IRES调控α-干扰素的抗FMDV研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口蹄疫(Foot-and-mouth disease, FMD)是一种在全球范围内广泛传播的烈性传染病,主要感染偶蹄类动物。口蹄疫的爆发对畜牧业生产危害极大,被国际兽疫局(OIE)列为A类家畜传染病之首。口蹄疫病毒(Foot-and-mouth Disease Virus, FMDV)是口蹄疫的病原体,属于小RNA病毒科口蹄疫病毒属,为单股正链RNA病毒,基因组全长约为8500个核苷酸。和其他RNA病毒一样,FMDV基因组的多变性给对其防治带来了很大困难。因此,如何研发有效的预防和治疗FMDV感染的药物是当务之急。
     α-干扰素是一种广谱抗病毒药物,对FMDV的感染有一定的抑制作用。但由于FMDV能够通过阻断宿主帽子结构依赖的蛋白翻译机制来抑制α-干扰素的表达,使得通过细胞内表达α-干扰素来抗FMDV感染的效果差强人意。为了克服FMDV的这种作用机制,增强α-干扰素的抗病毒效率,本研究通过直接PCR的方法,从猪肝组织基因组中克隆了含有信号肽序列的α-干扰素基因,将其连接从FMDV克隆的IRES序列的3’端,构建了α-干扰素表达重组质粒p-IRES-IFN,使α-干扰素在细胞内的表达受到IRES的调控。同时将α-干扰素基因连接到功能完全丧失的IRES突变体的3’端,构建了一系列对照重组质粒:pc-IRES△G-IFN、pc-IRES△T-IFN,使α-干扰素在细胞内的表达受到突变的IRES的调控。将以上重组质粒转染PK细胞后发现,未感染病毒条件下,α-干扰素能够表达,受IRES的影响不大。当转染α-干扰素表达重组质粒的PK细胞被0.1 pfu/cell的水泡口炎病毒(Vesicular stomatitis virus, VSV)感染12小时后,除了转染pc-IRES-IFN的细胞中α-干扰素表达水平降低外,其他均有所增强;而在感染24小时后,所有细胞的α-干扰素表达水平都超过了感染前的水平。这说明VSV的感染不仅不能抑制内源或者外源α-干扰素基因的表达,而且会刺激内源α-干扰素基因的表达。源于FMDV的IRES在VSV感染时,对α-干扰素的表达基本没有影响。当转染α-干扰素表达重组质粒的PK细胞受到0.1 pfu/cell的FMDV感染后,受突变的IRES调控的到α-干扰素基因的表达受到抑制:在感染12小时后,表达量仅为感染前的70%左右;感染24小时后,表达量继续下降到感染前的50%左右。而受野生型FMDV IRES调控的α-干扰素基因在感染12小时后,表达量为感染前的90%左右;感染24小时后,表达量增加到感染前的125%左右。研究结果表明在IRES的调控下,α-干扰素能够克服宿主翻译抑制且持续表达。同时,通过荧光定量RT-PCR技术检测结果显示:PK细胞转染重组质粒p-IRES-IFN后,FMDV在其中的复制水平只有正常PK细胞中的复制水平的2%;PK细胞转染重组质粒pc-IRES△G-IFN和pc-IRES△T-IFN后,FMDV在其中的复制水平只有正常PK细胞中的复制水平的10%;这说明外源表达a-干扰素能够抑制FMDV的复制,IRES的调控能够增强α-干扰素的抗病毒效果。此外,噬斑试验也证实了上述结果。
     RNAi技术被广泛的用于抗病毒感染。以mir-30为模型,通过软件设计出潜在的能够使FMDV 3D基因沉默的特异性miRNA序列,并以pcDNA3.1(+)质粒为载体构建能够表达成熟miRNA的重组质粒p3D-1250。将p3D-1250转染BHK-21细胞,并筛选出稳定细胞系,通过感染FMDV研究miRNA对FMDV复制的干扰作用。蚀斑试验结果表明特异性miRNA可以抑制FMDV的复制,实时荧光定量RT-PCR检测数据显示特异性miRNA抑制FMDV的效率达50%,可见设计的特异性miRNA能够成功干扰FMDV的复制。
Foot-and-mouth Disease (FMD) is one of the most devastating viral diseases of cloven-hooved animal species. Each breakout of FMD caused great economical damage to stock raising and international trade, so it had been classified as an OIE List A disease. Foot-and-mouth Disease Virus (FMDV) is the causative agent of FMD, belongs to Aphthovirus genus of the Picornaviridae family, it contains a signal positive-strand which is about 8400nt. Like other RNA virus, its genome variability causes a big problew for its preventing and treating. Recent studies mostly focus on how to develop efficient anti-FMDV drugs.
     Alpha interferon (IFN-a) is a widely-used antiviral drug. Previous studies have shown that IFN-a was able to suppress FMDV replication and spread. FMDV can also inhibit IFN-a expression in infected cells by blocking cap-dependent translation. To overcome the blockade on IFN-a mRNA translation during FMDV infection, we generated an IRES-IFN construct named pc-IRES-IFN that carries FMDV's internal ribosome entry site (IERES) cDNA sequence between the promoter and porcine IFN-a gene. Mutant IRES was also introduced to replace the wild-type IRES as contral, there were called pc-IRES△T-IFN, pc-IRES△G-IFN. The data showed that IFN-a could express at normal situation, and had antiviral activity. We performed the infection experiments with VSV. After a 12 hour infection, PK cells transfected with pc-IRESAG-IFN and pc-IRES△T-IFN, as well as untransfected control cells, displayed no change in IFN-a production. In contrast, cells transfected with pc-IRES-IFN showed a 20% decrease in IFN-a productions. However, after 24 hours, IFN-a production in all transfected cells, as well as the untransfected control, increased to pre-infection level or above. Those demonstrate that the expression levels of IFN-αdisplayed the same trends at different timeframes. When infection by FMDV, the expression level of IFN-αunder the regulation of mutant IRES would decrease to-70% of pre-infection at 12h.p.i and -50% of pre-infection at 24h.p.i; but the expression level of IFN-αunder the regulation of wild-type IRES would decrease to-90% of pre-infection at 12h.p.i and increase to 125% at 24h.p.i. we also evaluated the antiviral activity of IFN-αby measuring the amount of viral RNA. The date of real-time RT-PCR demonstrated that the amount of viral RNA in cells transfected with pc-IRES-IFN was fivefold lower than that in cells transfected with pc-IRES△G-IFN and pc-IRES△T-IFN. Further, all of them are outclassed by the mock-transfected cells. Plaque assays were performed to confirm that cells transfected with pc-IRES-IFN were more resistant to FMDV infection than those transfected with pc-IRES△G-IFN and pc-IRES△T-IFN. It's easy to conclude that IFN-αexpression under the regulation of FMDV IRES could provide enhanced protection to transfected cells.
     Today's studies show that RNAi is a powerful antiviral tool. According to the mir-30 model, we designed a miRNA expression casstte which was named p3D-1250, targeted the 3D region of FMDV genome. BHK-21 cells were transfected with p3D-1250 and stable cells were selected by G418. Plaque assays showed that cells transfected with p3-D1250 could suppress FMDV replication. Real-time RT-PCR demonstrated that p3D-1250 could inhibite FMDV replication to 50%. All of the data indicated that designed miRNA could effetively inhitite FMDV replication.
引文
毕英佐、傅伟龙。动物科学进展。北京,中国农业科技出版社,2000。
    曹瑞兵。猪α、β、和γ干扰素基因的研制及其抗猪病毒作用研究。南京农业大学动物医学院,2004。
    杜念兴。兽医免疫学,第2版。北京,中国农业出版社,1997。
    高玉龙。RNA干扰抑制鸡传染性法氏囊病病毒复制及编码蛋白功能初步研究。博士毕业论文。东北农业大学,2007。
    龚非力。医学免疫学。科学出版社,2000。
    顾潮江。口蹄疫病毒持续性细胞感染及病毒灭绝研究。博士毕业论文。武汉大学,2006。
    侯云德。分子病毒学。学苑出版社,北京,1990。
    李放、王秋娟、高文青。家蚕细胞基因工程人IFN-α-对小鼠的免疫调节作用。中国现代应用药学杂志,1999,16:31-34。
    吕海、金大地、史占军、景宗森、郑燕芳、马学军、侯云德。两种新型IFN的
    克隆、表达及其抗骨肉瘤活性。中华骨科杂志,1999,19:14-17。
    潘烨,郑起。干扰素在肿瘤治疗中应用的研究进展。国外医学:外科学分册,2005,32:10-13。
    江鹏斐,赵启祖。口蹄疫研究进展。中国农业科学,1999,32:93-100。
    彭辉兵、全智华。RNA干扰——一种有力的基因沉默工具。医学综述,2007,3:177-180。
    钱绩虎、邵荣标、丁昌慧、严建国、汤权、朱金阳、曹树梅。IFN-a对人体液免疫功能调节作用的实验研究。南通医学院学报,1999,19:164-165。
    史毅、金由辛。RNA干扰与siRNA(小干扰RNA)研究进展。生命科学,2008,2:196-201
    孙晗笑,王声涌。人类疤疹病毒8的致瘤作用。生命的化学,1999,19:286-287。
    孙圣兰,江青艳,傅伟龙。干扰素的研究进展。动物医学进展,2002,23:39-41。
    王晓杜。猪干扰素α、β、γ基因克隆、原核表达及其单克隆抗体制备的研究。硕士毕业论文。华中农业大学,2007。
    魏海明、吴惠联。IFN-α对癌基因调控的研究。中国肿瘤生物治疗杂志,1996, 3:233-235。
    闻一梅。现代医学微生物学。上海医科大学出版社,1999。
    吴丹。猪α干扰素的克隆、表达及抗猪瘟病毒活性的研究。硕士学位论文,2003,中国农业大学。
    徐耀先、周晓峰、刘立德。分子病毒学。湖北科学技术出版社,2000。
    杨吉成、李丽娥、盛伟华、董宁征、徐伦。基因工程IFN-a/2和IFN-a/2b对肿瘤细胞生长的抑制作用。实用癌症杂志,1999,14:164-166
    元立峰、许梓荣。干扰素的分子生物学研究进展。中国兽药杂志,2003,37:22-25
    姚清侠。猪α干扰素、猪β干扰素与猪γ干扰素的抗病毒活性及其免疫佐剂的研究。博士学位论文,2007,华中农业大学。
    闫丽萍。猪γ干扰素基因克隆、表达及多克隆抗体制备。硕士学位论文。东北农业大学,2004。
    严春晖、倪兵、刘锋、姬西宁。质粒介导的RNAi抑制SARS-CoV复制和感染。免疫学杂志,2005,21:358-361。
    殷震、刘景华。动物病毒学,第二版。北京,科学出版社,1997。
    银晓、关平原。干扰素的研究进展。畜牧与饲料科学,2008,2。
    张岩。应用RNAi技术抑制乙型肝炎病毒复制的实验研究。博士学位论文,2005。
    赵明军、闫若潜、韩记用、吴志明。猪α干扰素研究进展。禽兽业,2008,225:48-51。
    周凯。禽流感H5N1病毒的RNAi研究。硕士毕业论文,2005,河北师范大学。
    Ambros V. MicroRNAs tiny regulators with great potential. Cell,2001,107:823-826.
    Amir Shlomai, Yosef Shaul. Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology,2003,37:764-770.
    Ashrafi K., Chang F. Y. Genome-wide RNAi analysis of C. elegans fat regulatory genes. Nature,2003,421:268-272.
    Acharya R., Fry E., Stuart D. The three-dimensional structure of foot-and-mouth disease virus at 2.9A resolution. Nature,1989,337:23.
    Avendano S. C. Interferons:types and actions. Gastroenterol. Hepatol,2006,29 Suppl.2:125-128.
    Bablanian G. M., Grubman M. J. Characterization of the foot-and-mouth disease virus 3C protease expressed in Escherichia coli. Virology,1993,197:320-327.
    Banchereau J., Steiman R. M. DCs and the control of immunity. Nature,1998,392: 245-252.
    Barton D. J., O'Donnell B. J., Flanegan J. B.5'Cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis. EMBO J.,2001, 20:1439-1448.
    Batusic D. S. et al. Induction of Mx-2 in rat liver by toxic injury. J. Hepatol.,2004, 40:446-453.
    Bautista E. M., Ferman G. S., Golde W.T. Induction of lymphopenia and inhibition of T cell function during acute infection of swine with foot-and-mouth disease virus (FMDV). Vet. Immunol. Immunopathol.,2003,92:61-7
    Bautista E. M. et al. Constitutive expression of alpha interferon by skin dendritic cells confers resistance to infection by footand-mouth disease virus. J. Virol.,2005,79: 4838-4847.
    Baxt B. et al. Analysis of neutralizing antigenic sites on the surface of type A12 foot-and-mouth disease virus. J. Virol.,1989,63:2143-2151.
    Belardelli F. Role of interferons and other cytokines in the regulation of the immune-response. Apmis.,1995,103:161-179.
    Bernstein E. et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature,2001,409:363-366.
    Belsham G. J., Brangwyn J. K. A region of the 5'Noncoding region of foot-and-mouth disease virus RNA directs efficient internal initiation of protein synthesis within cells:involvement with the role of L-protease in translational control. J. Virol.,1990,64:5389-5395.
    Belsham G J., Micinerney G. M., Smith N. R. Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. J. Virol.,2000,74:272-280.
    Benedict C. A., Norris P. S., Ware C. F. To kill or be killed:viral evasion of apoptosis. Nat. Immunol.,2002.3:1013-1018.
    Bienz K., Egger D., Pasamontes L. Association of polioviral proteins of the P2 genomic region with the viral replication complex and virus-induced membrane synthesis as visualized by electron microscopic immunocytochemistry and autoradiography. Virology,1987,160:220-226.
    Bienz K. et al. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region.J. Virol.,1990,64:1156-1163.
    Bittle J. L. et al. Protection against foot-and-mouth disease virus by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature,1982,298:30-33.
    Bolten R. et al. Intracellular localization of poliovirus plus-and minus-strand RNA visualized by strand-specific fluorescent in situ hybridization. J. Virol.,1998,72: 8578-8585.
    Bonizzi G., Karin M. The two NF-kappa B activation pathways and their role in innate and adaptive immunity. Trends Immunol.,2004,25:280-288.
    Brown C.C. et al. Pathogenesis of wild-type and leaderless foot-and-mouth disease virus in bovines. J. Virol.,1996,70:5638-5641.
    Brown F. et al. Poly(C) in animal viral RNAs. Nature,1974,251:342-344.
    Brown F. et al. Delineation of a neutralizing subregion within the immunodomain epitope (GH Loop) of foot-and-mouth disease virus VP1 which does not contain the RGD motif. Vaccine,1999,18 (1-2):50-56.
    Bryan R. Cullen. Iduction of stable RNA interference in mammalian cells. Gene Therapy,2006,3:503-508.
    Buenz E. J., Howe C. L. Picornaviruses and cell death.Trends Microbiol.2006,14: 28-36.
    Cao X. et al. Functional analysis of the two alternative translation initiation sites of foot-and-mouth disease virus. J. Virol.,1995,69:560-563.
    Caplen N. J. et al. Specific inhibition of gene expression small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. U.S.A.,2001, 98:9742-9747.
    Capozzo A.V. et al. Expression of foot and mouth disease virusnon-structural polypeptide 3ABC induces histone H3 cleavage in BHK21 cells. Virus Res.,2002, 90:91-99.
    Carl D. Novina. et al. siRNA-directed inhibition of HIV-linfection. Nat. Med,2002, 8:681-686.
    Caudy A. A. et al. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev.,2002,16:2491-2496.
    Caudy A. A. et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature,2003,425:411-414.
    Charles E. Samuel. Antiviral Actions of Interferons. Clinical Microbiology Reviews, 2001,4:778-809
    Chen W., W. Yan, Z. Zheng. Response to Bayry and Tough:is RNAi useful for controlling foot-and-mouth disease outbreaks? Trends Immunol.,2005,26:239-241.
    Cheng G. et al. Characterization of the porcine alpha interferon multigene family. Gene,2006,382:28-38.
    Chinsangaram J., Mason P. W., Grubman M. J. Protection of swine by live and inactivated vaccines prepared from a leader proteinase-deficient serotype A12 foot-and-mouth disease virus. Vaccine,1998,16:1516-1522.
    Chinsangaram J., Piccone M. E., Grubman M. J. Ability of foot-and-mouth disease virus to form plaques in cell culture is associated with suppression of alpha/beta interferon. J. Virol.,1999,73:9891-9898.
    Chinsangaram J., Koster M., Grubman M. J. Inhibition of L-deleted foot-and-mouth disease virus replication by alpha/beta interferon involves double-stranded RNA-dependent protein kinase. J. Virol.,2001,12:5498-5503.
    Chinsangaram J. et al. A novel viral disease control strategy:adenovirus expressing interferon alpha rapidly protects swine from foot-and-mouth disease. J. Virol.,2003, 77:1621-1625.
    Clarke C. J., Trapani J. A., Johnstone R. W. Mechanisms of interferon mediated anti-viral resistance. Curr. Drug. Targets Immune. Endocr. Metabol. Disord,2001, 1:117-130.
    Clemens M. J., Elia A. The double-stranded RNA-dependent protein kinase PKR: structure and function. J. Interferon Cytokine Res.,1997,17:503-524.
    Colonna M., Kong A., Cella M. Interferon producing cells:on the front line in immune responses against pathogens. Curr. Opin. Immunol.,2002,14:373-379.
    Cornell C. T. et al. Inhibition of protein trafficking by coxsackievirus B3:multiple viral proteins target a single organelle. J. Virol.,2006,80:6637-6647.
    Contente S. et al. Expression of gene rrg is associated with reversion of NIH 3T3 transformed by LTR-c-H-ras. Science,1990,249:796-798.
    Cuellar T. L., McManus M. T. MicroRNAs and endocrine biology. Journal of Endocrinology,2005,187:327-332.
    Curry S. et al. Viral RNA modulates the acid sensitivity of foot-and-mouth disease virus capsids. J. Virol.,1995,69:430-438.
    Das S., et al. Activation of the RNA-dependent Protein kinase PKR Promoter in the absence of interferon is dependent up on SP Proteins. J. Biol. Chem.,2006, 281:3244-3253.
    de Fougerolles A. et al. Interfering with disease:a progress report on siRNA based therapeutics. Nat. Rev. Drug. Discov.,2007,6:443-453
    de Los Santos et al. Short hairpin RNA targeted to the highly conserved 2B nonstructural protein coding region inhibits replication of multiple serotypes of foot-andmouth disease virus. Virology,2005,335:222-231.
    de los Santos T. et al The leader proteinase of foot-and-mouth disease virus inhibits the induction of beta interferon mRNA and blocks the host innate immune response. J. Virol.,2006,80:1906-1914.
    de los Santos T., Diaz-San Segundo F., Grubman M. J. Degradation of nuclear factor kappa B during foot-and-mouth disease virus infection. J. Virol.,2007,81: 12803-12815.
    Deng J. et al. Inhibition of XJ-160 virus replication by RNAi. Chin. J. Microbio Immunol.,2005,251:496-500(In Chinese).
    Devaney M. A. et al. Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J. Virol.,1988, 62:4407-4409.
    Diaz-San Segundo F., et al. Selective lymphocyte depletion during early stage of the immunoresponse to foot-and-mouth disease virus infection in swine. J. Virol.,2006, 80:2369-2379.
    Dodd D. A., Giddings Jr. T. H., Kirkegaard K. Poliovirus 3A protein limits interleukin-6 (IL-6), IL-8, and beta interferon secretion during viral infection. J. Virol.,2001,75:8158-8165.
    Doedens J. R., Kirkegaard K. Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A. EMBO J.,1995,14:894-907.
    Donnell V. K. et al. Subcellular distribution of the foot-and-mouth disease virus 3A protein in cells infected with viruses encoding wild-type and bovine-attenuated forms of 3A. Virology,2001,287:151-162.
    Dusheiko G. Side effects of a-interferon in chronic hepatitis C. Hepatology,2003, 26:112-121.
    Edinger A. L, Thompson C. B. Death by design:apoptosis, necrosis and autophagy. Curr. Opin. Cell. Biol.,2004,16:663-669.
    Elizabeth R. Rayburn, Ruiwen Zhang. Antisense, RNAi and gene silencing strategies for therapy:Mission possible or impossible? Drug Discovery Today,2008, 13:513-521
    Erwei Song. et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med.,2003,9:347-351.
    Esau C. C., Monia B. P. Therapeutic potential for microRNAs. Adv. Drug Deliv. Rev., 2007,59:101-114
    Espert L., Gongora C., Meehti N. Interferon:antiviral mechanisms and viral escape. Bull. Cancer,2003,90:131-141.
    Espert L., Codogno P., Biard-Piechaczyk M. What is the role of autophagy in HIV-1 infection? Autophagy,2008,4:273-275.
    Etchison D. et al. Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220 000-Da polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J. Biol. Chem. 1982,257:14806-14810.
    Fabani M. M., Gait M. J. MiR-122 targeting with LNA/2'-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA,2008, 14:336-346.
    Fire A. et al. Potent and specific genetic interference by double-strand RNA in C. elegans. Nature,1998,391:744745.
    Fitzgerald-Bocarsly P., Dai J., Singh S. Plasmacytoid dendritic cells and type I IFN: 50 years of convergent history. Cytokine Growth Factor Rev.,2008,19:3-19.
    Foster G R. et al. Different relative activities of human cell-derived interferon-a subtypes:IFN-a has very high antiviral potency. J. Interferon Cytokine Res.,1996, 16:1027-1032.
    Falk M. M., et al. Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host cell histone H3. J. Virol.,1990,64:748-756.
    Falk M. M., Sobrino F., Beck E. Vpg gene amplification correlates with infective particle formation in foot-and-mouth disease virus. J. Virol.,1992,66:2251-2260.
    Ferrer-Orta C. et al. Structure of foot-and-mouth disease virus RNA-dependent RNA polymerase and its complex with a template-primer RNA. J. Bio. l Chem.,.2004, 279:47212-47221.
    Forss, S., Schaller, H. A tandem repeat gene in a picornavirus. Nucleic Acids Res., 1982,10:6441-6450.
    Fraser A. G et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature,2000,408:325-330.
    Gamarnik A. V., Andino R. Two functional complexes formed by KH domain containing proteins with the 5'-noncoding region of poliovirus RNA. RNA,1997,3: 882-892.
    Garcia-Briones M., et al. Differential distribution of non-structural proteins of foot-and-mouth disease virus in BHK-21 cells. Virology,2006,349:409-421.
    Gareia M. A. et al. Impact of Protein kinase PKR in cell biology:from antiviral to antiproliferative action. Microbiol. Mol. Biol. Rev.,2006,70:1032-1060.
    Gao S. J. et al. KSHV ORF K9(vIRF) is an oncogene which inhibits the interferon signaling pathway. Oncogene,1997,15:1979-1985.
    George M. et al. Sequence analysis of the RNA polymerase gene of foot-and-mouth disease virus serotype Asial. Virus Genes,2001,22:21-26.
    Georges M. et al. Polymorphic miRNA-mediated gene regulation:contribution to phenotypic variation and disease. Curr. Opin. Genet. Dev.,2007,17:166-176.
    Giladi H. et al. Small interfering RNA inhibits virus replication in mice. Molecular Therapy,2003,8:769-769
    Gonczy P. et al. Functional genomic analysis of cell division in C.elegans using RNAi of genes on chromosome Ⅲ. Nature,2000,408:331-336.
    Gosert R., Egger D., Bienz K. A cytopathic and a cell culture adapted hepatitis A virus strain differ in cell killing but not in intracellular membrane rearrangements. Virology,2000,266:157-169.
    Gottwein E. et al. A viral microRNA functions as an orthologue of cellular miR-155. Nature,2007,450:1096-1099。
    Gregory R. I. et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell,2005,123:631-40.
    Grigera P. R., Tisminetzky S. G Histone H3 modification in BHK cells infected with foot-and-mouth disease virus. Virology,1984,136:10-19.
    Grubman M. J. The 5'-end of foot-and-mouth disease virion RNA contains a protein covalently linked to the nucleotide pUp. Arch. Virol.,1980,63:311-315.
    Guarne A. et al. Structure of the foot-and-mouth disease virus leader protease:a papain-like fold adapted for self-processing and eIF4G recognition. EMBO J., 1998,17:7469-7479.
    Gulbahar M.Y. et al. Myocarditis associated with foot-and-mouth disease virus type O in lambs. Vet. Pathol.,2007,44:589-599.
    Guo S., Kemphues K. J. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr Kinase that is asymmetrically distributed. Cell,1995,81:611-620.
    Guzylack-Piriou L. et al. Plasmacytoid dendritic cell activation by foot-and-mouth disease virus requires immune complexes. Eur. J. Immunol.,2006,36:1674-1683.
    Haig D. M. Poxvirus interference with the host cytokine response. Vet. Immunol. Immunopathol.,1998,63:149-156.
    Hannon G. J. RNA interference. Nature,2002,418:244-251.
    Hammond S. M. Dicing and slicing the core machinery of the RNA Interference Pathway. FEBS Letters,2005,579:5822-5829.
    Harris T. J., F. Brown. Biochemical analysis of a virulent and an avirulent strain of foot-and-mouth disease virus. J. Gen. Virol.,1977,34:87-105.
    Hayden M. S., Ghosh S. Signaling to NF-kappa B. Genes Dev.,2004,18:2195-2224.
    Heim M. H. Intracellular signaling and antiviral effects of interferons. Dig. Liver. Dis., 2000,32:257-263.
    Herold J., Andino R. Polio virus RNA replication requires genome circularization through a protein-protein bridge. Mol. Cell,2001,7:581-591.
    Honda K. et al. Regulation of the type I IFN induction:a current view. Int. Immunol., 2006,17:1367-1378.
    Huard B., Fruh K. A role for MHC class I downregulation in NK cell lysis of herpes virus-infected cells. Eur. J. Immunol.,2000,30:509-515.
    Hunter C. P. Genetics:a touch of elegance with RNAi. Curr Biol.,1999,9: R440-R442.
    Hurlock E. C. Interferons:potential roles in affect. Med. Hypotheses,2001, 56:558-566.
    Isaacs A., Lindenmann J. Virus interference. I. The interferon. By A. Isaacs and J. Lindenmann,1957. J. Interferon Res.1987,7(5):429-38
    Ishizuka A. et al. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev.,2002,16:2497-2508.
    Jackson T., Stuart D. I., Fry E. Structure and receptor binding. Virus,2003,91:33-46.
    Jackson W. T. et al. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol.,2005,3:861-871.
    Jecht M., Probst C., Gauss-Muller V. Membrane permeability induced by hepatitis A virus proteins 2B and 2BC and proteolytic processing of HAV 2BC. Virology,1998, 252:218-227.
    Jensen P. E. Recent advances in antigen processing and presentation. Nat. Immunol., 2007,8:1041-1048.
    Jeyaseelan K. et al. MicroRNAs as therapeutic targets in human diseases. Expert. Opin. Ther. Targets,2007,11:1119-1129
    Jiang C. L. et al. Analgesic effect of interferon-alpha via mu opioid receptor in the rat. Neurochem. Int.,2000,36:193-196
    Jin H. et al. Induction of immature dendritic cell apoptosis by foot andmouth disease virus is an integrin receptor mediated event before viral infection. J. Cell Biochem., 2007,102:980-991.
    Lupberger J., Laurent Brino, Thomas F. Baumert. RNAi, A powerful tool to unravel hepatitis C virus-host interactions within the infectious life cycle. J. Hepatol.,2008, 48:523-525
    Kamath R. S., Fraser A. G. Systematic functional analysis of the C. elegans genome using RNAi. Nature,2003,421:231-237
    Kahana R. et al. Inhibition of foot-and-mouth disease virus replication by small interfering RNA. J. Gen. Virol.,2004,85:3213-3217.
    Khabar K. S. et al. Effect of defieiency of the double-stranded RNA-dependent Protein kinase, PKR, on antiviral resistance in the Presence or absence of ribonuclease L:HSV-1 replication is particularly sensitive to defieiency of the major IFN-mediated enzymes. J. Interferon Cytokine Res.,2000,20:653-659.
    Khvorova A., Reynolds A., Jayasena S. Functional siRNAs and miRNAs exhibit Strand Bias. Cell,2003,115:209-216.
    Kirchweger R. et al. Foot-and-mouth disease virus leader proteinase:purification of the Lb form and determination of its cleavage site on eIF-4 gamma. J. Virol.,1994, 68:5677-5684.
    King A. M. Q. et al. Heterogeneity of the genome-linked protein of foot-and-mouth disease virus. J. Virol.,1980,34:627-634.
    Ku B. K. et al. Role of apoptosis in the pathogenesis of Asian and South American foot-and-mouth disease viruses in swine. J. Vet. Med. Sci.,2005,67:1081-1088.
    Kuhn R., Luz N., Beck E. Functional analysis of the internal translation initiation site of foot-and-mouth disease virus. J. Virol.,1990,64:4625-4631.
    Lagos-Quintana M. et al. Identification of novel genes coding for small expressed RNAs. Science,2001,294:853-858.
    Le Bon A., Tough D. F. Links between innate and adaptive immunity via type Ⅰ interferon. Curr. Opin. Immunol.,2002,14:432-436
    Lea S. et al. The structure and antigenicity of a type C foot-and-mouth disease virus. Structure,1994,2:123-139.
    Lee N. S. et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol.,2002,20:500-505
    Lefevre F. et al. Interferon-delta:the first member of a novel type Ⅰ interferon family. Biochimie.,1998,80:779-788
    Leonard G. T., Sen G. C. Restoration of interferon responses of adenovirus E1A-expressing HT1080 cell lines by overexpression of p48 protein. J. Virol.,1997, 71:5095-5101.
    Levy D. E., Garcia-Sastre A. The virus battles:IFN induction of the antivirual state
    and mechanisms of viral evasion. Cytokine Growth Factor Rev.,2001,12:143-156.
    Lipardi C., Wei Q., Paterson B. M. RNAi as random degradative PCR:siRNA primers convet mRNA into dsRNAs that are degraded to generate new siRNAs. Cell,2001, 107:297-307.
    Liu G. et al. Generation of an infectious cDNA clone of an FMDV strain isolated from swine. Virus Res.,2004,104:157-64.
    Liu J. D. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science,2004, 305:1437-1441
    Liu L. et al. The effect of telomerase anti-sense RNA on telomerase activity and cell proliferation of HL-60. Cancer Research on prevention and treatment,2001,28:4-6 (In Chinese)
    Liu M. et al. Cross-inhibition to heterologous foot-and-mouth disease virus infection induced by RNA interference targeting the conserved regions of viral genome. Virology,2005,336:51-59.
    Liu Q. H. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science,2003,301:1921-1925.
    Luis M., Dela Maza L., Peterson E. Dependence of the in vitro anti-proliferative activity of recombinant gamma-IFN on the concentration of tryptophan in culture medium. Cancer Res.,1988,48:346-350.
    Logan D. et al. Structure of a major immunogenic site on foot-and-mouth disease virus. Nature,1993,362:566-568.
    Lopez de Quinto S., Lafuente E., Martinez-Salas E. IRES interaction with translation initiation factors:functional characterization of novel RNA contact s with eIF3, eIF4B, and eIF4GII. RNA,2001,7:1213-1226.
    Luo B., Heard A. D., Lodish H. F. Small interfering RNA production by enzymatic engineering of DNA (SPEED). Proc. Natl. Acad. Sci. U. S. A.,2004,101: 5494-5499.
    Luz N., Beck E. A cellular 57 kDa protein binds to two regions of the internal translation initiation site of foot-and-mouth disease virus. FEBS Letter,1990,269: 311-314.
    Luz N., Beck E. Interaction of a cellular 57-kDa protein with the internal translation initiation site of foot-and-mouth disease virus. J. Virol.,1991,65:6486-6494.
    Mario Stevenson. Dissecting HIV-1 through RNA interference. Nat. Rev. Immunol., 2003,3:851-858.
    Martinez J. et al. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell,2002,110:563-574.
    Martinez-Salas E., Ortin J., Domingo E. Sequence of the viral replicase gene from foot-and-mouth disease virus Cl-Santa Pau (CS8). Gene,1985,35:55-61.
    Martinez-Salas E. et al. A single nucleotide substitution in the internal ribosome entry site of foot-and-mouth disease virus leads to enhanced cap-independent translation in vivo. J. Virol.,1993,67:3748-3755.
    Martinez-Salas E. et al. Functional interactions in internal translation initiation directed by viral and cellular IRES elements. J. Gen. Virol.,2001,82:973-984.
    Martinez-Salas E. Internal ribosome entry site biology andits use in expression vectors. Curr. Opin. Biotechnol.1999,10:458-464.
    Martinez-Salas E. et al. IRES elements:features of the RNA structure contributing to their activity. Biochimie.,200284:755-763.
    Mason P. W. et al. Molecular basis of pathogenesis of FMDV. Virus Research,2003, 91:9-32.
    Mateu M. G et al. Direct evaluation of the immunodominance of a major antigenic site of foot-and-mouth disease virus in a natural host. Virology,1995,206: 298-306.
    McLaughlin J. et al. Sustained suppression of BCR-ABL-driven lymphoid leukemia by microRNA mimics. Proc. Natl. Acad. Sci. U.S.A.,2007,104:20501-20506.
    Medina M. et al. The two species of the foot-and-mouth disease virus leader protein expressed individually exhibit same activities. Virology,1993,194:355-359.
    Meyer K. et al. Interaction of eukaryotic initiation factor eIF-4B with a picornavirus internal translation initiation site. J. Virol.,1995,69:2819-2824.
    Michael Roberts R. et al. The Evolution of the Type I Interferonsl. J. Interferon Cytokine Res.,1998,18:805-816.
    Moffat K. et al. Effects of foot-and-mouth disease virus nonstructural proteins on the structure and function of the early secretory pathway:2BC but not 3A blocks endoplasmic reticulum-to-Golgi transport. J. Virol.,2005,79:4382-4395.
    Moffat K. et al. Inhibition of the secretory pathway by foot-and-mouth disease virus 2BC protein is reproduced by coexpression of 2BC with 2C, and the site of inhibition is determined by the subcellular location of 2C. J. Virol.,2007, 81:1129-1139.
    Mohapatra J. K. et al. Evaluation of in vitro inhibitory potential of small interfering RNAs directed against various regions of foot-and-mouth disease virus genome. Biochem. Biophys. Res. Commun.,2005,329:1133-1138.
    Moraes M. P. et al. Immediate protection of swine from foot-and-mouth disease:a combination of adenoviruses expressing interferon alpha and a foot-and-mouth disease virus subunit vaccine. Vaccine,2003,22:268-279
    Moraes M. P. et al. Enhanced antiviral activity against Foot-and-Mouth Disease Virus by a combination of Type I and II porcine interferons. J. Virol.,2007,81, 7124-7135.
    Muller M. et al. The protein tyrosine kinase JAK1 complements Defects in interferon-alpha/beta and-gamma signal transduction. Nature,1993,366:129-135.
    Nayak A., Goodfellow I. G., Belsham G. J. Factors required for the uridylylation of the foot-and-mouth disease virus 3B1,3B2, and 3B3 peptides by the RNA-dependent RNA polymerase (3Dpol) in vitro. J. Virol.,2005,79:7698-7706.
    Newton S. E. et al. The sequence of foot-and-mouth disease virus RNA to the 5'side of the poly(C) tract. Gene,1985,40:331-336.
    Nfon C. K. et al. Interferon-a production by swine dendritic cells is inhibited during acute infection with foot-and-mouth disease virus. Viral. Immunol.,2008,21: 68-78.
    Ochs K., Rust R. C., Niepmann M. Translation initiation factor eIF4B interacts with a picornavirus internal ribosome entry site in both 48S and 80S initiation complexes independently of initiator AUG location. J. Virol.,1999,73:7505-7514.
    O'Donnell V. et al. Analysis of Foot-and-Mouth Disease Virus Internalization Events in Cultured Cells. J. Virol.,2005,13:8506-8518.
    Palmenberg A. C. Proteolytic processing of picornaviral polyprotein. Annu. Rev. Microbiol.,1990,44:603-623.
    Pasquinelli A. E. MicroRNAs:deviants no longer. Trends Genet.,2002,18:171-173.
    Paula Serrano, Jorge Ramajo, Encarnacion Martinez-Salas. Rescue of internal initiation of translation by RNA complementation provides evidence for a distribution of functions between individual IRES domains. Virology,2009(in press)
    Peng J. M., Liang S. M., Liang C. M. VP1 of foot-and-mouth disease virus induces apoptosis via the Akt signaling pathway. J. Biol. Chem.,2004,279:52168-52174.
    Pestka S., Krause C. D., Walter M. R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev.,2004,202:8-32.
    Pfaff E. et al. Antibodies against a preselected peptide recognize and neutralize foot-and-mouth disease virus. EMBO J.,1982,1:869-874.
    Pfaff E. et al. Analysis of neutralizing epitopes on foot-and-mouth disease virus. J. Virol.,1988,62:2033-2040.
    Piccone M. E. et al. The foot-and-mouth disease virus leader proteinase gene is not required for viral replication. J. Virol.,1995,69:5376-5382.
    Pilipenko E. V. et al. Conservation of the secondary structure elements of the 5'-untranslated region of cardio-and aphthovirus RNAs. Nucleic Acids Research, 1989a,17:5701-5711.
    Pilipenko E. V. et al. Conserved structural domains in the 5'-untranslated region of picornaviral genomes:an analysis of the segment controlling translation and neurovirulence. Virology,1989b,168:201-209.
    Pilipenko E. V. et al. Prokaryotic-like cis-elements in the capindependent internal initiation of translation on picornavirus RNA. Cell,1992,68:119-131.
    Pilipenko E. V. et al. A cell cycledependent protein serves as a template-specific translation initiation factor. Genes Dev.,2000,14:2028-2045.
    Pulido M. et al. Foot-and-mouth disease virus infection induces proteolytic cleavage of PTB, eIF3a,b, and PABP RNA-binding proteins. Virology,2007,364:466-474.
    Qin X. F. et al. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5M. Proc. Natl. Acad. Sci., U. S. A, 2003,100:183-188
    Rieder E. et al. Genetically engineered foot-and-mouth disease viruses with poly(C) tracts of two nucleotides are virulent in mice. J. Virol.,1993,67:5139-5145
    Roberts W. K., M. J. Clemens, I. M. Kerr. Interferon-induced inhibition of protein synthesis in L-cell extracts:An ATP-dependent step in the activation of an inhibitor by double-stranded RNA. Proc. Natl. Acad. Sci. USA.,1976,73:3136-3140.
    Roberts L. O., Seamons R. A., Belsham G. J. Recognition of picornavirus IRES within cells influence cellular and viral products. RNA,1998,4(5):520-529.
    Robertson H. D., M. D. Mathews. Double-Stranded RNA as an Inhibitor of Protein Synthesis and as a Substrate for a Nuclease in Extracts of Krebs Ⅱ Ascites Cells. Proc. Natl. Acad. Sci. U.S.A,1973,70:225-229.
    Robertson B. H. et al. Nucleotide and amino acid sequences coding for polypeptides of foot-and-mouth disease virus type A12. J. Virol.,1985,54:651-660.
    Rock K. L., York I. A., Goldberg A. L. Post-proteasomal antigen processing for major histocompatibility complex class Ⅰ presentation. Nat. Immunol.,2004,5:670-677.
    Rowland D. T. et al. More precise location of the polycytidylic acid tract in foot-and-mouth disease virus RNA. J. Virol.,1978,26:335-343.
    Rust R. C. et al. Interaction of eukaryotic initiation factor eIF4B with the IRES of foot-and-mouth disease virus isindependent of the polypyrimidine tract-binding protein. J. Virol.,1999,73:6111-6113.
    Saily M. et al. Effect of interferon-alpha on immunoglobulin production by peripheral blood mononuclear cells in multiple myeloma. Eur. J. Haematol.,1996, 57:171-177.
    Saiz M. et al. Deletion or substitution of the aphthovirus 3'NCR abrogates infectivity and virus replication. Soc. Gen. Virol.,2001,82(Ptl):93-101.
    Saleh L. et al. Functional interaction of translation initiation factor eIF4G with the foot-and-mouth disease virus internal ribosome entry site. J. Gen. Virol.,2001,82: 757-763.
    Samuel C. E. Antiviral actions of interferons. Clin. Microbiol. Rev.,2001,14:778-809.
    Sangar D. V. et al. Protein covalently linked to foot-and-mouth disease virus RNA. Nature,1977,268:648-650.
    Sangar D. V. et al. All foot-and-mouth disease virus serotypes initiate protein synthesis at two separate AUGs. Nucleic Acids Res.,1987,15:3305-3315.
    Sanz-Parra A., Sobrino F., Ley V. Infection with foot-andmouth disease virus results in a rapid reduction in MHC class I surface expression. J. Gen. Virol.,1998,79: 433-436.
    Scherr M. et al. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood,2003,101:1566-1569.
    Schlegel A. et al. Cellular origin and ultrastructure of membranes induced during poliovirus infection. J. Virol.,1996,70:6576-6588.
    Sen G et al. Restriction enzyme-generated siRNA (REGS) vectors and libraries. Nat. Genet.,2004,36:183-189.
    Sen G. C. Viruses and interferons. Annu. Rev. Microbiol.,2001,55:255-281.
    Shen C. et al. Gene silencing by adenovirus-delivered siRNA. FEBS Letters,2003, 539:111-114
    Shirane D. et al. Enzymatic production of RNAi libraries from cDNAs. Nat. Genet., 2004,36:190-196.
    Shuai K. Interferon-activated signal transduction to the nucleus. Curr. Opin. Cell. Biol.,1994,6:253-259.
    Silva J. M. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat. Genet.,2005,37:1281-1288.
    Stege A. et al. Stable and complete overcoming of MDRl/P-glycoprotein-mediated multi-drug resistance in human gastric carcinoma cells by RNA interference cancer. Gene Therapy,2004,11:699-706
    Strebel K., Beck E. A second protease of foot-and-mouth disease virus. J. Virol.,1986, 58:893-899.
    Strohmaier K., Franze R., Adam K. H. Location and characterization of the antigenic portion of the FMDV immunizing protein. J. Gen. Virol.,1982,59:295-306.
    Suhy D. A., Giddings T. H., Jr. Kirkegaard K. Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins:an autophagy-like origin for virus-induced vesicles. J. Virol.,2000,74:8953-8965.
    Takaoka A., Yanai H. Interferon signaling network in innate defense. Cell Microbiol., 2006,8:907-922.
    Taubert H. et al. Expression of the stem cell self-renewal gene Hiwi and risk of tumour-related death in patients with soft-tissue sarcoma. Oncogene,2007,26: 1098-1100.
    Talloczy Z., Virgin H. IV., Levine B. PKR-dependent xenophagic degradation of herpes simplex virus type I. Autophagy,2006,2:24-29.
    Valentine A. D. et al. Mood and cognitive side effects of interferon-alpha therapy. Semin Oncol.,1998,25:39-47
    van Kuppeveld F. J. et al. Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J.,1997a,16:3519-3532.
    van Kuppeveld F. J. et al. Structure-function analysis of coxsackie B3 virus protein 2B. Virology,1997b,227:111-118.
    Vanhecke D., Janitz M. Functional genomics using High-throughput RNA interference. Drug Discovery Today,2005,10:205-212.
    Verdaguer N. et al. Induced pocket to accommodate the cell attachment Arg-Gly-Asp motif in a neutralizing antibody against foot-and-mouth-disease virus. J. Mol. Biol., 1996,256:364-376.
    Verdaguer N. et al. A similar pattern of interaction for different antibodies with a major antigenic site of foot-and-mouth disease virus:implications for intratypic antigenic variation. J. Virol.,1998,72:739-748.
    Villaverde A., Martinez-Salas E., Domingo E.3D gene of foot-and-mouth disease virus. Conservation by convergence of average sequences. J. Mol. Biol.,1988,204: 771-776.
    Wang E., Pfeffer L. M., Tamm I. Interferon increases the abundance of submembranous microfilaments in HeLa-S3 cells in suspension culture. Proc. Natl. Acad. Sci. U.S.A.1981,78:6281-6285.
    Wang Pengyan et al. Inhibition of foot-and-mouth disease virus replication in vitro and in vivo by small interfering RNA. Virology Journal,2008,5:86.
    Wargelius A., Ellingsen S., Fjose A. Double-stranded RNA induces specific developmental defects in zebrafish embryos. Biochem. Biophys. Res. Commun., 1999,263:156-161.
    Watling D. et al. Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-gamma signal transduction pathway. Nature, 1993,366:166-170.
    Weizao Chen et al. Adenovirus-Mediated RNA Interference against Foot-and-Mouth Disease Virus Infection both In Vitro and In Vivo. J. Virol.,2006,80:3559-3566.
    Wianny F., Zemicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol.,2000,2:70-75.
    Willians R. W., Rubin G. W. Argonantel is required for efficient RNA interference in colon caner. Proc. Natl. Acad. Sci. U.S.A.,2003,99:6889-6894.
    Wimmer, E. Genome-linked proteins of viruses. Cell,1982,28:199-201.
    Yan Zeng, Eric J. Wagner, Bryan R. Cullen. Both Natural and Designed Micro RNAs Can Inhibit the Expression of Cognate mRNAs When Expressed in Human Cells. Molecular Cell,2002,9:1327-1333.
    Zamore P. D. Ancient pathways programmed by small RNAs. Science,2002,296: 1265-1269.
    Zamore P. D. RNA silencing:genomic defence with a slice of pi. Nature,2007,446: 864-865.
    Zhang H. D. et al. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J.,2002,21:5875-5885.
    Zhang H. D. et al. Single Processing Center models for human Dicer and bacterial RNaseⅢ. Cell,2004,118:57-68.
    Zhang K., Kumar R. Interferon-alpha inhibits cyclin E-and cyclin Dl-dependent CDK-2 kinase activity associated with RB and E2F in Daudi cells. Biochem. BioPhys. Res. Commun.,1994,200:522-528.
    Zhang P. H. et al. Experimental research of targeting hTERT gene inhibited in hepatocellular carcinoma therapy by RNA interference. Chinese journal of cancer, 2004,23:619-625 (In Chinese)
    Ziegler E., et al.Foot-and-mouth disease virus Lb proteinase can stimulate rhinovirus and enterovirus IRES-driven translation and cleave several proteins of cellular and viral origin. J. Virol.,1995,69:65-3474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700