 zooplankton taxa and 16 pelagic larvae were identified during two surveys, and they belonged to Protozoa, Cnidaria, Ctenophora, Mollusca, Arthropoda, Chaetognatha and Urochordata. Crustacea and Chaetognatha were the most abundant two components of the zooplankton. The species percentage of pelagic crustacean represented above 57.1% of total species richness and copepods were the most dominant crustacean in surveyed waters.
     In summer, the mean abundance of zooplankton was 303.8 ind/m~3. The high abundance was near the estuary and the north part of the surveyed waters. In autumn, the mean abundance value of zooplankton was 229.6 ind/m~3. The abundance in the north-eastern area of the surveyed waters was also higher than other area. Copepods, pelagic larvae and Chaetognatha was the most important dominant groups in the Yellow River Estuary which greatly controlled the distribution of tatal zooplankton abundance.
     In summer, the mean biomass was 325.1 mg/m~3. The biomass was higher near the estuary waters and the northern part of surveyed area, though the biomass is relatively lower in the southern area. In autumn, the mean biomass was 924.1 mg/m~3, the biomass in the north-eastern waters was higher than that in the southern waters.
     Sagitta crassa, Calanus sinicus, Macrura larvae, Paracalanus parvus and Labidocera euchaeta were the dominant species in summer, while Sagitta crassa, Calanus sinicus, Eirene ceylonensis, Pleurobrachia globosa and Centropages dorsispinatus were the dominant species in autumn.
     According to the multivariate analysis, significant differences of zooplankton communities were detected in the Yellow River Estuary. Three assemblages or communities were differentiated for the zooplankton by using the method of cluster analysis. GroupⅠ, with simple species composation, was detected in the neighborhood of Yellow River Estuary, as a result of the great influence from the Yellow River discharge. GroupⅡ, which was detected in autumn, was influenced by LaiZhou waters and the Yellow River discharge. GroupⅢ, with relatively more number of zooplankton species, was influnced by the waters which was under the control of both Yellow River discharge and BoHai coastal waters. The present study showed a clear relationship between zooplankton assemblages and water masses distributions. Surface salinity and water depth were the most important abiotic factors for the zooplankton distribution and community classification in summer, while in antumn, bottom salinity, bottom temperature and depth were the primary factors which influenced the zooplankton distribution and abundance in the surveyed area.
     Zooplankton biodiversity was significantly higher in summer than that in autumn. In summer, the average value of Species number, Shannon-Weaner Diversity, Pielou′s evenness index and Margalef species richness were 21, 2.45, 0.59 and 2.49, while in winter, the values were 15, 2.31, 0.54 and 1.80 respectively.
引文
[1]郑重,李少菁,许振祖.海洋浮游生物学.北京:海洋出版社,1984
    [2] Harris R, Wiebe P, Lenz J, Skjoldal H R, Huntley M E. (Ed.). ICES Zooplankton Methodology Manual. Academic Press, 2000: 1~32
    [3] Boltovskoy E, Foraminifera. In: Boltovskoy D.(Ed.) Atlas del Zooplancton del Atlantico Sudoccidental y Metodos de Trabajo con el Zooplancton Marino.Public Esp. Inst. Nac. Inv. Desarrollo Pesq., Mar del Plata, 1981: 317~352
    [4] Raymont JEG ed. Plankton and productivity in the oceans.2nd Vol.2.Zooplankton. Pergamon Press; Oxford(UK), 1980
    [5] Fernando C H. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia, 1994, 272: 105~123
    [6] Frost B W. Grazing control of phytoplankton stock in the open subarctic Pacifica Ocean: A model assessing the role of mesozooplankton particularly the large Calanoid copepods Neocalanus spp. Marine Ecology Progress Series, 1987, 39(1): 49~68
    [7] Urban R J, Dagg M, Peterson J. Copepod grazing on phytoplankton in the Pacific sector of the Antartic Polar Front. Deep-Sea Research, 2001, 48, 4224~4246
    [8]陈亚瞿,徐兆礼,王云龙,胡方西,韩明宝,严宏昌.长江口河口锋区浮游动物生态研究II.种类组成、群落结构、水系指示种.中国水产科学,1995,2(1):59~63
    [9]洪惠馨.水母和海蜇.生物学通报,2002,37(2):13~16
    [10]王荣,高尚武,王克,左涛.冬季黄海暖流的浮游动物指示.水产学报,2003,27(增):39~48
    [11]苗育田,1998于洪华,何德华,王春生.正常天气系统下东海水系与指示生物对应关系的分析.海洋通报,1998,17(2):13~21
    [12]刘红斌.1986年春季东海黑潮区管水母类组成和分布的初步研究.黑潮调查研究论文选(一).1990:267~276
    [13] Verheye H M, Richardson A J. Long-term increase in crustacean zooplankton in the southern Benguelaup welling region (1951~1996) bottom-up or top-down control ? IICESJ. Mar. Sci. ,1998, 55, 803~807
    [14] Tadokoro K, Chiba S, Ono T, Midorikawa T, Saino T.. Inter-annual variation in Neocalanus biomass in the Oyashio waters of the western North Pacific. Fisheries Oceanogr. 2005, 14, 210~222
    [15] Cury P, Bakun A, Crawford R J M, Jarre, A, Qui?ones R A et al.. Small pelagics in upwelling systems: patterns of interaction and structural changes in“wasp-waist”ecosystems. ICESJ. Mar. Sci. 2000, 57, 603~618
    [16] Cushing, D H. The production cycle and the numbers of marine fish. Symp. Zool. Soc. Lond. 1972, 29, 213~232
    [17] Horwood J et al.. Planktonic determination of variability and sustain ability of fisheries. J.Plank.Res. 2000, 22, 1419~1422
    [18]唐启升,苏纪兰.中国海洋生态系统动力学研究I.关键科学问题与研究发展战略.第一版.北京:科学出版社,2000.75~109
    [19] Mc Gowan,J.A., Bograd, S. J., Lynn, R. J., Miller, A. J..The biological response to the 1977 regime shift in the California Current. Deep-SeaRes. II 2003, 50, 2567~2582.
    [20] Hughes, L.. Biological consequences of global warming: is the signal already apparent ? Trends Ecol. Evol. 2000, 15, 56~61
    [21]李少菁,许振祖,黄加祺,曹文清,陈钢,柯才焕,陈丽华.海洋浮游动物学研究,厦门大学学报(自然科学版),2001,40(2):574~585
    [22] Omori M and Ikeda T. Methods in Marine Zooplankton Ecology. 1984.
    [23] Bougins P. Marine Plankton Ecology, New York, 1976.
    [24] Nishikawaa J, Matsuura H, Castillo L V, Campos W L, Nishida S. Biomass, vertical distribution and community structure of mesozooplankton in the Sulu Sea and its adjacent waters. Deep-Sea Research II, 2007, 54, 114~130
    [25] Strzelecki J, Koslow J A, Waite A. Comparison of mesozooplankton communities from a pair of warm and cold core eddies off the coast of Western Australia. Deep-Sea Research II, 2007, 54: 1103~1112
    [26] Vladimir G. Dvoretsky, Alexander G. Dvoretsky. Summer mesozooplankton structure in the Pechora Sea (south-eastern Barents Sea). Estuarine, Coastal and Shelf Science, 2009, 84, 11~20
    [27] Fielding S, Ward P, Pollard R T, Seeyave S, Read J F, Hughes J A, Smith T and Castellani C. Community structure and grazing impact of mesozooplankton during late spring/early summer 2004/2005 in the vicinity of the Crozet Islands (Southern Ocean). Deep-Sea Research II, 2007, 54: 2106~2125
    [28] Keister J E, Peterson W T. Zonal and seasonal variations in zooplankton community structure off the central Oregon coast, 1998-2000. Progress in Oceanography, 2003, 57: 342~361
    [29] Tracy Mc Collin, Aileen M. Shanks and John Dunn. Changes in zooplankton abundance and diversity after ballast water exchange in regional seas Marine Pollution Bulletin. 2008, 56: 834~844
    [30] Kang Y, Kim S and Lee W. Seasonal and spatial variations of zooplankton in the central and southeastern Bering Sea during the mid-1990s. Deep-Sea Research I, 2006, 53: 795~803
    [31] Escribano R, Hidalgo P, González H, Giesecke R, Riquelme-Bugue?o R and Manríquez K.Seasonal and inter-annual variation of mesozooplankton in the coastal upwelling zone off central-southern Chile. Progress in Oceanography, 2007, 75: 470~485.
    [32] Hawkins S J, Southward A J and Genner M J. Detection of environmental change in a marine ecosystem evidence from the western English Channel. The Science of the Total Environment , 2003, 310: 245~256
    [33] Taylor, A H., Allen, J I.and Clark, P A.. Extraction of a weak climatic signal by an ecosystem. Nature, 2002, 416, 629~632
    [34] Mackas D L, Peterson W T and Zamon J E. Comparisons of interannual biomass anomalies of zooplankton communities along the continental margins of British Columbia and Oregon. Deep-Sea Research II, 2004, 51: 875~896
    [35] Fromentin J M and Planque B. Calanus and environment in the eastern North Atlantic: 2. Influence of the North Atlantic Oscillation on C.finmarchicus and C. helgolandicus. Marine ecology progress series, 1996, 134(1~3): 111~118
    [36] Chiba S, Tadokoro K, Sugisaki H, et al.. Effects of decadal climate change on zooplankton over the last 50 years in the western subarctic North Pacific. Global Change Biology, 2006, 12: 907~920
    [37] Southward A J, Hawkins S J and Burrows M T. Seventy years' observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature. J. THERMAL BIOL., 1995, 20(1~2): 127~155
    [38] IPCC, 2007. In: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K B. Tignor M., Miller, H L.(Eds.). Climate Change 2007: The physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
    [39] Caldeira, K. and M. E. Wickett. Oceanography: Anthropogenic carbon and ocean pH. Nature,2003, 425(6956): 365~365
    [40] Gattuso J P., Pichon M., Delesalle B., and Frankignoulle M.. Community metabolism and air-sea CO2 fluxes in a coral reef ecosystem (Moorea, French Polynesia). Mar. Ecol. Prog. Ser,1993, 96, 259~267
    [41] Riebesell U., Zondervan I, Rost B., Tortell P D., Zeebe R E, and Fran?ois M M Morel.. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 2000, 407, 364~367
    [42] Barker S.and Elderfield H.. Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science, 2002, 297: 833~836
    [43] Feely R. A., Sabine C. L., Lee K., Berelson W., Kleypas J. and Fabry V. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 2004, 305, 362~366
    [44] Orr J. C., Fabry V. J., Aumont O., Bopp L., Doney S. C. and Feely R. A., Gnanadesikan A., Gruber N., Ishida A.,Joos F., 2005. Anthrop-ogenic ocean acidification over the twenty first century and its impact on calcifying organisms. Nature, 437, 681~686
    [45] Kurihara H and Ishimatsu A. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Marine Pollution Bulletin, 2008, 56(6): 1086~1090.
    [46] Burns W C G. Anthropogenic carbon dioxide emissions and ocean acidification: The potential impacts on ocean biodiversity. Saving Biological Diversity PartⅢ, 2008: 187~202
    [47] Halpern B S, Walbridge S, Selkoe K A, Kappel C V, Micheli F D, Agrosa C, Bruno J F, Casey K S, Ebert C, Fox H E, Fujita R, Heinemann D, Lenihan H S, Madin E M P, Perry M T, Selig E R, Spalding M, Steneck R and Watson R.. A global map of human impact on marine ecosystems. Science, 2008, 319, 948~952
    [48] Kalma E V. Mathematical model and computer simulation of the population dynamics of zooplankton in lake and eatuary ecosystems. Ecological Modelling, 1978, 5(3): 225~235
    [49] Vladimir G. Dvoretsky, Alexander G. Dvoretsky. Summer mesozooplankton structure in the Pechora Sea (south-eastern Barents Sea). Estuarine, Coastal and Shelf Science, 2009, 48(1): 11~20
    [50] David, V., B. Sautour, et al.. Long-term changes of the zooplankton variability in a turbid environment: The Gironde estuary (France). Estuarine, Coastal and Shelf Science, 2005, 64(2~3): 171~184
    [51] S. Duggan, A. D. McKinnon and J. H. Carleton. Zooplankton In An Australian Tropical Estuary. Estuaries and Coasts, (2008), 31(2): 455~467
    [52] Lam-Hoai T., D. Guiral et al.. Seasonal change of community structure and size spectra of zooplankton in the Kaw River estuary (French Guiana). Estuarine, Coastal and Shelf Science, 2006, 68(1~2): 47~61
    [53] Femando M, Henrique Q, Femando M, et a1.Zooplankton abundance in a coastal station of the Ria de Aveiro inlet (north-western Portuga1): relations with tidal and day/night cycles. Acta Oecologica, 2003, 24: 175~181
    [54] Lougee L A, Bollens S M, Avant S R. The efects of haloclines on the vertical distribution and migration of zooplankton. Journal of Experimental Marine Biology and Ecology, 2002, 278(2): 111~134
    [55] Reaugh M., M. Roman et al..Changes in plankton community structure and function in response to variable freshwater flow in two tributaries of the Chesapeake Bay. Estuaries and Coasts, 2007, 30(3): 403~417
    [56] Primo A. L., U. M. Azeiteiro et al.. Changes in zooplankton diversity and distribution pattern under varying precipitation regimes in a southern temperate estuary. Estuarine, Coastal and Shelf Science, (2009), 82(2): 341~347
    [57] Champalbert G., M. Pagano et al.. Relationships between meso- and macro-zooplankton communities and hydrology in the Senegal River Estuary. Estuarine, Coastal and Shelf Science, 2007, 74(3): 381~394
    [58] Marques S., M. Pardal et al.. Zooplankton distribution and dynamics in a temperate shallow estuary. Hydrobiologia, 2007, 587(1): 213~223
    [59] Elliott D. and R. Kaufmann. Spatial and temporal variability of mesozooplankton and tintinnid ciliates in a seasonally hypersaline estuary. Estuaries and Coasts, 2007, 30(3): 418~430.
    [60] Marques S. C., U. M. Azeiteiro et al.. Climate variability and planktonic communities: The effect of an extreme event (severe drought) in a southern European estuary. Estuarine, Coastal and Shelf Science, 2007, 73(3~4): 725~734.
    [61] Zervoudaki S., T. G. Nielsen, et al.. Seasonal succession and composition of the zooplankton community along an eutrophication and salinity gradient exemplified by Danish waters. J. Plankton Res., 2009, 31(12): 1475~1492
    [62] David V., B. Sautour, et al.. Long-term changes of the zooplankton variability in a turbid environment: The Gironde estuary (France). Estuarine, Coastal and Shelf Science, 2005, 64(2~3): 171~184
    [63] Femando M,Henrique Q, Femando M, et a1.. Zooplankton abundance in a coastal station of the Ria de Aveiro inlet (north-western Portuga1): relations with tidal and day/night cycles. Acta Oecologica, 2003, 24: 175~181
    [64] Hsieh H.L., L. F. Fan, et al.. Effects of semidiurnal tidal circulation on the distribution of holo- and mero-plankton in a subtropical estuary. J. Plankton Res., 2010, 32(6): 829~841
    [65] Modéran J., P. Bouvais, et al.. Zooplankton community structure in a highly turbid environment (Charente estuary, France): Spatio-temporal patterns and environmental control. Estuarine, Coastal and Shelf Science, 2010, 88(2): 219~232
    [66] Bernard A. Megrey, Kenneth A. Rose, Robert A. Klumb, Douglas E. Hay, Francisco E. Werner, David L. Eslinger and S. Lan Smith. A bioenergetics-based population dynamics model of Pacific herring (Clupeaharengus pallasi) coupled to a lower trophic level nutrient-phytoplankton–zooplankton model: Description, calibration, and sensitivity analysis. 2007, 202(1~2): 144~167
    [67] D.P. Swaney D. Scavia, R.W. Howarth and R.M. Marino. Estuarine classification and response to nitrogen loading: Insights from simple ecological models. Estuarine, Coastal and Shelf Science, 2008, 22(7): 253~263
    [68] Herman A W. Simultaneous measurement of zooplankton and light attenuance with a new optical plankton counter. Continental Shelf Research, 1988, 8: 205~221
    [69] Remsen A, Hopkins T L, Sutton T T.What you see is not what you catch:a comparison of concurrently collected net, Optical Plankton Counter and Shadowed Image Particle Profiling Evaluation Recorder data from the northeast Gulf of Mexico. Deep-Sea Res I, 2004, 51: 129~151
    [70] Edvardsen A, Zhou M, Tande K S, et al..Zooplankton population dynamics: Measuring in situ growth and mortality rates using an Optical Plankton Counter. Mar Ecol Prog Ser, 2002, 227: 205~219
    [71] Davis C S, Gallager S M and Solow A. Microaggregations of oceanic plankton observed by towed video microscopy. Science, 1992, 257: 230~232
    [72] Davis C S, Gallager S M, Berman M S, Haury L R and Strickler J R. The Video Plankton Recorder (VPR): design and initial results. Archiv für Hydrobiologie-Beiheft Ergebnisse der Limnologie, 1992, 36: 67~81
    [73] Ashjian C J, Davis C S, Gallagher S M and Alatalo P. Distribution of plankton, particles, and hydrographic features across Georges Bank described using the Video Plankton Recorder. Deep-Sea Research II, 2001, 48: 245~282
    [74] Gallagher S M, Davis C S, Epstein A W, Solow A R and Beardsley R C. High-resolution observations of plankton spatial distributions correlated with hydrography in the Great South Channel, Georges Bank. Deep-Sea Research II, 1996, 43: 1627~1663
    [75] Benfield M C, Lavery A C, Wiebe P H, Greene C H, Stanton T K, Copley N J. Distributions of physonect siphonulae in the Gulf of Maine and their potential as important sources of acoustic scattering. Canadian Journal of Fisheries and Aquatic Sciences, 2003, 60: 759~772
    [76] Thwaites F T, Gallager S M, Davis C S, Bradley A M, Girard A, Paul W. A winch and cable for the autonomous vertically profiling plankton observatory. Oceans 98- Engineering for sustainable use of the oceans: conference proceedings 28 September -1 October 1998, 1: 32~36
    [77] Tarling G A, Matthews J B L, Saborowski R, Buchholz F. Vertical migratory behaviour of the euphausiid, Meganyctiphanes norvegica, and its dispersion in the Kattegat Channel. Developments in Hydrobiology, 1998, 132: 331~341
    [78] Froneman P W. Zooplankton community structure and biomass in a southern African temporarily open/closed estuary. Estuarine, Coastal and Shelf Science, 2004, 60: 125~132
    [79] Beaugrand G, Ibanez F, Lindley J A, Reid P C. Diversity of calanoid copepods in the North Atlantica and adjacent seas: species associations and biogeography. Marine Ecology Progress Series, 2002, 232: 179~195
    [80] Clarke K R, Warwick R M. Change in marine communities: An approach to statistical analysis and inter-pretation (2nd edition). Plymouth: Primer-E, 2001
    [81]戴志军,任杰,周作付.河口定义及分类研究进展.台湾海峡,2000,19(2):254~260
    [82]郭沛涌,沈焕庭.河口浮游植物生态学研究进展.应用生态学报,2003,14(1):139~142
    [83]王金辉,黄秀清,刘阿成,张有份.长江口及邻近海区的生物多样性变化趋势分析.海洋通报,2004,23(1):32~39
    [84]纪焕红,叶属峰.长江口浮游动物生态分布特征及其与环境的关系.海洋科学,2006,30(6):23~30
    [85]郭沛涌,沈焕庭,刘阿成,王金辉,杨元利.长江河口中小型浮游动物数量分布、变动及主要影响因素.生态学报,2008,28(8):3517~3526
    [86]刘光兴,陈洪举,朱延忠,等.三峡工程一期蓄水后长江口及其邻近海区浮游动物的群落结构.中国海洋大学学报,2007,37(5):789~794
    [87]徐兆礼,高倩.长江口海区真刺唇角水蚤的分布及其对全球变暖的响应.应用生态学报,2009,(5):1196~1201
    [88]陈洪举,刘光兴.2006年夏季长江口及其邻近海区浮游动物的群落结构.北京师范大学学报(自然科学版),2009,45(4):393~398
    [89]李开枝,尹健强,黄良民,谭烨辉,许战洲.珠江口浮游动物的群落动态及数量变化.热带海洋学报,2005,24(5):60~68
    [90]李开枝,尹健强,黄良民,宋星宇.珠江口浮游桡足类的生态研究.生态科学,2007a,26(2):97~102
    [91]李开枝,尹健强,黄良民,邱大俊.珠江口浮游幼虫的生态研究.海洋通报报,2007b,26(6):42~47
    [92] Li K Z, Yin J Q, Huang L M, Tan Y H. Spatial and temporal variations of mesozooplankton in the Pearl River estuary, China. Estuarine, Coastal and Shelf Science, 2006, 67: 543~552
    [93]高原,赖子尼,王超,庞世勋,魏泰莉,谢文平,杨婉玲.2006年夏季珠江口浮游动物群落结构特征分析.南方水产,2008,4(1):10~15
    [94]张达娟,闫启仑,王真良.典型河口浮游动物种类数及生物量变化趋势的研究.海洋与湖沼,2008,39(5):536~540
    [95]高原,赖子尼,王超,庞世勋,魏泰莉,杨婉玲,谢文平.珠江口浮游动物分布特征研究.中国水产科学,2008,15(2):260~268
    [96]方宏达,朱艾嘉,董燕红,许战洲,欧强,黄卓轩,刘建益.2005~2006年珠江口浮游动物群落变化研究.台湾海峡,2009,28(1):30~37
    [97]商栩,王桂忠,李少菁.福建九龙江口火腿许水蚤各发育期耐盐能力与生态分布的关系.台湾海峡,2005,24(3):330~338
    [98]林楠,沈长春,钟俊生.九龙江口仔、稚鱼种类组成和季节变化.南方水产,2009,5(4):1~8
    [99]陈雷,徐兆礼,姚炜民,张钊,陈胜,蔡圣伟,鲍旭平.瓯江口春季营养盐、浮游植物和浮游动物的分布.生态学报,2009,29(3):1571~1577
    [100]徐兆礼,陈华,陈庆辉.瓯江口渔场夏秋季浮性鱼卵和仔鱼的时空分布.2008,32(5):733~739
    [101]高倩,徐兆礼.瓯江口海区夏、秋季浮游动物数量时空分布特征.2009,16(3):372~380.
    [102]白雪娥,庄志猛.渤海浮游动物生物量及其主要种类数量变动的研究.海洋水产研究,1991,12:7~92
    [103]孟凡,邱建文,吴宝铃.黄海大海洋生态学的浮游动物.黄渤海海洋,1993,11(3):30~37
    [104]中国海湾志编纂委员会,1998.中国海湾志第十四分册.北京:海洋出版社,66~75
    [105]毕洪生,孙松,高尚武等.渤海浮游动物群落生态特点I.种类组成与群落结构.生态学报,2000,20(5):715~721
    [106]毕洪生,孙松,高尚武等.渤海浮游动物群落生态特点Ⅱ.桡足类数量分布及变动.生态学报,2000,20(2):177~185
    [107]毕洪生,孙松,高尚武等.渤海浮游动物群落生态特点Ⅲ.部分浮游动物数量分布和季节变动.2000,21(4):510~521
    [108]王克,张武昌,王荣等.渤海中南部春秋季浮游动物群落结构.海洋科学集刊,2002,44:34~42
    [109]程济生.黄渤海近岸水域生态环境与生物群落.青岛:中国海洋大学出版社,2004,163~185
    [110]田家怡,李洪彦.黄河口附近海区浮游动物的分布特征及其与环境因子的关系.海洋环境科学,1985,4(32):32~41
    [111]焦玉木,田家怡.黄河口三角洲附近海区浮游动物多样性研究.海洋环境科学,1999,18(4):33~38
    [112]巩俊霞,杨秀兰等.黄河入海口水域春季浮游动物群落特征研究.广东海洋大学学报,2010,30(6):
    [113]马媛.黄河入海径流量变化对河口及邻近海区生态环境影响研究.2006
    [114] Wang Y C, Liu Z, Gao H W, Ju L, Guo X Y. Response of salinity distribution around the Yellow River mouth to abrupt changes in river discharge. Continental Shelf Research, 2011, 31(6): 685~694
    [115]庞家珍,姜明星.黄河河口演变(Ⅰ)—河口水文特征.海洋湖沼通报,2003,3:1~3
    [116] Chen D G, Shen W Q, Liu Q, et al.. The geographical characteristics and fish species diversity in the Laizhou Bay and Yellow River estuary [J]. J Fish Sci Chin, 2000: 7(3):46~52
    [117]邓景耀,金显仕.莱州湾及黄河口水域渔业生物多样性及其保护研究.动物学研究,2002,21(2):76~82
    [118]陈清潮,章淑珍.黄海和东海的浮游桡足类I.哲水蚤目.海洋科学集刊,1965,7:20~131
    [119]陈清潮,章淑珍,朱长寿.黄海和东海的浮游桡足类Ⅱ.剑水蚤目和猛水蚤目.海洋科学集刊,1974,9:27~100
    [120]黄宗国.中国海洋生物种类与分布.北京:海洋出版社,1994.261~629
    [121]孙儒泳.动物生态学原理,第二版.北京:北京师范大学出版社,1992.356~357
    [122]徐兆礼,陈亚瞿.东黄海秋季浮游动物优势种聚集强度与鲐渔场的关系.生态学杂志,1989,8(4):13~15
    [123]赵志模,周新远.生态学引论.科学技术文献出版社重庆分社,1984,108~119
    [124] Lambshead P J D, Platt H M, Shaw K M. The detection of differences among assemblages of marine benthic species based on assessment of dominance and diversity. Journal of Natural History, 1983, 17: 859~874
    [125]郑执中.黄海和东海西部浮游动物群落的结构及其季节变化.海洋与湖沼,1965,7(3):199~204
    [126]萧贻昌.中国动物志无脊椎动物第38卷毛颚动物门箭虫纲.北京:科学出版社,2004
    [127]郑重,郑执中,王荣,林雅蓉,高尚武.烟威鲐鱼渔场及临近水域浮游动物生态的初步研究.海洋与湖沼,1965,7(24):329~354
    [128] Hansen K W. On the diurnal migration of zooplankton in relation to the discontinuity layer. Conseil Perm Inter Exploration Mer, 1951, 17: 231~241
    [129]白雪娥.黄海太平洋磷虾生态的初步研究.中国动物学会30周年学术讨论会,第1分册.科学出版社,1965
    [130]张金标.中国海区水螅水母类区系的初步分析.海洋学报,197,1(1):127~137
    [131]张金标,许振祖.中国海管水母类的地理分布.厦门大学学报,1980,19(3):100~108
    [132]张金标.渤海、黄海、东海海洋图集.北京:海洋出版社,1991.104~106
    [133]马喜平,高尚武.渤海水母类生态的初步研究—种类组成、数量分布与季节变化。生态学报,2000,20(4):533~540
    [134] Matsakis S and Conover R J. Abundance and feeding of medusae and their potential impact as predators on other zooplankton in Bedford Basin(Nova Scotia, Canada)during spring. Can. J. Fish. Aquat. Sci.,1991, 48: 1419~1430
    [135] Mills C E. Medusae, siphonophores and ctenophores as planktivorous predators in changing global ecosystems. ICES J Mar Sci, 1995, 52: 575~581
    [136] Greve W. The 1989 German Bight Invasion of Muggiaea atlantica. ICES J Mar Sci, 1994, 5l(4): 355~358
    [137] Pitt K A, Koop K, Rissik D. Contrasting contributions to inorganic nutrient recycling by the co-occurring jellyfishes, Catostylus mosaicus and Phyllorhiza punctata (Scyphozoa, Rhizostomeae). J Exp Mar Biol Ecol, 2007, 315: 71~86
    [138] Purcell J E. Climate effects on formation of jellyfish and ctenophore blooms: A review. J Mar Biol Assoc UK, 2005, 85: 461~476
    [139] Purcell J E, Uye S, Lo W T. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser, 2007, 350: 153~174
    [140]夏斌,张晓理,崔毅,陈碧鹃等.夏季莱州湾及附近水域理化环境及营养现状评价,渔业科学进展,2009,30(3):103~111
    [141]孙丕喜,王波,张朝晖,王宗灵,夏滨.莱州湾海水中营养盐分布与富营养化的关系。海洋科学进展,2006,24(3):329~335
    [142]陈小庆,陈斌,黄备,王婕妤等.夏季舟山渔场及邻近海域浮游动物群落结构特征分析.动物学研究,2010,31(1):99~107
    [143]高倩,徐兆礼.瓯江口夏、秋季浮游动物种类组成及其多样性.生态学杂志,2009,28(10):2048~2055
    [144]徐兆礼,沈新强,马胜伟.春、夏季长江口邻近水域浮游动物优势种的生态特征.海洋科学,2005,29(12):13~19
    [145]朱兰部,赵保仁,刘克修.黄河冲淡水转向问题的初步探讨.海洋科学集刊,1997,38:61~66
    [146]常军,刘高焕,刘庆生.黄河口海岸线演变时空特征及其与黄河来水来沙的关系.地理研究,2004,23(5):339~346
    [147]李凡,张秀荣.黄河入海水、沙通量变化对黄河口及邻近海域环境资源可持续利用的影响Ⅰ.黄河入海流量锐减和断流的成因及其发展趋势.海洋科学集刊,2001,43:51~59
    [148]吴德星,牟林,李强,鲍献文,万修全.渤海盐度长期变化特征及可能的主导因素.自然科学进展,14(2):191~195
    [149]朱鑫华,缪锋,刘栋,等.黄河口及邻近海域鱼类群落时空格局与优势种特征研究.海洋科学集刊,2001,43:141~150
    [150]崔毅,马绍赛,李云平,等.莱州湾污染及其对渔业资源的影响.海洋水产研究,2003,24(1):35~41
    [151]孙丕喜,王波,张朝晖,王宗灵,夏滨.莱州湾海水中营养盐分布与富营养化的关系.海洋科学进展,2006,24(3):329~335
    [152] Souissi S, Ibanez F, Ben Hamadou R, Boucher J, Cathelineau A C, Blanchard F, Poulard J D. A new multivariate mapping method for studying species assemblages and their habitats: example using bottom trawl surveys in the Bay of Biscay (France). Sarsia, 2001, 86: 527~542
    [153] Field J G, Clarke K R, Warwick R M. A practical strategy for analysis multispecies distribution patterns. Marine Ecology Progress Series, 1982, 8(1): 37~52
    [154] Kruskal J B. Multidimensional scaling by optimizing goodness of fit to a non-metric hypothesis. Psychometrika, 1964, 29(1): 1~27
    [155] Clarke K R, Green R H. Statistical design and analysis for a‘biological effect’study. Marine Ecology Progress Series, 1988, 46: 213~226
    [156] Shannon C E and Wiener W. The mathematical theory of communication. Urbana, IL.: The University of Illinois Press, 1949: 125
    [157]陈清潮,陈亚瞿,胡雅竹.南黄海和东海浮游生物群落的初步探讨.海洋学报,1980,2(2):149~157
    [158]赵进平,侍茂崇,李诗新.低盐区及低盐区的盐度特征.海洋科学集刊,1998,40,249~259
    [159]侍茂崇,赵进平,孙月彦.黄河口附近水文特征分析.山东海洋学院学报,1985,15(2),81~95
    [160]李泽刚.黄河口附近海区水文要素基本特征.黄渤海海洋,2000,18(3):1~6
    [161]朱兰部,张法高.1989年夏季黄河口及其附近海域某些自然环境特征及水型分布.海洋科学集刊,1994,35:23~31
    [162]朱兰部,赵保仁,刘克修.黄河冲淡水转向问题的初步探讨.海洋科学集刊,1997,38:61~67
    [163]黄大吉,苏纪兰.黄河三角洲岸线变迁对莱州湾流场和对虾早期栖息地的影响.海洋学报,2002,24(6):104~111
    [164]徐兆礼.长江口邻近水域浮游动物群落特征及变动趋势.2005,24(7):780~784

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700