广西种猪场猪瘟监控方法的建立及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪瘟(Hog Cholera,HC)又称古典猪瘟(Classical Swine Fever,CSF),是由猪瘟病毒(Classical Swine Fever Virus,CSFV)引起的一种高度接触性传染病,也是世界范围内危害最严重的猪病之一,被国际兽疫局(OIE)列为必须通报的动物传染病,我国将其列为一类传染病。猪和野猪是其唯一宿主。目前CSF仍在我国持续流行,免疫失败现象时有发生,给CSF防控带来困难。本试验旨在建立一套适合广西猪群的CSF防控模式,为大面积控制和消灭该病提供科学依据。
     一、猪瘟病毒抗体检测
     用阻断ELISA方法从不同免疫剂量、母猪的不同胎次和母源抗体消长规律及抗体持续期4个方面对猪瘟病毒抗体进行检测,同时将正向IHA和阻断ELISA两种抗体检测方法在不同猪场应用并比较,结果如下:
     A.分别用CSF(脾淋源和细胞源)活疫苗(各一个批次)以1、1.5、2和3头份4种不同的剂量分别免疫同一个猪场的80只断奶仔猪,检测仔猪体内CSF抗体上升速度。结果显示,免疫剂量2头份的仔猪抗体上升速度最快,其次是剂量为3头份的仔猪,最慢是1头份和1.5头份的仔猪。CSF脾淋源活疫苗免疫效果略优于CSF细胞源活疫苗。
     B.对某个猪场的产后1个月的1-5胎次的母猪用CSF脾淋源活疫苗以2头份剂量各免疫6头,检测免疫前后各胎次母猪CSF抗体变化情况。结果5胎次母猪抗体上升最快,其次是4胎次母猪,3胎次母猪第三,1胎次母猪抗体上升最慢。
     C.通过对同一个猪场的1-5胎次母猪产后40d和其所产仔猪出生后40d内母源抗体消长情况作比较,得知母猪产后40d的抗体滴度平均比仔猪高6.02-11.2%,仔猪的抗体水平与母猪的抗体水平呈正相关。母猪和仔猪的抗体均随着哺乳期的推移逐渐下降,并且仔猪母源抗体衰减速度比母猪抗体衰减速度快。产后10d、20d、30d和40d的母猪的抗体阳性率分别为100%、96%、85%和76%,胎次越高,抗体水平也越高。仔猪在出生10d、20d、30d和40d的抗体阳性率分别82%、74%、66%和46%。抗体表现阴性的猪不能阻止CSF野毒的侵袭,且有排毒和散毒危险。在产后20d时有4%母猪不能阻止CSF野毒的侵袭,到产后40d时有24%的母猪不能阻止CSF野毒的侵袭;对仔猪来说,40d时CSF抗体阳性率仅为46%,需进行CSF疫苗免疫。
     D.用脾淋源CSF活疫苗以1头份的剂量免疫一个猪场25日龄的断奶仔猪20头,在免疫后4d,没有1份猪血清抗体达到阳性,免疫后10d~80d(间隔10d)的抗体阳性率平均分别是为43%、58%、76%、100%、85%、66%、48%和32%,免疫后40d抗体达到最高峰。
     E.用CSF正向IHA检测广西5个种猪场800份不同生长发育阶段的猪血清CSF抗体水平,用阻断ELISA方法检测对2个种猪场304份不同阶段的猪血清中CSF抗体水平,并比较两种方法在CSF抗体检测上的差异,结果显示,两种方法均可用于猪场常规CSF抗体监测,将这两种抗体滴度值之间进行平行比较,两者复合性不高,仅为62%左右,但ELISA的敏感性明显高于IHA。
     二、血清中猪瘟野毒感染调查及血清抗体与猪瘟病毒Erms之间的关系探讨
     用CSFV糖蛋白Erns ELISA试剂盒检测2006年6个种猪场1614份猪血清,发现广西种猪场CSF野毒感染情况严重,平均阳性率达25.22%(407/1614);同时将CSF两种抗体(IHA和阻断ELISA)滴度值按高低分别糖蛋白Erms阳性率之间进行比较,将IHA和阻断ELISA抗体滴度值按高低,分别与糖蛋白Ems阳性率之间进行比较,发现在两种检测方法的任何一个抗体滴度均可出现糖蛋白Ems阳性,抗体滴度值与糖蛋白Ems阳性率没有直接的线性关系,在抗体滴度值偏低或偏高时,糖蛋白Ems的阳性率会高些。
     三、猪群猪瘟病毒(CSFV)检测
     分别用CSFV糖蛋白Ems (gp44/48)ELISA、CSF抗原ELISA、RT-PCR和荧光抗体染色法四种方法对广西种猪群进行CSFV检测和比较,结果如下:
     2006-2007年用CSF抗原ELISA共检测850份活种猪的全血样品,阳性76份,阳性率为8.94%(76/850);2005-2007年用RT-PCR方法检测病死猪病料434份,阳性44份,阳性率为10.14%(44/434),公猪精液1317份,阳性51份,阳性率为3.87%(51/1317),检测母猪扁桃体867份,阳性23份,阳性率为2.65%(23/867);2006年用荧光抗体染色法检测250份猪扁桃体,阳性43份,阳性率为17.2%(43/250),2007检测250份猪扁桃体全部为阴性。
     四、几种检测活猪感染猪瘟病毒的方法比较
     分别用CSFV糖蛋白Ems (gp44/48)ELISA、CSF抗原ELISA、RT-PCR和荧光抗体染色法四种方法这四种方法对2个猪场的血清、扁桃体、全血样品进行一一对应CSFV检测和比较,结果显示,荧光抗体染色法检出率最高,RT-PCR方法的次之,CSF抗原ELISA方法第三,但重复性最好,CSFV糖蛋白Erms检出率最低,但仍可筛选出感染CSF野毒猪,与CSF抗原ELISA方法的符合性达75%;三种样品中用扁桃体检测重复性最好。
     通过淘汰CSFV阳性猪,CSF的发病率逐渐下降,病料中CSFV阳性率从2004年的27.45%下降到2007年的2.25%;母猪CSFV阳性率从2005年的8.11%下降到2007年的0.3%,种公猪精液中CSFV的阳性率从2005年的6.67%下降到2007年的O。
Hog cholera (HC), also known as the classical swine fever (CSF), is a highly contagious disease of pigs caused by classical swine fever virus (CSFV). It is a listed disease of the World Organization for Animal Health (OIE). The only natural hosts of CSF include the domestic pigs and wild boars. At present CSF is still prevalent in China, and immunity failures have been reported frequently, which makes it difficult to defend the CSF. The objective of this study was to establish a prevention and control model against CSFV spread in the pig farms in Guangxi.
     Firstly, CSFV antibodies levels in the sera of pigs from the different immunity dosages and births, as well as maternal antibodies, were investigated to establish the reasonable immunization procedure with the blocking ELISA method. At the same time, two methods, blocking ELISA and forward IHA, were applied in different pig farms and the results were as follows:
     A. CSF live vaccines derived from spleens and cells were used to immunize 80 weaned pigs in the same farm with 4 different dosages (1,1.5,2 and 3 shares), respectively and CSFV antibody levels in piglets were examined. The results showed that piglets with the fastest increasing speed of antibodies were those immunized with the dosage of 2 shares, followed by the piglets immunized with the dosage of 3 shares, and piglets with the slowest increasing speed of antibodies were those immunized with 1 and 1.5 share of dosages. And CSF live vaccines derived from spleen were better than that of cell origin.
     B. Six one-month-old sows with 1-5 births received the dosages of 2 shares of the CSF live vaccines derived from spleens.The antibody changes around the immune time were detected in the sows with different births. The result indicated that the increasing rate of antibodies in the sows with 5 births was fastest, the second was sows with 4 births, the third was sows with 3 births, and that in the sows with one birth was the slowest.
     C. The antibody levels in the sows with 1-5 births postpartum 40d and 40-days-old piglets in the same pig farm were detected. It is found that the former was higher by 6.02~11.2% than the latter. The levels of antibodies between piglets and sows showed direct correlation. Antibodies of both were dropped along with the duration of lactation period and the dropping speed of maternal antibodies in piglets was much faster than that in sows. In the sows positive rates of antibody were 100%,96%,85% and 76%, respectively at postpartum 10d,20d,30d and 40d. The sows with the higher birth, got higher level of antibody. In the piglets the positive rates of antibody were 82%,74%,66% and 46%, accordingly. Pigs with negative antibody could not prevent against wild CSFV infection and there was a risk of excreting and diffusing CSFV. Only 4% sows couldn't prevent against wild CSFV infection at the postpartum 20d and 24% at 40d postpartum. The positive rate of antibody against CSFV was only 46% in piglets at 40d postpartum, and therefore CSF vaccines for piglets were in need.
     D. Twenty 25-days-old weaned pigs were injected CSF live vaccines derived from spleens with doseage of 1 share in a farm. The antibody changes around the immune time were detected in piglets. It were found that there was no positive antibody at 4d.The positive rates of antibody were 43%,58%,76%,100%,85%,66%,48%and 32% respectively from 10d to 80d at regular intervals(an interval of 10 days) and it was highest at 40d.
     E. Eight hundreds of sera samples from the different growth stages of pigs in five pig farms of Guangxi were collected and antibody levels were detected using IHA method. Three hundreds and four samples from two pig farms in Guangxi of that were detected by the blocking ELISA test. The difference between the two methods was compared at the same time. The results showed that both methods could be used for detection of antibodies against CSFV, and there was only about 62% coherence between the antibodies titers by the two methods on parallel. The sensitivity of blocking ELISA was higher than that of IHA.
     Secondly,1614 sera samples from six boar farms in 2006 were detected for CSFV glycoprotein Erns by ELISA kit to discuss relationship between serum antibodies and the positive rate of CSF Glycoprotein Erns (gp44/48).It was found that pig farms in Guangxi were infected by wild CSFV, and the average positive rate was 25.22%(407/1614). Comparing the IHA and ELISA antibodies with positive rate of glycoprotein Erns, it was found that any antibody titer of the two methods without exception might appear positive glycoprotein Ems and there was no direct linear relationship between them, but when sera antibody titers were lower or higher, it was also higher to the positive rate of glycoprotein Ems.
     Thirdly,CSFV was detected in Guangxi herd, and the results by using CSFV glycoprotein Ems (gp44/48) ELISA, CSFV antigen ELISA, RT-PCR and fluorescent antibody dying technique were compared. At the same time the glycoprotein Ems antibody levels by forward IHA and blocking ELISA were compared. The results were as follows:
     850 whole blood samples were detected by CSFV antigen ELISA test from 2006 to 2007 and the positive rate was 8.94%(76/850). From 2005 to 2007, by using RT-PCR method 434 samples of organic tissues from pigs died of illness were detected and got 10.14% positive rate (44/434).Besides, the positive rate was 3.87%(51/1317) in 1317 samples of boar semens and 2.65% in the sow tonsils (23/867).250 samples detected with fluorescent antibody dying method and the positive rate wasl7.2%(43/250) in 2006 and 200 samples of pig tonsils were negative in 2007.
     Fourthly,the samples of sera, tonsil and the whole blood from two pig farms were detected, respectively, by using CSFV glycoprotein Ems (gp44/48) ELISA, CSFV antigen ELISA, RT-PCR and fluorescent antibody dying technique. The results showed that fluorescent antibody dying technique got the highest positive percentage, and RT-PCR was the second. CSF antigen ELISA method got the third, but had the best reproducibility. Though CSFV glycoprotein Ems ELISA was the lowest positive percentage, it could determine the pigs infected by wild CSFV and there was 75% consistency with the CSF antigen ELISA. Tonsil got the best repeatability among the three samples for testing.
     The incidence of CSF decreased gradually by eliminating CSFV-positive pigs. The positive rates decreased from 27.45% in 2004 to 2.25% in 2007 in the pathological samples, from 8.11% in 2005 to 0.3% in 2007 in sows and from 6.67% in 2005 to 0 in 2007 in boar semens.
引文
[1]殷震,刘景华.动物病毒学(第二版)[M].北京;科技出版社,1997:652-664.
    [2]Edwards S,Fukusho A,Lefevern P C,et al. Classical Swine Fever:the global situation[J]. Veterinary Microbiology,2000,73:103-119.
    [3]王琴.猪瘟病毒流行病学、病原致病特性及CSF综合防制研究[J].中国农业科技导报,2006,8(5):13-18.
    [4]Laddomada A.Incidene and control of CSF in wild boar in Europe[J].Vet.Microbiol,2000, 73:121-130.
    [5]Griot C, Vanzetti T, Scheiss et al. Classical swine fever in wild boar:a challenge for any veterinary service.USAHA Proceeding.1999.
    [6]Frit zemeier J, Teufert J, Greiser-Wilkel, et al. Epidemiology of classical swine fever in Germany in the 1990s[J]. Vet. Microbiol,2000,77(1-2):29-41.
    [7]方清泉.荷兰扑灭猪瘟考察报告书.家禽世界现代畜殖合订本,1998,8:63-66.
    [8]谢庆阁,翟中和.畜禽重大疫病免疫防制研究进展[M].北京:中国农业科技出版社,1996.64-92.
    [9]王在时.我国猪瘟长期持续存在的根源与综合防治技术对策.福建省畜牧兽医学会第十次会员 代表大会暨2007年学术年会和闽台畜牧兽医学术论坛[M].2007年10月,福建.
    [10]Tu Changchun,Lu Zongji,Li Hongwei, et al. Proceedings of Sino-Danishworkshop on animal husbandry and veterinary medicine, China:Changchun,2000.
    [11]吕宗吉,涂长春,余兴龙,吴健敏,李月红,马刚,张茂林.我国CSF的流行病学现状分析[J].中国预防兽医学报,2001,23(4):300-303.
    [12]丘惠深.猪瘟的持续性感染的根源在于带毒母猪[J].养猪,2004,3:29-30.
    [13]刘有昌,金萍,王传彬,王莉.监测与淘汰带毒种猪在猪瘟防制中的重要意义[J].养猪,2005,5:33-34.
    [14]Greiser—Wilke I,Dreier S, Haas L, et al. Genetic typing of classical swine fever viruse—a review[J]. DtschTierarztl W ochenschr,2006,113:134-138.
    [15]Moennig V, Floegel-Niesmann G, Greiser-Wilke I. Clinical 14 signs and epidemiology of classical swine fever:a review of new knowledge[J]. Vet J,2003,165:1-2.
    [16]Paton D, McGoldrick A, Grieser—Wilke I, et al. Genetic typing of classical swine fever virus[J].Vet Microbiol,2000,73:137-157.
    [17]Lowings P, Ibata G, N eedham J, et al. Classical swine fever virus diversity and evolution [J]. J Gen Virol,1996,77(6):1311-1321.
    [18]Lowings P, Ibata G, DeM ia GM, et al. Classical swine fever in Sardinia:epidemiology of recent outbreaks [J]. Epidemiol Infect,1999,122 (3):553-559.
    [19]Diazde Arce H, N unez J I, Ganges L, et al. Molecular epidemiology of classical swine fever in Cuba[J]. Virus Res,1999,64(1):61-67.
    [20]Biagetti M, GreiserW ilke I, Rutili D. Molecular epidemiology of classical swine fever in Italy[J]. Vet Microbiol,2001,83 (3):205-215.
    [21]Harasawa R, Giangaspero M. Genetic variation in the 5'end and NS5B regions of classical swine fever virus genome among Japanese isolates[J]. Microbiol Immunol,1999,43:373-379.
    [22]Sakoda Y, Ozawa S, Damrongwatanapokin S, et al.Genetic heterogeneity of porcine and ruminant pestiviruses mainly isolated in Japan[J].Vet Microbiol,1999,65:75-86.
    [23]Paton D, McGoldrick A, Grieser-Wilkel et al.Genetic typing of classical swine fever virus[J].Vet Microbiol,2000,73:137-157.
    [24]Sakoda, Y, Ozawa, S., Damrongwatanopokin, S., Sato, M., Ishikawa, K, Fukusho, A.Genetic herterogeneity of porcine and ruminant viruses mainly isolated in Japan[J]. Vet. Microbiol. 1999,65,75-86.
    [25]王琴.我国猪瘟病毒流行毒株致病性分析及流行病学信息系统的建立与应用[A].中国农业大学博士学位论文,2006年.
    [26]Paton D J, Greiser—Wilke I. Classical swine fever—an update[J]. Research in Veterinary Science,2003,75:169-178.
    [27]韩雪清,刘湘涛,赵启祖,刘伯华,马军武,李明晖,鄂承钧,刘在新,李健强,李忠润,谢庆阁.猪瘟病毒遗传发生关系分析[J].中国兽医科技,1999,29(6):3-6.
    [28]Tu C, Lu Z, Li H, Yu X, Liu X, Li Y, Zhang H, Yin Z. Phylogenetic comparison of classical swine fever virus in China[J].Virus Res.2001,81:29-37.
    [29]涂长春.猪瘟的国际流行态势、我国现状及防制对策[J].中国农业科学,2003,36(8):955-960.
    [30]吕宗吉,李红卫,涂长春,余兴龙、吴健敏,李月红,殷震.我国部分地区猪瘟病毒流行株的基因差异[J].中国兽医学报,2000,20(4):313-316.
    [31]吴健敏,蒋冬福,韦志峰,杜坚,吕宗吉,李月红,涂长春.广西猪瘟流行现状的调查分析[J].中国兽医科技,2002,32(2):16-18.
    [32]宣长和,孙福先,朱战波,王亚军,武瑞,葛得江,谢红霞.猪病学(第二版)[M].北京:中国农业科学技术出版社,2003:1-12.
    [33]Susa M, Konig M, Saalmtiller A, et al.Pathogenesis of classical swine fever:B-lymphocyte deficiency caused by hog cholera virus[J]. Journal of Virology,1992,66(2);1171-1175.
    [34]Robert Stark, T illmann Rumenapf, GregorM eyers. Short Communications:Genomic Localization of Hog Cholera Virus Glycoproteins [J]. Virology,1990,174:286-289.
    [35]陆宇,陈建国,丁明孝.猪瘟病毒及其疫苗研究进展[J].中国病毒学,1996,11(3):201-207.
    [36]Thiel H J, Stark R, W eiland E et al. Hog cholera virus:molecular composition of virions from pestivirus[J]. Journal of Virology,1991,65:4705-4712.
    [37]Schneider R, U nger G, Stark R et al. Identification of a structural glycoprotein of an RNA virus as ribonuclease[J]. Sci,1993,261:1169-1171.
    [38]Huslt M M, H imes G, New bigin E et al. Glycoprotein E2 of classcial swine fever virus: expression in insect cell and identification as a ribonuclease [J].Virology,1994,200:558-565.
    [39]Bruschke C J, Julst M M, Moormann R J et al.Glycoprotein Erns of pestiviruses induces apoptosis lymphocytes of several species [J]. J V irol,1997,71 (9):6692-6696.
    [40]Hulst M M,Gennip H G P, Moormann R J M, et al. Passage of classical swine fever virus in cultured swine kidney cells selects virus variants that bind to heparin sulfate due to a single amino acid change in envelope protein Erns [J]. Journal of Virology,2000,74(20):9553-9561.
    [41]Meyers G, Saalmuller A, Buttner M. Mutations abrogating the Rnase activity in glycoprotein E(rns) of the pest virus classical swine fever virus [J]. Journal of Virology,1999,73 (12): 10224-10235.
    [42]Koning M, L engsfeld T, Pauly T et al. Classical swine fever virus:independent induction of protective immunity by two structural glycoprotein[J].Journal of Virology,1995,10:6479-6488.
    [43]Weiland E R,Ahl R, Stark R et al. A second envelop glycoprotein mediates neutralizat ion of a pestitivirus hog cholera virus [J]. Journal of Virology,1992,66:3677-3682.
    [44]Wensvoort G. Topographical and functional mapping of epitopes on hog cholera virus with monoclonal antibodies[J]. J Gen Virol,1989:70:2865-2876.
    [45]Van Rijn PA. Van Gennip RG P, de Meijer E J, et al. A preliminary map of epitopes on envelope glycoprotein E1 of HCV strain Brescia[J]. Vet Microbiol,1992,33:221-230.
    [46]Van Rijn P A, Miedema G K W, Wensvoort G, et al. Antigenic structure of envelope glycoprotein E1 of hog cholera virus[J]. Journal of Virology,1994,68:3934-3942
    [47]Van Zijl M,Wensvoort G, DeKluyver E,et al. Live attenuated pseudorabies virus expressing envelope glycoprotein El of hog cholera virus protects swine against both pseudorabies and hog cholera [J]. Journal of Virology,1991,65:2761-2765.
    [48]Van Rijn PA, Bossers A,Wensvoort G, et al.Classical swine fever virus(CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge [J]. J Gen Virol,1996,77(11):2737-2745.
    [49]Lin Min, Lin F, MLlory M, et al. Deletions of structural glycoprotein E2 of classical swine fever virus strain alfort/187 resolve a linear epitope of monoclonal antibody WH303 and the minimal N terminal domain essential for binding immunoglobulin Gantibodies of a pig hyperimmuneserum [J]. Journal of Virology,2000,74(2):11619-11625.
    [50]Yu M, Wang L F, Shiell B J,et al.Fine mapping of a C-ter-minallinearepitope highly conserved among the major enevelope glycoprotein E2 (gp51togp54) of different pestiviruses [J].Virology, 1996,222(1):289-292.
    [51]Kimman T G, Bianchi A T J, W ensvoo rt G et al. Cellular immune response to hog cholera virus(HCV):T cells of immune pigs proliferate in vitro upon stimulation with live HCV, but the El envelope glycoprotein is not a major T cell antigen[J]. Journal of Virology,1993,67: 2922-2927.
    [52]李红卫,刘相涛,李小兵,韩雪清,殷震.我国猪瘟病毒兔化弱毒株囊膜糖蛋白E0基因的克隆及序列测定[J].中国病毒学,1999,14(2):169-173.
    [53]金扩世,涂长春,殷震.CSF病毒保护性囊膜糖蛋白E1基因的研究进展[J].病毒学报,1996,12(3):287-289.
    [54]Elbers, K., Tautz, N., Becher, P., Ru$ menapf, T.& Thiel, H.-J., Processing in the Pestivirus E2-NS2 region:identifcation of the nonstructural proteins p7 and E2-p7[J]. Journal of Virology, 1996,70:4131-4135.
    [55]Meyers, G, Thiel, H.-J., Cytopathogenicity of classical swine fever virus caused by defective interfering particles[J]. Journal of Virology,1995,69:3683-3689.
    [56]Moser, P. Stettler, J.-D. Tratschin and M.A. Hofinann., Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus[J]. Journal of Virology.1999,73:778-7794
    [57]Kummerer, B.M., Meyers, G, Correlation between point mutations in NS2 and the viability and cytopathogenicity of bovine viral diarrhea virus strain Oregon analyzed with the infections cDNA clone[J]. Journal of Virology.2000:74,390-400.
    [58]甘盂侯,杨汉春.中国猪病学[M].北京:中国农业出版社,2005:149~168.
    [59]中华人民共和国国标,GB16551—1996猪瘟检疫技术规范。
    [60]国家兽医局编著,哺乳动物、禽、蜜蜂A和B类疾病诊断试验和疫苗标准手册(第三版)[M].青岛:青岛市新闻出版局准印证(98)67号,1996.128-132.
    [61]费恩阁,李德昌,丁壮主编.动物疫病学(第一版)[M].北京:中国农业出版社,2004.250-259.
    [62]蔡宝祥主编.家畜传染病(第四版)[M].北京:中国农业出版社,2001.383-388.
    [63](美)B.E.斯特劳,(加)S.D.阿莱尔,(美)W.L.蒙加林,(英)D.L.泰勒,等.猪病学(第八版)北京:中国农业大学出版社,2000.165.
    [64]周宗元,方元,顾志香等.应用HRP-SPR-ELISA检测CSFV抗体的研究[J].兽医大学学报,1987,7(4):391-396.
    [65]周广森,王学玲,苗志兰,孙丽娟.用单克隆抗体纯化酶联免疫吸附试验监测猪瘟抗体发现隐性CSF[J]畜牧兽医学报,1997,28(4):336-341.
    [66]黄俊明,杨奇伟.应用斑点ELISA检测猪瘟血清抗体的研究[J].中国畜禽传染病,1991,322-27.
    [67]Clavijo A, L in M, R iva J, et al. App lication of competitive enzymelinked immuno so rbent assay fo r the serologic diagnosis of classical swine fever virus infection [J]. J V et Diagn Invest,2001,13 (4):357-360.
    [68]Clavijo A, L in M, R iva J, et al. Development of a competitiveEL ISA using a truncated E2 recombinant protein as antigen for detection of antibodies to classical swine fever virus [J]. Res Vet Sci,2001,70(1):1-7.
    [69]张富强,李志华,张念祖.竞争性ELISA检测猪瘟病毒抗原[J].中国兽医杂志,2005,41(11):9-12.
    [70]Shannon A D,Morrissy C,Mackintosh S Q and Westbury, H.A,Detection of hog cholera virus antigens in experimentally infected pigs using an antigen-capture ELISA[J].Vet Microbiology,1993,34(3):233-248.
    [71]刘建文,余兴龙,张丽颖,涂长春.单克隆抗体捕捉猪瘟病毒抗原ELISA方法的建立[J].畜牧兽医学报,2006,37(5):474-479.
    [72]Dahle J, Schagemann G, Moennig V, et al. Clinical, virological and serological findings after intranasal inoculation of pigs with bovine viral diarrhoea virus and subsequent intranasal challenge with hg cholera virus [J]. Zentralbl Veterinarmed B,1993,40(1):46-54.
    [73]Wensvoort G, Bloemraad M, Terpstra C. An enzyme immunoassay employing monoclonal antibodies and detecting specifically antibodies to classical swine fever virus [J]. Vet Microbiol, 1988,17(2):129-140.
    [74]李素,李尚波,王文成,苗玉和,马振宇,马秀玲.阻断ELISA与中和试验检测猪瘟疫苗免疫猪血清抗体的比较[J].动物医学进展,2007,28(10):40-43
    [75]丘惠深,王在时,方国安.猪瘟单克隆抗体诊断试剂的研究[J].中国预防兽医学报,1991,(6):20-26.
    [76]臧金灿,樊国燕,乔宏兴,丁明星RT-PCR技术检测河南省猪瘟病毒的研究[J].安徽农业科学,2006,34(24):6398-6399.
    [77]谢志勤,谢芝勋,廖敏,邓显文,庞耀珊,刘加波,唐小飞,何竞铭,唐翠英RT-PCR检测猪瘟病毒方法的建立与应用[J].畜牧与兽医,2002,34(11):11-14.
    [78]罗廷荣,莫扬,吴文德,黄玉华,黄伟坚,秦爱珍,刘芳,温荣辉,陆芹章,余克伦.RT-PCR技术检测猪瘟病毒的应用研究[J].中国预防兽医学报,2004,26(4):307-309,312.
    [79]罗廷荣,孙敬锋,莫扬,刘芳,黄伟坚,陆芹章,温荣辉,秦爱珍,余克伦.RT-PCR检测健康猪扁桃体和流产死胎猪瘟病毒的应用及RFLP分析[J].中国预防兽医学报,2004,26(3):191-195.
    [80]Barlic-Maganja D,Grom J.Highly sensitive one-tube RT-PCR and microplate hybridisation assay for the detection and for the discrimination of classical swine fever virus from other pestiviruses[J].J Virol Methods,2001,95(1-2):101-110.
    [81]Sand-Vik T, Paton D J, Lowings P,J.Detection and identification of ruminal andporcine pestiviruses by nested amplification 5'untranslated coding regions[J].Journal of Virological Methods,1997,64:43-56.
    [82]Goldrick M A, Lowings,J P,Ibala G. Anovel approach to the detection of classicalswine fever virus by RT-PCR with a fluorgenic probe (Tagman) [J].Journal ofVirological Methods,1998,72:125-135.
    [83]胡建和,王天有,刘保国,李培庆,刘湘涛,谢庆阁RT-PCR和nested-PCR技术在猪瘟病毒检测中的应用[J].甘肃畜牧兽医,2003.168(1):2-4.
    [84]魏淑英,张启迪,刘焕奇,王斌,潘宗海.巢式PCR技术在CSF病毒检测中的应用[J].畜禽 业,2008,5:6-8.
    [85]周绪斌,王新平,宣华,涂长春.鉴别牛病毒性腹泻病毒和猪瘟病毒的复合PCR方法及其应用[J].中国兽医学报,2002,(6):173-179.
    [86]温国元,万超,潘兹书,张楚瑜.应用荧光定量PCR技术快速定量检测猪瘟病毒[J].武汉大学学报(理学版)[J].2004,(6):746-750.
    [87]涂长春.中国猪瘟流行病学现状与防制研究[A].博士学位论文,北京:中国农业大学,2004.
    [88]丘惠深,郎洪武,王在时.CSF兔化弱毒疫苗与我国近年猪瘟野毒的免疫保护相关性试验[M].中国兽药杂志,1997,31(3):1-3.
    [89]丘惠深.猪瘟兔化弱毒疫苗效力与安全性,中国畜牧报,2004年/02月/29日/第010版/
    [90]吴楚泓.猪瘟疫苗免疫程序探讨[J],中国兽医科技,2000,30(4):35-36.
    [91]蔡葵蒸,张明林,柴君秀,周学,靳国琴,吕世文.猪瘟威胁区猪场仔猪免疫程序的探讨[J].中国兽医科技,2002,32(3):22-24.
    [92]杨林,孙刚,赵春泰,赵晓春.黑龙江省猪瘟免疫接种的研究(Ⅰ)-种母猪猪瘟免疫程序的研究[J].黑龙江畜牧兽医,2004,10:47-48.
    [93]李纪平.种猪群中重要疾病的控制与净化[J].河北畜牧兽医,2005,21(5):22-24.
    [94]宁宜宝,王琴,赵耘.猪瘟病毒持续性感染与猪瘟预防控制[J].中国兽医杂志,2005,39(5):31-35.
    [95]蔡宝祥.当前我国猪瘟防制中存在的问题和对策—猪的重要传染病防治研究新成果[A].中国畜牧兽医学会畜禽传染病分会论文集[C].重庆.2002.1-5.
    [96]门常平,项大实,薛民权,王世虎.猪瘟兔化弱毒冻干疫苗免疫程序的研究[J].中国兽医杂志,1982,9:1-3.
    [97]刘劲松,房德兴.猪瘟免疫程序的研究[J].兽医大学学报,1991,11(3):215-219.
    [98]林毅,冯金传,张道永,杨晓梅,邓小东,李力,张先慧.规模化猪场4种猪瘟免疫程序的免疫效果比较[J].中国兽医科技,2000,30(4):20-21.
    [99]丘惠深,麦志军.猪瘟不同顺序免疫的免疫效果比较[J].中国预防兽医学报,2001,23(2)125-127.
    [100]樊福好.猪瘟免疫预防不宜采用“乳前免疫”[J].养猪,2008,2:38-40.
    [101]涂长春,万遂如.我国猪瘟流行现状、原因与防制对策[J].猪世界,2003,7:10-12.
    [102]亢文华,郝俊峰,张仲秋,宁宜宝,赵德明.猪瘟综合性控制和消灭措施[J].中国畜牧兽医,2005,32(1):60-63.
    [103]陈溥言.如何应对CSF病毒的“变脸”—透视猪瘟免疫失败现象分析和防制措施[J].中国动物保健,2007,9(103):65-66,68.
    [104]Carbrey E A, et al. Persistent hog cholera infection detected during virulence typing of 135 field isolates[J]. Am J Vet Res,1980,41(6):946-949.
    [105]宁宜宝,王琴,丘惠深,张广川,宋立,赵耘、王在时,沈青春.猪瘟病毒持续感染对母猪繁殖性能及仔猪猪瘟疫苗免疫效力的影响[J].中国畜牧兽医学报,2004,35(4):449-453.
    [106]周斌,吴增坚,贾赞,陈溥言.种公猪精液中猪瘟和蓝耳病病毒混合感染的快速检测[J].畜牧与兽医,2005,37(5):1-3.
    [1]徐新红,屠益平,袁明龙,施明军,李坚,王美娟.猪瘟免疫和抗体消长规律的跟踪试验[J],上海畜牧兽医通讯,2003,3:13.
    [2]蔡葵蒸,张明林,柴君秀,周学,靳国琴.猪瘟疫苗免疫线猪所产仔猪的母源抗体检测[J],中国兽医科技,2002,2(32):27-28.
    [3]江明甫,杨红,杨晓丹.猪瘟免疫程序筛选优化研究[J],现代畜牧兽医,2008,1:29-30.
    [4]蔡葵蒸,张明林,柴君秀,周学,靳国琴,吕世文.猪瘟威胁区猪场仔猪免疫程序的探讨[J].中国兽医科技,2002,32(3):22-24.
    [5]Terpstra C.The immunity against challenge with swine fever virus of piglets from sows vaccinated with C-strain vaccine[J].Tijdschrift Voor Diergeneeskunde (Amsterdam),1977,102:1293-1298.
    [6]Van Bekkum J G.Experience in the Netherlands with the lapinized socalled Chinese(C) strain of vaccine. Eradication of classical swine fever in Hungary[M]//Proceedings of the CEC Seminaron Hog Cholera/Classical Swine Fever and African SwineFever.EUR 5904 EN,Hanover,1977:379-391.
    [7]Biront P,Leunen J,Vandeputte J.Inhibition of virus replication in the tonsilar of pigs previously vaccinated with a Chinesestrain vaccine and challenged oronasally with a virulent strainof classical swine fever virus[J]. Veterinary of Microbiology,1987,14(2):105-113.
    [8]Terpstra C,Wensvoort G.The protective value of vaccine-induced neutralising antibody titers in swine fever [J].Veterinaryof Microbiology,1988,16(2):123-128.
    [9]苗得园Herdchek猪瘟抗体ELISA试剂盒在猪瘟控制中的应用[J],中国兽医杂志,2006,42(11):50-5.
    [10]Launais M,Aynaud J M,Corthier G.Hog cholera virus:activeimmunization of piglets with the Thiverval strain in the presenceand absence of colostral passive immunity [J]. Veterinary of Microbiology,1978,3:31-43.
    [11]Mierzejewska M, Tereszczuk S, Corthier G, et al. Hog choleravirus:influence of colostral passive antibody on immune response of pig following vaccination with the rabbit adapted Chinese strain [J].Annales de Recherches Veterinaires,1977,8(3):227-240.
    [12]Mojzis M,Pollner A, et al.Evaluation of vaccine-induced maternal immunity against classical swine fever[J]. Act a Veterinarian Hungarica,2001,49(1):17-24.
    [13]Terp stra C, Robijns K G. Experience with regional vaccinationagainst swine fever in enzootic areas for limited periods using C2 strain virus [J]. T ijdsch rvoor D iergeneeskunde,1977,102:106-112.
    [14]Precausta P,Kato F,Brun A.Swine fever.Immunisation of piglets[J].Comparative Immunology, Microbiology and Infectious Diseases,1983,6(4):281-289.
    [15]李树春,何建新,李德珍,韩福祥,王威,李宏.猪瘟间接血凝试验的研究.中国兽医科技[J],1993年,23(7):3-6.
    [16]猪瘟诊断技术规程,NY/SY156—2000.
    [1]宁宜宝,王琴,赵耘.猪瘟病毒持续感染对猪瘟预防控制[J].中国兽药杂志,2005,39(5):31-35.
    [2]Tu C, Lu Z, Li H, Yu X, Liu X, Li Y, Zhang H, Yin Z. Phylogenetic comparison of classical swine fever virus in China[J]. Virus Res.2001,81:29-37.
    [3]涂长春.猪瘟的国际流行态势、我国现状及防制对策[J].中国农业科学,2003,36(8):955-960.
    [4]Hulst MM., Moormann RJ.. Inhibition of pestivirus infection in cell culture by envelope proteins Erns and E2 of classical swine fever virus:Erns and E2 interact with different receptors[J]. J Gen Virol, 1997,78:2779-2787。
    [5]De Smit A J,Van de Wetering G,Colijn E C, et al. Evaluation of an ELISA for the detection of antibodies against the Erns envelope protein of classical swine fever virus. In:De Smit AJ (Ed.), Classical Swine Fever. Efficacy of Marker Vaccines and Laboratory Diagnosis. Ph.D[C]. Thesis. Utrecht University,2000,117-131.
    [6]Floegel-Niesmann G. Classical swine fever (CSF) marker vaccine.Trial III. Evaluation of discriminatory ELISA[J]. Vet Microbiol,2001,83 (2):121-1361.
    [1]刘有昌,金萍,王传彬,王莉.监测与淘汰带毒种猪在CSF防制中的重要意义[J].养猪,2005,5:33-34.
    [2]丘惠深.CSF的持续性感染的根源在于带毒母猪[J].养猪,2004,3:29-30.
    [3]罗廷荣,莫扬,吴文德,黄玉华,黄伟坚,秦爱珍,刘芳,温荣辉,陆芹章,余克伦.RT-PCR技术检测CSF病毒的应用研究[J].中国预防兽医学报,2004,26(4):307-309,312.
    [4]王宁.CSF病毒的分子免疫学研究进展[J].中国兽医学杂志,1997,231(4):56-27.
    [5]王新平.从疑似CSF病料检出牛病毒性腹泻病毒[J].中国兽医学报,1996,16(4):341-345.
    [6]吴健敏,蒋冬福,韦志峰,杜坚,吕宗吉,李月红,涂长春.广西猪瘟流行现状的调查分析[J].中国兽医科技,2002,32(2):16-18.
    [1]臧金灿,樊国燕,乔宏兴,刘伟敏RT-PCR与兔体交叉检验猪瘟病毒比较研究[J].河南农业科学,2007,1:99-102.
    [2]胡建和,王天有,刘保国,李培庆,刘湘涛,谢庆阁RT-PCR和nested-PCR技术在猪瘟病毒检测中的应用[J].甘肃畜牧兽医,2003.168(1):2-4.
    [3]Eggen A,等.第19届国际猪病会议论文选集[C].上海:奉贤区动物疫病预防控制中心.2007,58-59.
    [4]Chiou MT,等.第19届国际猪病会议论文选集[C]上海:奉贤区动物疫病预防控制中心.2007,59---60.
    [5]鱼海琼,罗长保,林志雄,王宏.应用双抗体夹心酶联免疫吸附试验快速检测CSF病毒[A].猪的重要传染病防治研究新成果——中,国畜牧兽医学会家畜传染病学分会第五届理事会第二次全体 会议暨防检疫专业委员会第7次学术交流会论文集[C],2002,32.
    [6]刘有昌,金萍,王传彬,王莉.监测与淘汰带毒种猪在猪瘟防制中的重要意义[J].养猪,2005,5:33-34.
    [7]Cinta Pfieto, Carlos Garel'a, Isabel Simarro,et al. Temporal loeali—zation of porcine reproductive and respiratory syndrome virus in reproductive tissues of experimentally infected boars[J].Theriogenology,2003,60:1505-514.
    [8]Smit A J, Bouma A, Terpstra C,et al. Transmission of classical swine fever virus by artificial insemination [J]. Veterinary Mierobiology,1999,67:239-249.
    [1]蔡宝祥.当前我国CSF防制中存在的问题和对策[J].畜牧与兽医,2002,34(11):1-41.
    [2]钱年华,崔洪平,蒋波.当前我国猪瘟防制中存在的问题和对策[J].畜禽业,2003,9:591.
    [3]涂长春.中国猪瘟流行病学现状与防制研究[A].博士学位论文,北京:中国农业大学,2004.
    [4]丘惠深,郎洪武,王在时.CSF兔化弱毒疫苗与我国近年猪瘟野毒的免疫保护相关性试验[M].中国兽药杂志,1997,31(3):1-3.
    [5]卫秀余.新必妥增强猪瘟免疫效果试验[J].养猪,2007,1:43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700