猪圆环病毒2型感染诱导PK-15细胞自噬机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪圆环病毒2型(Porcine circovirus type2, PCV2)是圆环病毒科的成员,基因组为1768nt或1767nt,有3个ORFS。ORF1编码复制蛋白Rep, ORF2编码有免疫原性的衣壳蛋白Cap, ORF3编码蛋白可诱导凋亡。PCV2对猪的致病性主要表现为免疫系统损伤,可以引起淋巴结肿大、淋巴细胞减少等病变,使感染猪处于免疫抑制状态,与断奶仔猪多系统衰竭综合征(postweaning multisystemic wasting syndrome, PMWS)的发生密切相关,给养猪业造成巨大经济损失。
     尽管PCV2感染后淋巴细胞减少甚至消失的机制尚有争论,但研究表明淋巴样组织被组织细胞取代可能与PCV2诱导凋亡有关。自噬在病毒感染过程中起重要的作用,一方面,自噬可通过降解病毒成分递呈抗原,激活先天免疫,从而达到清除病毒的目的;另一方面,病毒也演变机制逃逸自噬的清除,维持自身存活和复制。研究表明,自噬和凋亡过程可相互调节,凋亡可能和自噬共存在或两者之间存在着一种相互转换关系影响了病毒的感染过程。我们推测PCV2感染可能通过自噬途径导致细胞凋亡,从而引起组织病理学变化和免疫系统损伤。但有关PCV2诱导上述细胞反应及PCV2感染淋巴组织的病理学机制还有待深入研究。
     本研究旨在探明(1)PCV2感染和细胞自噬之间的关系,影响自噬的关键病毒蛋白;(2)自噬对病毒复制的影响;(3)PCV2引起细胞自噬的信号传导途径及其关键信号分子。
     1. PCV2感染PK-15细胞后,通过激光共聚焦、免疫印迹和电镜技术分析PCV2与自噬之间的关系。结果表明,与未感染细胞相比,PCV2感染可诱导细胞中eGFP-LC3点的聚集(代表自噬囊泡)(4.33vs27.51, P<0.01).提高了LC3-II/B-actin的比率(24h:1.00vs2.97, P<0.05;36h:1.29vs4.11, P<0.01),电镜结果也表明PCV2感染可诱导自噬泡的形成,说明PCV2感染可诱导PK-15细胞自噬。PCV2感染导致p62蛋白的降解,且在自噬溶酶体抑制剂氯喹存在的情况下,p62和LC3-Ⅱ蛋白水平显著高于(p62:0.83vs1.87,P<0.05;LC3-Ⅱ:2.02vs6.97,P<0.05)未处理组,说明PCV2感染加速了自噬底物的降解。LysoTracker或LAMP1和LC3共定位试验发现,PCV2感染促进了两者的共定位,说明PCV2感染诱导自噬溶酶体的形成,即诱导了完整自噬反应。利用病毒编码蛋白和截短表达载体转染PK-15细胞,激光共聚焦和免疫印迹结果表明,PCV2Cap蛋白能诱导自噬,并且其90-233位氨基酸是诱导自噬的关键区域。
     2.用不同自噬阶段的抑制剂或诱导剂研究自噬过程对PCV2复制和Cap蛋白表达的影响。荧光定量和TCID50结果表明,不同自噬阶段的抑制剂抑制自噬后均显著降低了PCV2的复制(荧光定量:3-甲基腺嘌呤(3-MA):71.51vs8.96,P<0.01;氯喹(CQ):71.51vs2.74, P<0.001; siAtg5:14.78vs6.24, P<0..05; TCID50:3-MA:4.66vs3.69, P<0.01; CQ:4.66vs3.56, P<0.01; siAtg5:4.2vs3.3, P<0.05)和Cap蛋白的表达;相反,自噬的诱导增强了PCV2的复制(荧光定量:雷帕霉素(Rapamycin):3.52vs23.19, P<0.05;饥饿培养基(EBSS):3.52vs130.65, P<0.05; TCID50:Rapamycin:4.66vs5.09, P<0.05; EBSS:4.66vs5.13, P<0.05)和Cap蛋白的表达,说明自噬有利于PCV2复制。
     3.许多信号通路能调节自噬过程。哺乳动物雷帕霉素靶蛋白(mTOR)是调节自噬最主要的蛋白,许多激酶,诸如:AMP激活蛋白激酶(AMPK)、胞外信号调节因子(ERK1/2)、肿瘤结节蛋白(TSC2)等是mTOR的上游调节因子。利用免疫印迹、免疫共沉淀和激光共聚焦技术分析PCV2感染诱导自噬形成的机制。结果表明,PCV2感染抑制mTOR并激活ERK1/2途径;UO126或siERK1/2处理PK-15细胞下调ERK1/2,可恢复mTOR的磷酸化水平,抑制自噬。此外,compound C (AMPK抑制剂)处理抑制了ERK1/2、TSC2的磷酸化水平和LC3-Ⅱ蛋白水平,但恢复了mTOR的磷酸化水平;UO126处理也抑制TSC2的磷酸化水平,但并没有抑制AMPK的磷酸化水平。siTSC2处理没有抑制AMPK和ERK1/2的磷酸化水平,但恢复了mTOR的磷酸化水平,抑制自噬。共免疫沉淀结果表明,ERK1/2-AMPK、ERK1/2-TSC2是互作的。以上研究结果表明,PCV2感染可通过AMPK/ERK/TSC2/mTOR信号途径激活自噬,为进一步研究PCV2的感染特性以及致病机制提供了重要的理论基础。
     综上所述,本研究阐明了(1)PCV2感染诱导PK-15细胞自噬,且Cap蛋白的90-233位氨基酸是诱导自噬的关键区域;(2)自噬过程有利于PCV2复制;(3)PCV2可通过AMPK/ERK/TSC2/mTOR信号途径激活自噬。研究结果为深入研究PCV2的致病机制、探寻抗PCV2药物筛选的靶标奠定基础。
Porcine circovirus type2(PCV2), a member of the genus Circovirus of the Circoviridae family, is a small DNA virus with single-stranded circular genome (1767or1768bp in length). Three major open reading frames (ORFs) have been identified for PCV2, ORF1, named the rep gene, encodes a protein involved in virus replication, ORF2, named the cap gene, encodes a immunogenic capsid protein, and the third protein encoded by ORF3is associated with cell apoptosis. PCV2can affect the immune system of pig and induce the immune suppression. The affected pigs show lymphadenectasis and lymphocytopenia, which is closely associated with postweaning multisystemic wasting syndrome (PMWS). Now, PMWS incurs great economic loss to the pig industry and restricts seriously the development of pig industry.
     Histopathologic lesion caused by PCV2infection is lymphoid follicles disappearance in lymphatic organization, however, recent study have showed that lymphoid tissue was replaced by histiocyte which may related to PCV2-induced apoptosis. On one hand, autophagy plays a key role in antiviral infections by degradation of viral components, presenting viral antigens, activating the immune response, on the other hand, the viruses can also escape the protective antiviral activity and maintain their own survival and replication by inducing autophagy of the host cells. A number of papers suggest that autophagy and apoptosis are co-adjust each other, and autophagy is prior to apoptosis. We speculate whether autophagy triggers apoptosis involved in PCV2infection. However, it remains largely unknown on the mechanisms of PCV2-induced lymphoid depletion in affected pigs.
     This study was in an attempt to clarify (1) Interactions between PCV2infection and autophagy,(2) The effect of autophagy on the viral replication,(3) The signaling pathway and key signaling molecules involved in PCV2-induced autophagy.
     1. We analyzed the relationship between PCV2infection and autophagy through the laser confocal microscope, immunoblotting and electron microscopy in PCV2-infected PK-15cells. Results showed that eGFP-LC3protein was able to aggregate to form puncta in autophagy-induced cells and it was found that more puncta appeared in PCV2-infected cells (4.33vs27.51, P<0.01) than in mock cells. The ratio of LC3-Ⅱ/β-actin evidently increased (24h:1.00vs2.97, P<0.05;36h:1.29vs4.11, P<0.01) in PCV2-infected cells compared to mock-treated cells. Transmission electron microscope showed that compared with mock cells, in which autophagic vacuoles were rarely seen, accrual of0.5-1.0μm double-membrane vacuoles in virus-infected cells were observed. PCV2infection caused p62protein degradation, and p62and LC3-Ⅱ protein level treated with autolysosome inhibitors chloroquine were significantly higher than that of untreated group (p62:0.83vs1.87, P<0.05; LC3-II:2.02vs6.97, P<0.05), suggesting PCV2infection accelerated the autophagy substrate degradation. Besides enhancement of colocalization of LysoTracker or LAMP1with LC3suggested induction of autolysosome formation after PCV2infection, suggesting the complete autophagy reaction. PK-15cells were transfected with vectors expressed Cap or the truncated Cap, results showed that the capsid protein could induce autophagosome formation, and amino acids90-233was the key area that induced autophagy.
     2. We treated PK-15cells with different autophagy inhibitors or inducers, and analyzed them effect on progeny virus yield and capsid protein expression. The results from real-time PCR and TCID50showed that autophagy inhibitors significantly weakened the PCV2titer (real-time PCR:3-methyladenine (3-MA):71.51vs8.96, P<0.01; chloroquine (CQ):71.51vs2.74, P<0.001; TCID50:3-MA:4.66vs3.69, P<0.01; CQ:4.66vs3.56, P<0.01) and Cap protein expression. Autophagy induction increased PCV2titer (real-time PCR:Rapamycin:3.52vs23.19, P<0.05; Earle's balanced salts (EBSS):3.52vs130.65,P<0.05; TCID50:Rapa:4.66vs5.09, P<0.05; EBSS:4.66vs5.13, P<0.05) and Cap protein expression. These results indicate that autophagy could facilitate virus replication.
     3. A number of signaling pathways have been reported in regulation of autophagy. The mammalian target of rapamycin (mTOR) pathway is a well-known pathways involved in the regulation of autophagy. AMPK (AMP-activated protein kinase), ERK1/2(the extracellular signal-regulated kinase1/2) and TSC2(tuberous sclerosis protein2) lie on the upstream of mTOR. We analyzed the mechanism PCV2-induced autophagy by Immunoblotting, co-immunoprecipitation and confocal microscopy. Results showed that PCV2infection inhibited mTOR and activated ERK1/2. UO126or siERK1/2down-regulated ERK1/2, recovered the phosphorylation levels of mTOR and inhibited autophagy. Besides, compound C (AMPK inhibitor) reduces ERK1/2and TSC2activity, but also recovers the expression of mTOR, thereby inhibiting autophagy in PCV2-infected PK-15cells. UO126down-regulated the phosphorylation levels of TSC2, but not inhibited AMPK activation. Knockdown of TSC2didn't inhibit AMPK and ERK1/2activation, but recovered the phosphorylation of mTOR and down-regulated LC3lipidation (LC3-Ⅱ). Co-immunoprecipitation results suggest that activated ERK1/2interacts with activated AMPK and TSC2. Taken together, these results suggest that PCV2might induce autophagy via AMPK/ERK/TSC2/mTOR signaling pathway in host cells, which may thus represent a pivotal mechanism for PCV2persistence and pathogenesis.
     In conclusion, this study demonstrated that (1) PCV2infection induced autophagy in PK-15cells, and the viral capsid protein induces formation of autophagosomes, and amino acids90-233is a key site that induces autophagy,(2) Autophagy could facilitate virus replication,(3) PCV2might induce autophagy via AMPK/ERK/TSC2/mTOR signaling pathway in host cells. The achieved findings will help better understanding the pathogenesis of PCV2infections and provide clues to targets for screening novel antiviral chemicals.
引文
[1]Tischer I, Gelderblom H, Vettermann W, et al. A very small porcine virus with circular single-stranded DNA. Nature 1982,295:64-66.
    [2]Tischer I, Rasch R, Tochtermann G. Characterization of papovavirus-and picornavirus-like particles in permanent pig kidney cell lines. Zentralbl Bakteriol.1974,226:153-167.
    [3]Allan GM, McNeilly F, Cassidy JP, et al. Pathogenesis of porcine circovirus; experimental infections of colostrum deprived piglets and examination of pig foetal material. Vet. Microbiol.1995,44:49-64.
    [4]Allan GM, McNeilly F, Kennedy S, et al. Isolation of porcine circovirus-like viruses from pigs with a wasting disease in the USA and Europe. J. Vet. Diagn. Invest.1998,10:3-10.
    [5]Hamel AL, Lin LL, Naya GP. Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. J. Virol.1998,72:5262-5267.
    [6]O'Dea MA, Hughes AP, Davies LJ, et al. Thermal stability of porcine circovirus type 2 in cell culture. J. Virol. Methods 2008,147:61-66.
    [7]Mankertz A, Domingo M, Folch JM, et al. Characterisation of PCV-2 isolates from Spain, Germany and France. Virus Res.2000,66:65-77.
    [8]Mankertz A, Caliskan R, Hattermann K, et al. Molecular biology of Porcine circovirus: analyses of gene expression and viral replication. Vet. Microbiol.2004,98:81-88.
    [9]Nawagitgul P, Morozov I, Bolin SR, et al. Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J. Gen. Virol.2000,81:2281-2287.
    [10]Liu J, Chen I, Kwang J. Characterization of a previously unidentified viral protein in porcine circovirus type 2-infected cells and its role in virus-induced apoptosis. J. Virol.2005, 79:8262-8274.
    [11]Finsterbusch T, Steinfeldt T, Caliskan R, et al. Analysis of the subcellular localization of the proteins Rep, Rep' and Cap of porcine circovirus type 1. Virology 2005,343:36-46.
    [12]Vega-Rocha S, Byeon IJ, Gronenborn B, et al. Solution structure, divalent metal and DNA binding of the endonuclease domain from the replication initiation protein from porcine circovirus 2. J. Mol. Biol.2007,367:473-487.
    [13]Zhang X, Zhou J, Wu Y, et al. Differential proteome analysis of host cells infected with porcine circovirus type 2. J. Proteome Res.2009,8:5111-5119.
    [14]Meng T, Jia Q, Liu S, et al. Characterization and epitope mapping of monoclonal antibodies recognizing N-terminus of Rep of porcine circovirus type 2. J. Virol. Methods 2010, 165:222-229.
    [15]Becskei Z, Aleksic-Kovacevic S, Rusvai M, et al. Distribution of porcine circovirus 2 cap antigen in the lymphoid tissue of pigs affected by postweaning multisystemic wasting syndrome. Acta Vet. Hung 2010,58:483-498.
    [16]Fenaux M, Opriessnig T, Halbur PG, et al. A chimeric porcine circovirus (PCV) with the immunogenic capsid gene of the pathogenic PCV type 2 (PCV2) cloned into the genomic backbone of the nonpathogenic PCV1 induces protective immunity against PCV2 infection in pigs. J. Virol.2004,78:6297-6303.
    [17]Fenaux M, Opriessnig T, Halbur PG, et al. Two amino acid mutations in the capsid protein of type 2 porcine circovirus (PCV2) enhanced PCV2 replication in vitro and attenuated the virus in vivo. J. Virol.2004,78:13440-13446.
    [18]Lekcharoensuk P, Morozov I, Paul PS, et al. Epitope mapping of the major capsid protein of type 2 porcine circovirus by using chimeric PCV1 and PCV2. J. Virol.2004,78:8135-8145.
    [19]Lefebvre DJ, Costers S, Van Doorsselaere J, et al. Antigenic differences among porcine circovirus type 2 strains, as demonstrated by the use of monoclonal antibodies. J. Gen. Virol, 2008,89:177-187.
    [20]Shang SB, Jin YL, Jiang XT, et al. Fine mapping of antigenic epitopes on capsid proteins of porcine circovirus, and antigenic phenotype of porcine circovirus type 2. Mol. Immunol. 2009,46:27-34.
    [21]Beach NM, Smith SM, Ramamoorthy S, et al. Chimeric porcine circoviruses (PCV) containing amino acid epitope tags in the C-terminus of the capsid gene are infectious and elicit both anti-epitope tag antibodies and anti-PCV2 neutralizing antibodies in pigs. J. Virol. 2011,85:4591-4595.
    [22]Cheung AK, Greenlee JJ. Identification of an amino acid domain encoded by the capsid gene of porcine circovirus type 2 that modulates intracellular viral protein distribution during replication. Virus Res.2011,155:358-362.
    [23]Yin S, Sun S, Yang S, et al. Self-assembly of virus-like particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli. Virol. J.2010,7:1-5.
    [24]Liu J, Chen I, Du Q, et al. The ORF3 protein of porcine circovirus type 2 is involved in viral pathogenesis in vivo. J. Virol.2006,80:5065-5073.
    [25]Liu J, Zhu Y, Chen I, et al. ORF3 Protein of Porcine Circovirus Type 2 Interacts with Porcine Ubiquitin E3 Ligase Pirh2 and Facilitates p53 Expression in Viral Infection. J. Virol.2007, 81:9560-9567.
    [26]Karuppannan AK, Jong MH, Lee SH, et al. Attenuation of porcine circovirus 2 in SPF piglets by abrogation of ORF3 function. Virology 2009,383:338-347.
    [27]Juhan NM, LeRoith T, Opriessnig T, et al. The open reading frame 3 (ORF3) of porcine circovirus type 2 (PCV2) is dispensable for virus infection but evidence of reduced pathogenicity is limited in pigs infected by a ORF3-null PCV2 mutant. Virus Res.2010, 147:60-66.
    [28]Chaiyakul M, Hsu K, Dardari R, et al. Cytotoxicity of ORF3 proteins from a nonpathogenic and a pathogenic porcine circovirus. J. Virol.2010,84:11440-11447.
    [29]Grau-Roma L, Fraile L, Segales J. Recent advances in the epidemiology, diagnosis and control of diseases caused by porcine circovirus type 2. Vet. J.2011,187:23-32.
    [30]Edwards S, Sands JJ. Evidence of circovirus infection in British pigs. Vet. Rec.1994, 134:680-681.
    [31]Wellenberg GJ, Stockhofe-Zurwieden N, Boersma WJ, et al. The presence of co-infections in pigs with clinical signs of PMWS in The Netherlands:a case-control study. Res. Vet. Sci. 2004,77:177-184.
    [32]Rodri'guez-Arrioja GM, Segales J, Rosell C, et al. Retrospective study on porcine circovirus type 2 infection in pigs from 1985 to 1997 in Spain. J. Vet. Med. B Infect Dis. Vet. Public Hoelth 2003,50:99-101.
    [33]Lang HW, Zhang GC, Wu FQ, et al. Detection of serum antibody against Postweaning Multisystemic Wasting Syndrome in pigs. Chinese. J. Vet. Sci. Technol.2000,30:3-5.
    [34]王忠田,杨汉春,郭鑫.规模化猪场猪圆环病毒2型感染的流行病学调查.中国兽医杂志,2002,38:3-6.
    [35]Zhou JY, Chen QX, Ye JX, et al. Serological investigation and genomic characterization of PCV2 isolates from different geographic regions of Zhejiang province in China. Vet. Res. Commun.2006,30:205-220.
    [36]Shuai JB, Wei W, Li XL, et al. Genetic characterization of porcine circovirus type 2 (PCV2) from pigs in high-seroprevalence areas in southeastern China. Virus Genes 2007,35:619-627.
    [37]Li W, Wang X, Ma T, et al. Genetic analysis of porcine circovirus type 2 (PCV2) strains isolated between 2001 and 2009:genotype PCV2b predominate in postweaning multisystemic wasting syndrome occurrences in eastern China. Virus Genes 2010,40: 244-251.
    [38]舒相华,尹革芬,李文贵,等.云南地区部分猪场猪呼吸道疾病综合征致病病毒感染的流行病调查.畜牧与兽医,2010,42:75-79.
    [39]Cheung AK, Lager KM, Kohutyuk OI, et al. Detection of two porcine circovirus 2 genotypic groups in United States swine herds. Arch. Virol.2007,152:1035-1044.
    [40]Gauger PC, Lager M, Vincent AL. Postweaning multisystemic wasting syndrome produced in gnotobiotic pigs following exposure to various amounts of porcine circovirus type 2a or type 2b. Vet. Microbiol.2011,153:229-239.
    [41]Olvera A, Cortey M, Segales J. Molecular evolution of porcine circovims type 2 genomes: phylogeny and clonality. Virology 2007,357:175-185.
    [42]Cortey M, Olvera A, Grau-Roma L, et al. PCV2 genotype definition and nomenclature. Vet. Rec.2008,162:867-868.
    [43]Grau-Roma L, Crisci E, Sibila M, et al. A proposal on PCV2 genotype definition and their relation with PMWS occurrence. Vet. Microbiol.2008,128:23-35.
    [44]Dupont K, Nielsen EO, Baekbo P, et al. Genomic analysis of PCV2 isolates from Danish archives and a current PMWS case-control study supports a shift in genotypes with time. Vet. Microbiol.2008,1280:56-64.
    [45]Opriessnig T, McKeown NE, Zhou EM, et al. Genetic and experimental comparison of porcine circevirus type 2 (PCV2) isolates from cases with and without PCV2-associated lesions provides evidence for differences in virulence. J. Gen. Virol.2006,87:2923-2932.
    [46]Hesse R, Kerrigan M, Rowland RR. Evidence for recombination between PCV2a and PCV2b in the field. Virus Res.2008,132:201-207.
    [47]Beach NM, Ramamoorthy S, Opriessnig T, et al. Novel chimeric porcine circovirus (PCV) with the capsid gene of the emerging PCV2b subtype cloned in the genomic backbone of the non-pathogenic PCV1 is attenuated in vivo and induces protective and cross-protective immunity against PCV2b and PCV2a subtypes in pigs. Vaccine 2010,29:221-232.
    [48]Grau-Roma L, Crisci E, Sibila M, et al. A proposal on porcine circovirus type 2 (PCV2) genotype definition and their relation with postweaning multisystemic wasting syndrome (PMWS) occurrence. Vet. Microbiol.2008,128:23-35.
    [49]李文洁,李文涛,严伟东,等.中国部分地区专员病毒2型基因型分析.畜牧兽医学报,2009,40:1358-1362.
    [50]Wen LB, Guo X, Yang HC. Genotyping of porcine circovirus type 2 from a variety of clinical conditions in China. Vet. Microbiol.2005,110:141-146.
    [51]Wang F, Guo X, Ge X, et al. Genetic variation analysis of Chinese strains of porcine circovirus type 2. Virus Res.2009,145:151-156.
    [52]Cortey M, Olvera A. Further comments on porcine circovirus type 2 (PCV2) genotype definition and nomenclature. Vet. Microbiol.2011,149:522-523.
    [53]Shen HG, Halbur PG, Opriessnig T. Prevalence and phylogenetic analysis of the current PCV2 genotypes after implementation of widespread vaccination programs in the United States. J. Gen. Virol.2012,93(Pt6):1345-1355.
    [54]Nayar GP, Hamel AL, Lin L, et al. Evidence for circovirus in cattle with respiratory disease and from aborted bovine fetuses. Can. Vet. J.1999,40:277-278.
    [55]Arteaga-Troncoso G, Guerra-Infante F, Rosales-Montano LM, et al. Ultrastructural alterations in human blood leukocytes induced by porcine circovirus type 1 infection. Xenotransplantation 2005,12:465-472.
    [56]Li J, Yuan XY, Zhang CF, et al. A mouse model to study infection against porcine circovirus type 2:viral distribution and lesions in mouse. Virol. J.2010,7:158.
    [57]Fu F, Li X, Lang Y, et al. Co-expression of Ubiquitin and capsid protein gene enhances the potency of DNA immunization of PCV2 in mice. Virol. J.2011,8:246.
    [58]Opriessnig T, Patterson AR, et al. Limited susceptibility of three different mouse (Mus musculus) lines to porcine circovirus-2 infection and associated lesions. The Canadian Journal of Veterinary Research,2009,73:81-86.
    [59]苗岚飞,崔尚金,张超范.猪圆环病毒2型感染昆明小鼠模型的建立.中国兽医科学,2008,38:475-478.
    [60]罗玉均,张桂红,陈建红.猪圆环病毒2型对BALB/c小鼠的感染试验研究.黑龙江畜牧兽医,2008,10:55-57.
    [61]Patterson AR, Madson DM, Halbur PG, Opriessnig T. Shedding and infection dynamics of porcine circovirus type 2 (PCV2) after natural exposure. Vet. Microbiol.2010,149:225-229.
    [62]Madson DM. Infectivity of porcine circovirus type 2 DNA in semen from experimentally-infected boars. Vet Res.2009,40:10.
    [63]Shibata I, Okuda Y, Yazawa S, et al. PCR detection of Porcine circovirus type 2 DNA in whole blood, serum, oropharyngeal swab, nasal swab, and feces from experimentally infected pigs and field cases. J. Vet. Med. Sci.2003,65:405-408.
    [64]Park JS, Ha Y, Kwon B, et al. Detection of porcine circovirus 2 in mammary and other tissues from experimentally infected sows. J. Comp. Pathol.2009,140:208-211.
    [65]Bogdan J, West K, Clark E, et al. Association of porcine circovirus 2 with reproductive failure in pigs:a retrospective study,1995-1998. Can. Vet. J.2001,42:548-550.
    [66]Kim J, Jung K, Chae C. Prevalence of porcine circovirus type 2 in aborted fetuses and stillborn piglets. Ve.t Rec.2004,155:489-492.
    [67]Park JS, Kim J, Ha Y, et al. Birth abnormalities in pregnant sows infected intranasally with porcine circovirus 2. J. Com.p Pathol.2005,132:139-144.
    [68]Maldonado J, Segales J, Martinez-Puig D, et al. Identification of viral pathogens in aborted fetuses and stillborn piglets from cases of swine reproductive failure in Spain. Vet. J.2005, 169:454-456.
    [69]Chang HW, Jeng CR, Liu JJ, et al. Reduction of porcine reproductive and respiratory syndrome virus (PRRSV) infection in swine alveolar macrophages by porcine circovirus 2 (PCV2) induced interferon-alpha. Vet. Microbiol.2005,108:167-177.
    [70]Segales J, Allan GM, Domingo M. Porcine circovirus diseases. Anim. Health Res. Rev.2005, 6:119-142.
    [71]Darwich L, Mateu E. Immunology of porcine circovirus type 2 (PCV2). Virus Res.2012, 164:61-67.
    [72]Finsterbusch T, Steinfeldt T, Doberstein K, et al. Interaction of the replication proteins and the capsid protein of porcine circovirus type 1 and 2 with host proteins. Virology 2009, 386:122-131.
    [73]Chang HW, et al. The involvement of Fas/FasL interaction in porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus co-inoculation- associated lymphocyte apoptosis in vitro. Vet. Microbiol.2007,122:72-82.
    [74]Sinha A, Jeng CR, Liu CM, et al. Singular PCV2a or PCV2b infection results in apoptosis of hepatocytes in clinically affected gnotobiotic pigs. Re.s Vet. Sci.2012,92:151-156.
    [75]Mandrioli L, Sarli G, Panarese S, et al. Apoptosis and proliferative activity in lymph node reaction in postweaning multisystemic wasting syndrome (PMWS). Vet. Immunol. Immunopathol.2004,97:25-37.
    [76]Vincent IE, Carrasco CP, Hermann B, et al. Dendritic cells harbor infectious porcine circovirus type 2 in the absence of apparent cell modulation or replication of the virus. J. Virol.2003,77:13288-13300.
    [77]Yu S, Halbyr PG, Thacker E. Effect of porcine circovirus type 2 infection and replication on activated porcine peripheral blood mononuclear cells in vitro. Vet. Immunol. Immunopathol. 2009,127:350-356.
    [78]Lin CM, Jeng CR, Hsiao SH, et al. Immunopathological characterization of porcine circovirus type 2 infection-associated follicular changes in inguinal lymph nodes using high-throughput tissue microarray. Vet. Microbiol.2011,149:72-84.
    [79]Balmelli C, Steiner E, Moulin H, et al. Porcine circovirus type 2 DNA influences cytoskeleton rearrangements in plasmacytoid and monocyte-derived dendritic cells. Immunology 2011,132:57-65.
    [80]Ge X, Wang F, Guo X, et al. Porcine circovirus type 2 and its associated diseases in China. Virus Res.2012,164:100-106.
    [81]Opriessnig T, Gauger PC, Faaberg KS, et al. Effect of porcine circovirus type 2a or 2b on infection kinetics and pathogenicity of two genetically divergent strains of porcine reproductive and respiratory syndrome virus in the conventiona pig model. Vet. Microbiol. 2012, doi:10.1016/j.vetmic.2012.02.010.
    [82]Opriessnig T, Fenaux M, Yu S, et al. Effect of porcine parvovirus vaccination on the development of PMWS in segregated early weaned pigs coinfected with type 2 porcine circovirus and porcine parvovirus. Vet. Microbiol.2004,98:209-220.
    [83]Wei H, Lenz SD, Van Alstine WG, et al. Infection of Cesarean-Derived Colostrum-Deprived Pigs with Porcine Circovirus Type 2 and Swine Influenza Virus. Comp. Med.2010,60:45-50.
    [84]Pallares FJ, Halbur PG, Opriessnig T, et al. Porcine circovirus type 2 (PCV-2) coinfections in US field cases of postweaning multisystemic wasting syndrome (PMWS). J. Vet. Diagn. Invest.2002,14:515-519.
    [85]Pogranichniy RM, Yoon KJ, Harms PA, et al. Case-control study on the association of porcine circovirus type 2 and other swine viral pathogens with postweaning multisystemic wasting syndrome. J. Vet. Diagn. Invest.2002,14:449-456.
    [86]Opriessnig T, Yu S, Gallup, JM, et al. Effect of vaccination with selective bacterins on conventional pigs infected with porcine circovirus 2. Vet. Pathol.2003,40:521-529.
    [87]Kawashima K, Tsunemitsu H, Horino R, et al. Effects of dexamethasone on the pathogenesis of porcine circovirus type 2 infection in piglets. J. Comp. Pathol.2003,109:294-302.
    [88]Krakowka S, Ellis J, McNeilly F, et al. Mycoplasma hyopneumoniae bacterins and porcine circovirus type 2 (PCV2) infection:induction of postweaning multisystemic wasting syndrome (PMWS) in the gnotobiotic swine model of PCV2-associated disease. Can. Vet. J. 2007,48:716-724.
    [89]Kyriakis SC, Saoulidis K, Lekkas S, et al. The effects of immuno-modulation on the clinical and pathological expression of postweaning multisystemic wasting syndrome. J. Comp. Pathol.2002,126:38-46.
    [90]Allan GM, Caprioli A, McNair I, et al. Porcine circovirus 2 replication in colostrum-deprived piglets following experimental infection and immune stimulation using a modified live vaccine against porcine respiratory and reproductive syndrome virus. Zoonoses Public Health 2007,54:214-222.
    [91]Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008,132:27-42.
    [92]Munz C. Antigen processing via autophagy-not only for MHC class Ⅱ presentation anymore? Curr. Opin. Immunol.2010,22:89-93.
    [92]Rubinsztein DC. The roles of intracellular protein degradation pathways in neurodegeneration. Nature 2006,443:780-786.
    [93]Moreau K, Luo S, Rubinsztein DC. Cytoprotective roles for autophagy. Curr. Opin. Cell Biol. 2010,22:206-211.
    [94]Reggiori F, KliunskyDJ. Autophagy in the eukaryotic cell. Eukaryot Cell 2002,1:11.
    [95]Qim ZH, Gu ZL. Huntingtin processing in pathogenesm of Huntington disease. Acta Pharmacol. Sin.2004,25:1243.
    [96]Jia K, Thomas C, Akbar M, et al. Autophagy genes protect against Salmonella typhimurium and mediate insulin signalingregulated pathogen resistance. Proc. Natl. Acad. Sci. U. S. A. 2009,106:14564-14569.
    [97]Subauste CS, Andrade RM, Wessendarp M. CD40-TRAF6 and autophagy-dependent anti-microbia activity in macrophages. Autophagy 2007,3:245-248.
    [98]Nicholas SH, Randall G. Dengue Virus-Induced Autophagy Regulates Lipid Metabolism. Cell Host Microbe 2010,8:422-432.
    [99]Schmid D, Pypaert M, Munz C. Antigenloading compartments for major histocompatibility complex class Ⅱ molecules continuously receive input from autophagosomes. Immunity 2007, 26:79-92.
    [100]Harris J, De Haro SA, Master SS, et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 2007,27:505-517.
    [101]Nedjic J, Aichinger M, Emmerich J, et al. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 2008,455:396-400.
    [102]Yano T, Mita S, Ohmori H, et al. Autophagic control of listeria through intracellular innate immune recognition in drosophila. Nat. Immunol.2008,9:908-916.
    [103]Dom BR, Dann WA, Progulske-Fox A. Bacterial interactions with the autophagic pathway. Cell Microbiol.2002,4:1.
    [104]Jackson WT, Giddings TH, Taylor MP, et al. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol.2005,3:e156.
    [105]Kirkegaard K, Taylor MP, Jackson WT. Cellular autophagy:surrender, avoidance and subversion by microorganisms. Nat. Rev. Microbiol.2004,2:301.
    [106]Klionsky DJ. Cell biology:regulated self-cannibalism. Nature 2004,431:31-2.
    [107]Huang J, Klionsky DJ. Autophagy and human disease. Cell Cycle 2007,6:1837-1849.
    [108]Kadija A, Scarabelli TM, McCauley RB. Autophagy in mammalian cells. World J. Biol. Chem.2012,3:1-6
    [109]Suzuki K, Kirisako T, Kamada Y, et al. The pre-autophagosomal structure organized by concerted functions of APG gene is essential for autophagosome formation. EMBO J.2001, 20:5971-5981.
    [110]Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the Beclin 1 autophagy gene. J. Clin. Invest.2003,112:1809-1820.
    [111]Fimia GM, Stoykova A, Romagnoli A, et al. Ambra 1 regulates autophagy and development of the nervous system. Nature 2007,447:1121-1125.
    [112]Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005,22:927-939.
    [113]Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J.2000,19:5720-5728.
    [114]Gutierrez MG, Munafo DB, Beron W, et al. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J. Cell Sci.2004,117:2687-2697.
    [115]Xie Z, Klionsky DJ. Autophagosome formation:core machinery and adaptations. Nat. Cell Biol.2007,9:1102-1109.
    [116]Mizushima N, Yoshimori T, Levine B. Methods in Mammalian Autophagy Research. Cell 2010,140:313-326.
    [117]Griffith J, Mari M, De Maziere A, et al. A cryosectioning procedure for the ultrastructural analysis and the immunogold labelling of yeast Saccharomyces cerevisiae. Traffic 2008, 9:1060-1072.
    [118]Biederbick A, Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker fo antophagic vacuoles. Eur. J. Cell Biol.1995,66:3.
    [119]Munafo DB. A novel assay to study autophagy:regulation of autophagosome vacuole size by amino acid deprivation. J. Cell Sci.2001,114:3619.
    [120]Kuma A, Matsui M, Mizushima N. LC3, an Autophagosome Marker, Can be Incorporated into Protein Aggregates Independent of Autophagy. Autophagy 2007,3:323-328.
    [121]Menzies FM, Moreau K, Puri C, et al. Measurement of Autophagic Activity in Mammalian Cells. Curr. Protoc. Cell Biol.2012,15:1-25.
    [122]Shvets E, Fass E, Elazar Z. Utilizing flow cytometry to monitor autophagy in living mammalian cells. Autophagy 2008,4:621-628.
    [123]Bj(?)rk(?)y G, Lamark T, Brech A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol.2005, 171:603-614.
    [124]Katayama H, Yamamoto A, Mizushima N, et al. GFP-like proteins stably accumulate in lysosomes. Cell Struct. Funct.2008,33:1-12.
    [125]Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007,3:452-460.
    [126]Gao W, Ding WX, Stolz DB, et al. Induction of macroautophagy by exogenously introduced calcium. Autophagy 2008,4:754-761.
    [127]Savitha S, Kirti J, Alakananda B. Regulation of Autophagy by Kinases. Cancers 2011, 3:2630-2654.
    [128]Chen YQ, Klionsky DJ. The regulation of autophagy-unanswered questions. J. Cell Sci. 2011,124:161-170.
    [129]Nobukuni T, Joaquin M, Roccio M, et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3 OH-kinase. Proc. Natl. Acad. Sci. U. S. A. 2005,102:14238-14243.
    [130]Zhao J, Brault JJ, Schild A, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007,6:472-483.
    [131]Mammucari C, Schiaffino S, Sandri M. Downstream of Akt:FoxO3 and mTOR in the regulation of autophagy in skeletal muscle. Autophagy 2008,4:524-526.
    [132]Feng Z, Zhang H, Levine AJ, et al. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl. Acad. Sci. U. S. A.2005,102:8204-8209.
    [133]Levine B, Abrams J. p53:the Janus of autophagy? Nat. Cell Biol.2008,10:637-639.
    [134]Sarkar S, Floto RA, Berger Z, et al. Lithium induces autophagy by inhibiting Inositol monophosphatas. J. Cell Biol.2005,170:1101-1111.
    [135]Williams A, Sarkar S, Cuddon P, et al. Novel targets for Huntington's disease in an mTOR-indepen-dent autophagy pathway. Nat. Chem. Biol.2008,4:295-305.
    [136]Autreaux B, Toledano MB. ROS as signalling molecules:mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mo.l Cell Biol.,2007,8:813-824.
    [137]Sarkar S, Davies JE, Huang Z, et al. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J. Biol. Chem. 2007,282:5641-5652.
    [138]Scherz-Shouval R, Shvets E, Fass E, et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J.2007,26:1749-1760.
    [139]Talloczy Z, Jiang W, Virgin HW 4th, et al. Regulation of starvation-and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc. Natl. Acad. Sci. U. S. A.2002, 99:190-195.
    [140]Garcia MA, Meurs EF, Esteban M. The dsRNA protein kinase PKR:virus and cell control. Biochimie 2007,89:799-811.
    [141]Kouroku Y, Fujita E, Tanida I, et al. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ.2007,14:230-239.
    [142]Yorimitsu T, Klionsky DJ. Eating the endoplasmic reticulum:quality control by autophagy. Trends Cell Biol.2007,17:279-285.
    [143]Park MA, Yacoub A, Srkar D, et al. PERK-dependent regulation of MDA-7/IL-24-induced autophagy in primary human glioma cells. Autophagy 2008,4:513-515.
    [144]Kirkegaard K, Taylor MP, Jackson WT. Cellular autophagy:surrender, avoidance and subversion by microorganisms. Nat. Rev. Microbiol.2004,2:301-314.
    [145]Tang G, Yue Z, Talloczy Z, et al. Autophagy induced by Alexander Disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR signaling pathways. Hum. Mol. Genet. 2008,17:1540-1555.
    [146]Chappell WH, Steelman LS, Long JM, et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Inhibitors:Rationale and Importance to Inhibiting These Pathways in Human Health. Oncotarget 2011,2:135-164.
    [147]Wong CH, Iskandar KB, Yadav SK, et al. Simultaneous Induction of Non-Canonical Autophagy and Apoptosis in Cancer Cells by ROS-Dependent ERK and JNK Activation. PLoS ONE 2010,5:e9996.
    [148]Akar U, Ozpolat B, Mehta K, et al. Tissue transglutaminase inhibits autophagy in pancreatic cancer cells. Mol. Cancer Res.2007,5:241-249.
    [149]Sakaki K, Wu J, Kaufman RJ. Protein kinase C-theta is required for autophagy in response to stress in the endoplasmic reticulum. J. Biol. Chem.2008,283:15370-15380.
    [150]Gozuacik D, Kimchi A. DAPk protein family and cancer. Autophagy 2006,2:74-79.
    [151]Chaturvedi MM, Sung B, Yadav VR, et al. NF-kappaB addiction and its role in cancer:'one size does not fit all. Oncogene 2010,30:1615-1630.
    [152]Karin M, Gallagher E. TNFR signaling:ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol. Rev.2009,228:225-240.
    [153]Aurore T, Mojgan DM. The complex interplay between autophagy and NFkappaB signaling pathways in cancer cells. Am. J. Cancer Res.2011,1:629-649
    [154]Periyasamy-Thandavan S, Jiang M, Wei Q, et al. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int.2008,74:631-640.
    [155]Tsang KY, Chan D, Bateman JF, et al. In vivo cellular adaptation to ER stress:survival strategies with double-edged consequences. J. Cell Sci.2010,123:2145-2154.
    [156]Adrienne M, Healy SJ, Jager R, et al. Stress management at the ER:Regulators of ER stress-induced apoptosis. Pharmacol. Ther.2012,134(3):306-316.
    [157]Cheng Y, Yang JM. Survival and death of endoplasmic-reticulum-stressed cells:Role of autophagy. World J. Biol. Chem.2011,2:226-231.
    [158]Qin L, Wang Z, Tao L, et al. ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy 2010,6:239-247.
    [159]Sir D, Chen WL, Choi J, et al. Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 2008,48:1054-1061.
    [160]Heaton NS, Perera R, Berger KL, et al. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc. Natl. Acad. Sci. U. S. A.2010,107:17345-17350.
    [161]Gannage M, Dormann D, Albrecht R, et al. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe 2009,6:367-380.
    [162]Shelly S, Lukinova N, Bambina S, et al. Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 2009,30:588-598.
    [163]Van Grol J, Subauste C, Andrade RM, et al. HIV-1 Inhibits Autophagy in Bystander Macrophage/Monocytic Cells through Src-Akt and STAT3. PLoS One 2010,5:e11733.
    [164]Wang X, Gao Y, Tan J, et al. HIV-1 and HIV-2 infections induce autophagy in Jurkat and CD4+T cells. Cell Signal.2012,214:1414-1419.
    [165]Alexander DE, Ward SL, Mizushima N, et al. Analysis of the role of autophagy in replication of herpes simplex virus in cell culture. J. Virol.2007,81:12128-12134.
    [166]Lee DY, Sugden B. The latent membrane protein 1 oncogene modifies B-cell physiology by regulating autophagy. Oncogene 2008,27:2833-2842.
    [167]Takahashi MN, Jackson W, Laird DT, et al. Varicella-zoster virus infection induces autophagy in both cultured cells and human skin vesicles. J. Virol.2009,83:5466-5476.
    [168]Jiang H, White EJ, Gomez-Manzano C, et al. Adenovirus's last trick:you say lysis, we say autophagy. Autophagy 2008,4:118-120.
    [169]Sir D, Tian Y, Chen W, et al. The early autophagic pathway is activated by Hepatitis B virus and required for viral DNA replication. Proc. Natl. Acad. Sci. U. S. A.2010,107:4383-4388.
    [170]Dreux M, Gastaminza P, Wieland SF, et al. The autophagy machinery is required to initiate hepatitis C virus replication. Proc. Natl. Acad. Sci. U. S. A.2009,106:14046-14051.
    [171]Zhang YN, Li ZC, Ge XN, et al. Autophagy promotes the replication of encephalomyocarditis virus in host cells. Autophagy 2011,7:1-16.
    [172]Meng S, Jiang K, Zhang X, et al. Avian reovirus triggers autophagy in primary chicken fibroblast cells and Vero cells to promote virus production. Arch. Virol.2012,157:661-668.
    [173]Chen Q, Fang L, Wang D, et al. Induction of autophagy enhances porcine reproductive and respiratory syndrome virus replication. Virus Res.2012,163:650-655.
    [174]Meng C, Zhou Z, Jiang K, et al. Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication. Arch. Virol.2012, doi:10.1007/s00705-012-1270-6.
    [175]Rodriguez-Rocha H, Gomez-Gutierrez JG, et al. Adenoviruses induce autophagy to promote virus replication and oncolysis. Virology 2011,416:9-15.
    [176]Maiuri MC, Zalckvar E, Kimchi A, et al. Self-eating and self-killing:crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol.2007,8:741-752.
    [177]Zhou F, Yang Y, Xing D. Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis. FEBS J.2011,278:403-413.
    [178]Gump JM, Thorburn A. Autophagy and apoptosis:what is the connection? Trends Cell Biol. 2011,21:387-392.
    [179]Rodriguez D, Rojas-Rivera D, Hetz C. Integrating stress signals at the endoplasmic reticulum:The BCL-2 protein family rheostat. Biochim. Biophys. Acta 2011,1813:564-574.
    [180]Cagnol S, Chambard JC. ERK and cell death:mechanisms of ERK-induced cell death-apoptosis, autophagy and senescence. FEBS J.2010,277:2-21.
    [181]Rubinstein AD, Eisenstein M, Ber Y, et al. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol. Cell 2011, 44:698-709.
    [182]Balaburski GM, Hontz RD, Murphy ME. p53 and ARF:unexpected players in autophagy. Trends Cell Biol.2010,20:363-369.
    [183]Livesey K, Kang R, Vernon P, et al. p53/HMGB1 Complexes Regulate Autophagy and Apoptosis. Cancer Res.2012,72(8):1996-2005.
    [184]Jiang H, White EJ, Rios-Vicil CI, et al. Human adenovirus type 5 induces cell lysis through autophagy and autophagy-triggered caspase activity. J. Virol.2011,85:4720-4729.
    [185]Sinha S, Levine B. The autophagy effector Beclin 1:a novel BH3-only protein. Oncogene 2008,27:S137-148.
    [186]Gannage M, Dormann D, Albrecht R, et al. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe 2009,6:367-380.
    [187]English L, Chemali M, Duron J, et al. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat. Immunol.,2009, 10:480-487.
    [188]Carpenter JE, Jackson W, Benetti L, et al. Autophagosome formation during varicella-zoster virus infection following endoplasmic reticulum stress and the unfolded protein response. J. Virol.2011,85:9414-9424.
    [189]Zhang HM, Ye X, Su Y, et al. Coxsackievirus B3 infection activates the unfolded protein response and induces apoptosis through downregulation of p58IPK and activation of CHOP and SREBP1. J. Virol.2010,84:8446-8459.
    [190]Chen XX, Ren F, Hesketh J. Reactive oxygen species regulate the replication of porcine circovirus type 2 via NF-κB pathway. Virology 2012,426:66-72.
    [191]Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress:cross-talk and redox signalling. Biochem. J.2012,441:523-540.
    [192]Poole B, Ohkuma S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J. Cell Biol.1981,90:665-669.
    [193]Juhasz G., Neufeld TP. Autophagy:a forty-year search for a missing membrane source. PLoS Biol.2006,4:e36.
    [194]Su WC, Chao TC, Huang YL, et al. Rab5 and class Ⅲ phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J. Virol.2011,85:10561-10571.
    [195]Orvedahl A, Alexander D, Talloczy Z, et al. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 2007,1:23-35.
    [196]Juhan NM, Le Roith T, Opriessnig T, et al. The open reading frame 3 (ORF3) of PCV2 is dispensable for virus infection but evidence of reduced pathogenicity is limited in pigs infected by a ORF3-null PCV2 mutan. Virus Res.2010,147:60-66.
    [197]Finsterbusch T, Mankertz A. Porcine circoviruses-small but powerful. Virus Res.2009, 143:177-183.
    [198]Son JH, Shim JH, Kim KH, et al. Neuronal autophagy and neurodegenerative diseases. Exp. Mol. Med.2012,44:89-98.
    [199]Chen N, Karantza-Wadsworth V. Role and regulation of autophagy in cancer. Biochim. Biophys. Acta 2009,1793:1516-1523.
    [200]Tessitore A, Pirozzi M, Auricchio A. Abnormal autophagy, ubiquitination, inflammation and apoptosis are dependent upon lysosomal storage and are useful biomarkers of mucopolysaccharidosis VI. Pathogenetics 2008,2:4.
    [201]Todde V, Veenhuis M, van der Klei IJ. Autophagy:Principles and significance in health and disease. Biochim. Biophys. Acta 2009,1792:3-13.
    [202]Deretic V, Levine B. Autophagy, Immunity and Microbial Adaptations. Cell Host Microbe 2009,5:527-549.
    [203]Liang XH, Kleeman LK, Jiang, HH, et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J. Virol.1998,72:8586-8596.
    [204]Liu Y, Schiff M, Czymmek K, et al. Autophagy regulates programmed cell death during the plant innate immune response. Cell 2005,121:567-577.
    [205]Kyei GB, Dinkins C, Davis AS, et al Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J. Cell Biol.2009,186:255-268.
    [206]Lee YR, Lei HY, Liu MT, et al. Autophagic machinery activated by dengue virus enhances virus replication. Virology 2008,374:240-248.
    [207]Levine B, Klionsky DJ. Development by self-digestion:molecular mechanisms and biological functions of autophagy. Dev. Cell 2004,6:463-477.
    [208]Ku B, et al. Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral Bcl-2 of murine gamma-herpesvirus 68. PLoS Pathog.2008,4:e25.
    [209]Chaumorcel M, Souquere S, Pierron G, et al. Human cytomegalovirus controls a new autophagy-dependent cellular antiviral defense mechanim. Autophagy 2008,4:46-53.
    [210]Tanida I. Autophagosome formation and molecular mechanism of autophagy. Antioxid. Redox Sign.2011,14:2201-2214.
    [211]Fleming A, Noda T, Yoshimori T, et al. Chemical modulators of autophagy as biological probes and potential therapeutics. Nat. Chem. Biol.2011,7:9-17.
    [212]Yorimitsu T, Klionsky DJ. Endoplasmic reticulum stress:a new pathway to induce autophagy. Autophagy 2007,3:160-162.
    [213]Chaumorcel M, Souquere S, Pierron G, et al. Human cytomegalovirus controls a new autophagy-dependent cellular antiviral defense mechanim. Autophagy 2008,4:46-53.
    [214]Kumar SH, Rangarajan A. Simian virus 40 small T antigen activates AMPK and triggers autophagy to protect cancer cells from nutrient deprivation. J. Virol.2009,83:8565-8574.
    [215]Sun Y, Li C, Ju X, et al. Inhibition of Autophagy Ameliorates Acute Lung Injury Caused by Avian InfluenzaA H5N1 Infection. Sci. Signal.2012,5:ra16.
    [216]Van Grol J, Subauste C, Andrde RM, et al. HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3. PLoS One 2010,5:e11733.
    [217]Jung CH, Ro SH, Cao J, et al. mTOR regulation of autophagy. FEBS lett.2010, 584:1287-1295.
    [218]Yang J, Zhao Y, Ma K, et al. Deficiency of hepatocystin induces autophagy through an mTOR-dependent pathway. Autophagy 2011,7:748-759.
    [219]Cagnol S, Chambard JC. ERK and cell death:Mechanisms of ERK-induced cell death-Apoptosis, autophagy and senescence. FEBS J.2010,277:2-21.
    [220]Wei L, Liu J. Porcine circovirus type 2 replication is impaired by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. Virology 2009,386:203-209.
    [221]Wang J, Whiteman MW, Lian H, et al. A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclinl. J. Biol. Chem.2009,284:21412-21424.
    [222]Corradetti MN, Inoki K, Bardeesy N, et al. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev.2004,18:1533-1538.
    [223]Steelman LS, Chappell WH, Abrams SL, et al. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY) 2011,3:192-222.
    [224]Kim EK, Lim S, Park JM, et al. Human mesenchymal stem cell differentiation to the steogenic or adipogenic lineage is regulated by AMPK. J. Cell Physiol.2012,227:1680-1687.
    [225]He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet.2009,43:67-93.
    [226]Magnoni LJ, Vraskou Y, Palstra AP, et al. AMP-Activated Protein Kinase Plays an Important Evolutionary Conserved Role in the Regulation of Glucose Metabolism in Fish Skeletal Muscle Cells. PLoS One 2012,7:e31219.
    [227]Lempiainen J, Finckenberg P, Levijoki J, et al. AMPK activator AICAR ameliorates ischemia reperfusion injury in the rat kidney. Br. J. Pharmacol.2012, doi: 10.1111/j.1476-5381.2012.01895.x.
    [228]Meley D, Bauvy C, Houben-Weerts JH, et al. AMP-activated protein kinase and the regulation of autophagic proteolysis. J. Biol. Chem.2006,281:34870-34879.
    [229]Shaw RJ, Cantley LC. Ras, PI3K and mTOR signalling controls tumour cell growth. Nature 2006,441:424-430.
    [230]Levine B, Yuan J. Autophagy in cell death:an innocent convict? J. Clin. Invest.2005, 115:2679-2688.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700