分子伴侣Jiv90对猪瘟病毒复制调节作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子伴侣(Molecular chaperones)是一类在进化上非常保守的蛋白质家族,同时也是协助细胞在正常和胁迫条件下保持细胞内稳态的重要蛋白组分,参与许多正常的细胞生理反应过程,对蛋白质功能的发挥具有重要意义。由于在进化过程中,病毒在自然选择压力的作用下,为了保持自身基因组足够小,许多真核、原核宿主的病毒可以直接利用宿主细胞中的分子伴侣或者借助宿主细胞编码病毒所需要的分子伴侣以及一些功能蛋白,来完成病毒增殖的许多相关过程。有研究表明,分子伴侣Jiv90在猪瘟病毒(CSFV)的感染过程中起着重要的作用,这种作用可能是通过Jiv90参与调节CSFV NS2-3蛋白的切割来实现的。为了进一步研究分子伴侣Jiv90在CSFV感染过程中对病毒增殖的调节作用,本研究构建了Jiv90基因真核表达载体和抑制Jiv90基因表达的shRNA干扰载体,为进一步研究分子伴侣Jiv90基因的功能奠定基础,期望为猪瘟的防控提供新的思路。本研究获得了以下结果:
     (1)根据Jiv90基因序列和真核表达载体pEGFP-C1设计引物,经RT-PCR扩增,成功克隆得到猪Jiv90基因,回收后与pEGFP-C1载体连接,构建重组真核表达载体pEGFP-C1-Jiv90,通过酶切鉴定和测序验证所插入基因片段的正确性。经序列比对发现猪Jiv90基因与牛Jiv90基因核酸水平同源性为95%,说明该分子伴侣在两个物种间同源性极高,可能具有类似的功能。
     (2)载体转化感受态细菌进行扩增并提取质粒,微量紫外/可见分光光度计检测质粒的浓度及质量,通过脂质体法将pEGFP-C1-Jiv90转染猪脐静脉血管内皮细胞(SUVEC),倒置荧光显微镜鉴定转染效率,经G418抗性筛选得到阳性克隆。Real-time PCR检测Jiv90基因mRNA水平表达上调程度,结果显示转染组较空质粒转染组Jiv90 mRNA表达量上调约16.35倍。细胞接种CSFV Shimen株72h结果表明表达Jiv90基因的SUVEC株细胞死亡率明显高于对照组。Real-time PCR检测接种CSFV 60h后,SUVEC-Jiv90细胞株CSFV RNA表达量相对于SUVEC组上调约4.26倍。
     (3)利用软件设计针对Jiv90基因4个不同位点的RNA干扰序列,通过化学合成的方法合成正向和反向的DNA oligo ,将其退火后连接shRNA表达载体pGPU6/GFP/Neo,成功构建4个pGPU6/GFP/Neo-Jiv90 shRNA1、shRNA2、shRNA3、shRNA4干扰载体,并测序鉴定了各重组载体的正确性。使用脂质体转染方法将干扰载体转染SUVEC,同时转染针对看家基因GAPDH的干扰质粒pGPU6/GFP/Neo-GAPDHshRNA作为阳性对照,不针对任何特异基因的质粒pGPU6/GFP/Neo-NC shRNA作为阴性对照。通过G418抗性筛选获得了转染干扰载体的阳性细胞,以及对照组阳性细胞。
Molecular chaperones are highly conservative protein family in evolution, which play important roles in some functions of proteins, such as assisting the cells under normal and stressful circumstances as so to maintain cell homeostasis and participating in many physiological effect.The reason of using molecular chaperones in viruses, might be keeping their genomes small enough under the selective pressure.In order to accomplish the related processes of virus multiplication, a lot of viruses parasitized in eukaryotic and prokaryotic cells could directly use molecular chaperones in their host cells, or code the virus protein chaperones or some functional proteins. It is reported that, the molecular chaperone Jiv90 plays an important role in classical swine fever virus (CSFV) infection, which might be involved in the adjustment by the Jiv90 cleavage of CSFV NS2-3 protein.To further study the effect of the molecular chaperone Jiv90 in the infection process of CSFV, we constructed the eukaryotic expression vector pEGFP-C1-Jiv90 and siRNA vector expressing short hairpin RNA (shRNA)sections which inhibit the expression of Jiv90 gene. Results from this study formed some important basis for Jiv90 gene function research and provided some new ideas for future researches on CSF prevention. And the results as follows:
     (1)Primers were designed according to Jiv90 gene and pEGFP-C1 sequences, DNA fragments after RT-PCR recovered from agrose gel were inserted into pEGFP-C1 plasmid, successfully constructed expression vector pEGFP-C1-Jiv90. Then the recombinant plasmid was identified by restriction enzyme analysis and DNA sequencing. After the sequence alignment, it is showed that both the swine Jiv90 gene and the bovine Jiv90 gene had 95% homology at nucleic acid level, which indicated that the molecular chaperone had high homology between the two species and similar functions.
     (2)Those plasmids were amplified by transfecting the competent cells, and the concentration and purity of its solution were detected by spectrophotometer. Then the plasmid pEGFP-C1-Jiv90 was transfected into SUVEC by liposome, furthermore, the efficiency of transfection was identified by observing from the inverted fluorescence microscope, and the G418-resistant colonies were isolated and multiplied.After transfecting of pEGFP-C1-Jiv90, the mRNA expression of Jiv90 gene in SUVEC was detected by Real-time PCR, which was showed that, compared to the control groups, the experimental groups increased about 16.35 times, as means the gene expression were significantly enhanced. It is showed that cells infected with CSFV Shimen strain after 72 h, which already expressed Jiv90 gene in SUVEC, had an evidently higher mortality rate than control group.The results of Real-time PCR showed that CSFV RNA in SUVEC-Jiv90 compared to the control groups increased about 4.26 times when cells infected with CSFV shimen strain after 60 h.
     (3)Through software, RNAi sequences were designed by using 4 different sites of Jiv90 gene, and according to the designed sequences, sense and anti-sence DNA oligo were chemically synthesized. In the end, the plasmid vectors pGPU6/GFP/Neo-Jiv90 shRNA1, shRNA2, shRNA3, shRNA4 were successfully constructed by annealing and cloning into pGPU6/GFP/Neo.Then the recombinant plasmids were identified by restriction enzyme analysis and DNA sequencing. Also, Interfering plasmid from GAPDH was established as positive control and interfering plasmid targeting none genes served as negative control. Then the recombinant interfering plasmids were transfected into SUVEC by liposome and the G418-resistant colonies were isolated.
引文
刘菲,程安春,曾智勇.2005.分子伴侣在病毒感染中的作用.中国兽医学报, 1:106~110
    涂亦娴,张馨玉,金华利. 2005.猪瘟病毒E2基因真核表达载体表达效率和免疫效果的比较.中国农业大学学报, 6: 37~41
    殷震,刘景华. 1997.动物病毒学(第2版).北京:科学出版社:652~664
    Agapov EV, Frolov I, Lindenbach BD, Prágai BM, Schlesinger S, Rice CM. 1998. Noncytopathic Sindbis virus RNA vectors for heterologous gene expression.Proc. Natl. Acad. Sci. U.S.A. 95: 12989~12994
    Agapov E V, Murray C L, Frolov I, Qu L, Myers T M, Rice C M. 2004.Uncleaved NS2-3 is required for production of infectious bovine viral diarrhea virus. J Virol ,78: 2414~2425
    Arts GJ, Langemeijer E, Tissingh R, Ma L, Pavliska H, Dokic K, Dooijes R, Mesi? E, Clasen R, Michiels F, van der Schueren J, Lambrecht M, Herman S, Brys R, Thys K, Hoffmann M, Tomme P, van Es H. 2003. Adenoviral vectors expressing SiRNAs for discovery and validation of gene function. Genome Res, 13(10): 2325~2332
    Bauhofer O, Summerfield A, Sakoda Y, Tratschin JD, Hofmann MA, Ruggli N. 2007. Npro of classical swine fever virus interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol. 81: 3087~3096
    Bayles DO, Annous BA, Wilkinson BJ.1996.Cold stress proteins induced in Listeria monocytogenes in response to temperature downshock and growth at low temperatures. Applied Environmental Microbiology,62(3): 1116~1119
    Behrens SE, Grassmann CW, Thiel HJ, Meyers G, Tautz N. 1998.Characterization of an autonomous subgenomic pestivirus RNA replicon. J Virol, 72(3): 2364~2372
    Belák K, Koenen F, Vanderhallen H, Mittelholzer C, Feliziani F, De Mia GM, Belák S. 2008 .Comparative studies on the pathogenicity and tissue distribution of three virulence variants of classical swine fever virus, two field isolates and one vaccine strain, with special regard to immunohistochemical investigations. Acta Vet Scand. 50: 34~39
    Borca MV, Gudmundsdottir I, Fernández-Sainz IJ, Holinka LG, Risatti GR. 2008.Patterns of cellular gene expression in swine macrophages infected with highly virulent classical swine fever virus strain Brescia. Virus Res, 138(1-2): 89~96
    Brummelkamp TR, Bernards R, Agami R. 2002. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell, 2(3): 243~247
    Bruschke C J, Hulst M M, Moormann R J M, van Rijn P A, van Oirschot J T. 1997 .Glycoprotein Erns of pestiviruses induces apoptosis in lymphocytes of several species. J Virol,71: 6692~6696
    Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA. 2001. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A, 98(17): 9742~9747
    Carrasco L. 1995. Modification of membrane permeability by animal viruses. Adv Virus Res, 45: 61~112
    Collett MS, Wiskerchen M, Welniak E, Belzer SK. 1991.Bovine viral diarrhea virus genomic organization, Arch Virol Suppl, 3: 19~27
    Caudy AA, Ketting RF, Hammond SM, Denli AM, Bathoorn AM, Tops BB, Silva JM, Myers MM, Hannon GJ, Plasterk RH. 2003. A micrococcal nuclease homologue in RNAi effector complexes .Nature, 425(6956): 411~414
    Dave RS, Pomerantz RJ. 2004. Antiviral effects of human immunodeficiency virus type 1-specific small interfering RNAs against targets conserved in select neurotropic viral strains. J Virol, 78(24): 13687~13696
    Dong XN, Chen YH Vaccine. 2007 Marker vaccine strategies and candidate CSFV marker vaccines, 25(2): 205~230
    Dykxhoorn DM, Novina CD, Sharp PA. 2003. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol,4(6): 457~467
    Edwards S. 2000 .Survival and inactivation of classical swine fever virus. Vet.Microbiol 73 (2-3):175~181
    Edwards S, Fukusho A, Lefevre P, Lipowski A, Pejsak Z., Roehe P, Westergaard J.2000.Classical swine fever the global situation. Vet. Microbiol, 73: 103~119
    Elbers K, Tautz N, Becher P, Stoll D, Rümenapf T, Thiel H J. 1996. Processing in the pestivirus E2-NS2 region: identification of proteins p7 and E2p7 .J Virol, 70: 4131~4135
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC.1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature, 391 (6669): 806~811
    Gallei A, Blome S, Gilgenbach S, Tautz N, Moennig V, Becher P. 2008. Cytopathogenicity of classical swine fever virus correlates with attenuation in the natural host. J Virol, 82: 9717~9729
    Giladi H, Ketzinel-Gilad M, Rivkin L, Felig Y, Nussbaum O, Galun E. 2003. Small interfering RNA inhibits hepatitis B virus replication in mice. Mol Ther, 8(5): 769~776
    Grassmann CW, Isken O, Tautz N, Behrens SE.2001.Genetic analysis of the pestivirus nonstructural coding region: defects in the NS5A unit can be complemented in trans. J Virol, 75(17): 7791~7802
    Guo S, Kemphues KJ. 1995. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 81(4): 611~620
    Hartl FU. 1996 .Molecular chaperones in cellular protein folding. Nature, 381(6583): 571~579
    Harada T, Tautz N, Thiel HJ. 2000. E2-p7 region of the bovine viral diarrhea virus poly protein: processing and functional studies. J Virol, 74(20): 9498~9506
    Hemann MT, Fridman JS, Zilfou JT, Hernando E, Paddison PJ, Cordon-Cardo C, Hannon GJ, Lowe SW. 2003. An Epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet, 33(3): 396~400
    Huang MN, Yu H, Moudgil KD. 2009. The Involvement of Heat-Shock Proteins in the Pathogenesis of Autoimmune Arthritis: A Critical Appraisal. Semin Arthritis Rheum, 10: 2~13
    Hulst M M , Moormann R J. 1997. Inhibition of Pestivirus infection in cell culture by envelope proteins E(rns) and E2 of classical swine fever virus: E(rns) and E2 interact with different receptors.J Gen Virol, 78: 2779~2787
    Hulst MM, Panoto FE, Hoekman A, van Gennip HG, Moormann RJ. 1998. Inactivation of the RNase activity of glycoprotein E(rns) of classical swine fever virus results in a cytopathogenic virus. J Virol, 72(1):151~157
    Ikeda R, Yoshida K, Tsukahara S, Sakamoto Y, Tanaka H, Furukawa K, Inoue I. 2005. The promyelotic leukemia zinc finger promotes osteoblastic differentiation of human mesenchymal stem cells as an upstream regulator of CBFA1. J Biol Chem, 280(9): 8523~8530
    Jacque JM, Stevenson M. 2006. The inner nuclear-envelope protein emerin regulates HIV-1 infectivity. Nature, 441: 641~645
    Ji J, Glaser A, Wernli M, Berke JM, Moradpour D, Erb P. 2008. Suppression of short interfering RNA-mediated gene silencing by the structural proteins of hepatitis C virus. J Gen Virol, 89(11): 2761~2766
    Johnson CM, Perez DR, French R, Merrick WC, Donis RO. 2001. The NS5A protein of bovine viral diarrhoea virus interacts with the alpha subunit of translation elongation factor-1.J Gen Virol, 82(12): 2935~2943
    Jorgensen R. 1990. Altered gene expression in Plants due to trans interaetions between homologous genes.Trends Biotechnol, 8(12): 340~344
    Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ. 2005. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol, 23(2): 222~226
    Koenen F, Van Caenegem G, Vermeersch JP, Vandenheede J, Deluyker H. 1996. Epidemiological characteristic of an outbreak of classical swine fever in an area of high pig density. Veterinary Record, 12: 367~371
    Krick S, Eul BG, H?nze J, Savai R, Grimminger F, Seeger W, Rose F. 2005. Role of hypoxia-inducible factor-1alpha in hypoxia-induced apoptosis of primary alveolar epithelial type II cells. Am J Respir Cell Mol Biol, 32(5): 395~403
    Kretschmer-Kazemi Far R, Sczakiel G. 2003. The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res,31(15): 4417~4424
    Kurreck J. 2009. RNA interference: from basic research to therapeutic applications.Angew Chem Int Ed Engl, 48(8): 1378~1398.
    Kümmerer BM, Tautz N, Becher P, Thiel H, Meyers G. 2000. The genetic basis for cytopathogenicity of pestiviruses.Vet. Microbiol, 77: 117~128
    Lackner T, Müller A, Pankraz A, Becher P, Thiel HJ, Gorbalenya AE, Tautz N. 2004. Temporal modulation of an autoprotease is crucial for replication and pathogenicity of an RNA virus. J Virol, 78(19): 10765~10775
    Lackner T, Müller A, K?nig M, Thiel HJ, Tautz N. 2005. Persistence of bovine viral diarrhea virus is determined by a cellular cofactor of a viral autoprotease. J Virol, 79(15): 9746~9755
    Li MJ, Bauer G, Michienzi A, Yee JK, Lee NS, Kim J, Li S, Castanotto D, Zaia J, Rossi JJ. 2003.
    Inhibition of HIV-1 infection by lentiviral vectors expressing pol III-promoted anti-HIV RNAs. Mol Ther, 8(2): 196~206
    Lindstr?m H, Lundin M, H?ggstr?m S, Persson M A. 2006. Mutations of the hepatitis C virus protein NS4B on either side of the ER membrane affect the efficiency of subgenomic replicons. Virus Res, 121(2): 169~178
    Liu J J,Wong ML and Chen PF. 1998. The recombinant nucleocapsid protein of classical swine fevervirus can act as a transcriptional regulator.Virus Res, 53(1): 75~80
    Liu YP, Berkhout B. 2009. Lentiviral delivery of RNAi effectors against HIV-1. Curr Top Med Chem, (12): 1130~1143
    Luo X, Ling D, Li T, Wan C, Zhang C, Pan Z. 2009. Classical swine fever virus Erns glycoprotein antagonizes induction of interferon-beta by double-stranded RNA. Can J Microbiol, 55 (6): 698~704
    Masaki T, Suzuki R, Murakami K, Aizaki H, Ishii K, Murayama A, Date T, Matsuura Y, Miyamura T, Wakita T, Suzuki T. 2008. Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. J Virol, 82(16): 7964~7976
    McCaffrey AP. 2009. RNA interference inhibitors of hepatitis B virus.Ann N Y Acad Sci, 1175:15~23
    Mello CC,Conte D Jr. 2004. Revealing the world of RNA interference. Nature, 431 (7006): 338~342
    Mendez E, Ruggli N, Collett M S, Rice C M. 1998. Infectious bovine viral diarrhea virus (strain NADL) RNA from stable cDNA clones: a cellular insert determines NS3 production and viral cytopathogenicity. J Virol, 72: 4737~4745
    Mette MF, Aufsatz W, vander Winden J, Matzke MA, Matzke AJ. 2000. Transcriptional silencing and promoter methylation triggered by double-stranded RNA .EMBO J,19(19): 5194~5201
    Moennig V. 2000. Introduction to classical swine fever virus,disease and control policy.Veterinary Microbiology, 73(2-3): 93~102
    Moulin H R, Seuberlich T, Bauhofer O, Bennett L C, Tratschin J D, Hofmann M A, Ruggli N. 2007. Nonstructural proteins NS2-3 and NS4A of classical swine fever virus: Essential features for infectious particle formation. Virology, 365: 376~389
    Neckers L, Tatu U. 2008 .Molecular chaperones in pathogen virulence: emerging new targets for therapy. Cell Host Microbe, 4(6): 519~527
    Omi K, Tokunaga K, Hohjoh H. 2004 .Long-lasting RNAi activity in mammalian neurons. FEBS Lett, 558(1-3): 89~95
    Randall G, Grakoui A, Rice CM. 2003. Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc Natl Acad Sci U S A, 100(1): 235~240
    Rao DD, Vorhies JS, Senzer N, Nemunaitis J. 2009. siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev, 61(9): 746~759
    Raychaudhuri S, Fontanes V, Banerjee R, Bernavichute Y, Dasgupta A. 2006 . Zuotin,a DnaJ molecular chaperone stimulates cap-independent translation in yeast. Biochem Biophys Res Commun, 350(3): 788~795
    Remy S, Nguyen TH, Ménoret S, Tesson L, Usal C, Anegon I. 2010. The use of lentiviral vectors to obtain transgenic rats.Methods Mol Biol, 597: 109~125
    Rinck G, Birghan C, Harada T, Meyers G, Thiel H J, Tautz N A. 2001 .cellular J-Domain protein modulates polyprotein processing and cytopathogenicity of a pestivirus. J Virol, 75: 9470~9482
    Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Rooney DL, Zhang M, Ihrig MM, McManus MT, Gertler FB, Scott ML, Van Parijs L. 2003. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet, 33(3): 401~406.
    Rümenapf T, Meyers G, Stark R ,Thiel H J. 1991. Molecular characterization of hog cholera virus, Arch Virol Supp, 3: 7~18.
    Siolas D, Lerner C, Burchard J, Ge W, Linsley PS, Paddison PJ, Hannon GJ, Cleary MA. 2005. Synthetic ShRNAs as potent RNAi triggers. Nat Biotechnol, 23(2): 227~231
    Stadejek T, Wang J, Ridpath J F. 1996. Comparative sequence analysis of the 5'noncoding region of classical swine fever virus strains from Europe, Asia and American. Arch Virol, 141(3-4): 771~777
    Summerfield A, Hofmann M A, Mccullough K C.1998.Low density blood granulocytic cells induced during classical swine fever are targets for virus infection.Veterinary Immunology and Immunopathology, 63: 289~301
    Sun J F,Jiang Y,Shi Z X,Yan Y J,Guo H C,He F C,Tu C C. 2008 . Alteration of PK-15 Cells after Infection by Classical Swine Fever Virus.J Proteome Res, 7(12): 5263~5269
    Sun Y, Liu DF, Wang YF, Liang BB, Cheng D, Li N, Qi QF, Zhu QH, Qiu HJ. 2010 .Generation and efficacy evaluation of a recombinant adenovirus expressing the E2 protein of classical swine fever virus . Res Vet Sci, 88(1): 77~82
    Surabhi RM, Gaynor RB. 2002. RNA interference directed against viral and cellular targets inhibits human immunodeficiency Virus Type 1 replication. J Virol, 76: 12963~12973
    Tang F, Pan Z, Zhang C. 2008.The selection pressure analysis of classical swine fever virus envelope protein genes Erns and E2. Virus Res, 131(2): 132~135
    Tang QH, Zhang YM, Fan L, Tong G, He L, Dai C. 2010. Classic swine fever virus NS2 protein leads to the induction of cell cycle arrest at S-phase and endoplasmic reticulum stress. Virol J, 7:4
    Tatu U, Helenius A. 1997. Interactions between newly synthesized glycol proteins, calnexin and a network of resident chaperones in the endoplasmic reticulum. J Cell Biol, 136(3): 555~565
    Tautz N, Meyers G, Thiel H J. 1993. Processing of poly-ubiquitin in the polyprotein of an RNA virus. Virology, 197: 74~85
    ter Brake O, Westerink JT, Berkhout B. 2010. Lentiviral vector engineering for anti-HIV RNAi gene therapy. Methods Mol Biol, 614: 201~213
    Tuschl T. 2002. Expanding small RNA interference. Nat Biotechnol, 20(5): 446~448
    Vilcek S, Greiser-Wilke I, Nettleton P, Paton D J. 2000. Cellular insertions in the NS2-3 genome region of cytopathic bovine viral diarrhoea virus (BVDV) isolates. Vet Microbiol, 77: 129~136
    Vergun LIu. 2005. Isolation of classical swine pest virus from homologous and heterologic cell lines, 67(1):59~66.
    Warrener P, Collett MS. 1995. Pestivirus NS3 (p80) protein possesses helicas activity.J Virol, 69 1720~1726
    Wang QZ, Lv YH, Diao Y, Xu R. 2008. The design of vectors for RNAi delivery system. Curr Pharm Des, 14(13): 1327~1340
    Wang P, Wang Y, Zhao Y, Zhu Z, Yu J, Wan L, Chen J, Xiao M. 2010. Classical swine fever virus NS3 enhances RNA-dependent RNA polymeraseactivity by binding to NS5B. Virus Res, 148(1-2): 17~23
    Wen G, Xue J, Shen Y, Zhang C, Pan Z. 2009 .Characterization of classical swine fever virus (CSFV) nonstructural protein 3 (NS3) helicase activity and its modulation by CSFV RNA-dependent RNA polymerase. Virus Res, 141(1): 63~70
    Xia YH, Chen L, Pan ZS, Zhang CY. 2007. A novel role of classical swine fever virus E(rns) glycoprotein in counteracting the newcastle disease virus (NDV)-mediated IFN-beta Induction. J Biochem Mol Biol, 40(5): 611~616
    Xiao M, Bai Y, Xu H, Geng X, Chen J, Wang Y, Chen J, Li B. 2008. Effect of NS3 and NS5B proteins on classical swine fever virus internal ribosome entry site-mediated translation and its host cellular translation. J Gen Virol, 89(4): 994~999
    Xiao M, Li H, Wang Y, Wang X, Wang W, Peng J, Chen J, Li B. 2006. Characterization of the N-terminal domain of classical swine fever virus RNA-dependent RNA polymeras. J Gen Virol, 87(2): 347~356
    Xu J, Mendez E, Caron PR, Lin C, Murcko M A, Collett M S, Rice C M. 1997. Bovine viral diarrhea virus NS3 serine proteinase: polyprotein cleavage sites, cofactor requirements, and molecular model of an enzyme essential for pestivirus replication. J Virol, 71(7): 5312~5322
    Xu X, Guo H, Xiao C, Zha Y, Shi Z, Xia X, Tu C. 2008. In vitro inhibition of classical swine fever virus replication by siRNAs targeting Npro and NS5B genes. Antiviral Res, 78(3): 188~193
    Zhou B, Liu K, Wei JC, Mao X, Chen PY. 2010.Inhibition of replication of classical swine fever virus in a stable cell line by the viral capsid and Staphylococcus aureus nuclease fusion protein. J Virol Methods.
    Zilberman D, Cao X, Jacobsen SE. 2003. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science , 299: 716~719
    Zúniga S, Sola I, Cruz JL, Enjuanes L. 2009. Role of RNA chaperones in virus replication .Virus Res, 139(2): 253~266

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700