牛CIDEC基因的遗传变异、转录调控及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对牛肉品质的追求,提高肌间脂肪含量成为肉牛育种的重要目标,诱导细胞凋亡的DFFA样效应因子(CIDEC,又称Fsp27)作为调控脂质沉积的重要因子,小鼠等模式动物的研究表明,该基因对于脂肪细胞单房脂滴的形成、维持以及能量储存具有重要作用,同时该基因参与脂肪代谢障碍,胰岛素抵抗型糖尿病,脂肪肝等代谢综合症的调控。分析CIDEC基因在牛上的遗传变异、转录调控及其对牛脂肪细胞的脂肪沉积的调控机制,对于肉牛的标记辅助选择和转基因育种具有重要意义。本研究使用混合DNA池测序、Forced-PCR-RFLP.克隆、原核表达、真核表达、腺病毒的包装、细胞培养等技术,研究了1)CIDEC在秦川牛两个生长时期的组织表达谱,2)CIDEC基因的遗传变异与牛生长性状的关联分析,3)牛CIDEC蛋白的亚细胞定位,4)CIDEC蛋白与PPARg蛋白的互作机制,以及5)CIDEC基因对牛原代脂肪细胞凋亡及糖脂代谢的调控功能,本研究主要取得了以下结果:
     1. CIDEC在牛的脂肪组织中具有较高的表达水平
     使用实时定量PCR技术研究了CIDEC在秦川牛犊牛和成年牛不同组织的表达情况,结果显示该基因在这两阶段不同组织的表达趋势相似,都是在脂肪组织中表达量最高,肺、肠次之,而其他组织中的表达量都很低。提示CIDEC在牛的脂质代谢方面有重要作用。
     2. CIDEC基因启动子区的突变能够影响其转录进而影响生产性能
     使用混合DNA池测序在5个中国牛品种中发现了CIDEC基因的5’非翻译区存在10个新的SNPs位点,其中SNP2,3,4,6,9完全连锁,SNP8,10完全连锁,关联分析结果表明不同单倍型组合与南阳牛生长性状呈正相关状态。利用双荧光素酶报告系统检测了不同单倍型的转录活性,其中突变位点越少的单倍型转录活性越高,对应的个体生产性能越好。结合顺式作用元件的分析发现这10个SNPs位点可能通过改变转录因子的结合序列(即顺式作用元件)进而改变了该基因的转录水平,最后表现为南阳牛生长性状的改变。牛CIDEC基因的10个SNPs位点可以作为牛分子育种研究的候选位点。
     3. CIDEC和PPARg蛋白具有不同的亚细胞定位
     将构建好的真核表达载体pEGFP-C1-CIDEC和pEGFP-C1-PPARg转染到3T3-L1细胞系中发现,CIDEC蛋白位于细胞质中而PPARg蛋白位于细胞核中,说明这两个蛋白不能直接通过蛋白与蛋白的互作来发挥作用。根据其他物种的研究结果,进而推测牛PPARg也是通过结合在CIDEC的5’端的PPRE反应元件上,从转录水平调控CIDEC的表达进而调控脂质沉积。
     4.牛PPARg可以调控CIDEC的转录
     使用Genomatix软件预测得到牛CIDEC有2个启动子区(启动子1:-1936到-1336,启动子2:+3552到+4154)和3个PPRE反应元件(-1691到-1669,-1684到-1662,-1677到-1655)。对牛CIDEC启动子不同截短体进行双荧光素酶活性分析,发现启动子1为该基因的核心启动子,其主要活性区域为PPRE反应元件区,加入PPARg激动剂罗格列酮后,PPRE反应元件区转录活性显著升高。这个结果证明了我们在CIDEC细胞定位分析时的推测,牛(?)PARg能够结合在CIDEC启动子区PPRE反应元件上,诱导后者的转录表达,进而参与机体的代谢调控。
     5.牛CIDEC基因的克隆、序列分析以及原核表达
     克隆获得的牛CIDEC完整ORF片段大小为669bp,编码222个氨基酸的肽链,预测的蛋白分子量为25KDa,理论等电点为7.97。该蛋白主体结构为螺管结构。起源进化分析发现牛CIDEC蛋白与狗CIDEC蛋白首先聚为一类,再和猪的聚类后与人、黑猩猩、猴的聚为一类,然后再依次和大鼠、小鼠、马、鸡、蟾蜍聚类,与河豚和斑马鱼的距离最远。重组质粒pET-28a(+)-CIDEC表达的最佳条件为37℃,1.0mmoI/L IPTG诱导6h。经Western-Blot证实确为目的蛋白。
     6.过表达CIDEC会导致牛原代脂肪细胞凋亡
     构建了牛CIDEC腺病毒超表达载体,并包装、扩繁得到高滴度的CIDEC超表达腺病毒。根据死亡受体基因Fas的表达量变化,发现与人和小鼠上的研究结果一致,过表达CIDEC会诱导牛原代脂肪细胞发生细胞凋亡。
     7. CIDEC调控牛原代脂肪细胞糖脂代谢
     筛选出针对牛CIDEC有明显干扰效果的shRNA干扰载体(pENTR/CMV-GFP/U6-CIDEC-sh1),经包装、扩繁得到高滴度的CIDEC干扰腺病毒,滴度为3×108PFU/mL。在牛原代脂肪细胞中,Ad-siCIDEC的干扰效率可以达到72%。牛CIDEC表达量下降后,导致细胞脂质代谢(PPARg、PLIN、HSL)、葡萄糖代谢(GLUT4)、线粒体活性(UCP1)相关的5个基因表达量上升。说明牛CIDEC基因参与机体的糖脂代谢调控,当其表达量下降时,牛脂肪细胞脂解水平升高,葡萄糖平衡受到影响,线粒体数目增多、活性增强,导致脂肪细胞从储存能量向消耗能量转变。
As people are Seeking after beef quality, the improvement of the content of intramuscular fat has became an important goal of the beef cattle breeding. The research in rat and other model animals show that cell death-inducing DFFA-like effector c (CIDEC/Fsp27) is required for unilocular lipid droplet formation and optimal energy storage. And it has emerged as an important regulator of metabolism associated with lipodystrophy, insulin-resistant diabetes, and hepatic steatosis. The research of genetic variats, transcriptional regulation and regulatory mechanism for the deposition of fat in bovine primary adipocytes in bovine CIDEC gene is important for marker-assisted selection and transgenic breeding of beef cattle. DNA pool sequecing, forced-PCR-RFLP, gene clone, prokaryotic expression, eukaryotic expression, packaging of the adenovirus and cell culture were used in this research to verify the function of bovine CIDEC gene. The expression profiles of CIDEC in different growth period of Qinchuan cattle, the verification of relationship between CIDEC gene genetic variation and growth traits, subcellular localization of CIDEC protein, screening of the core promoter region and PPRE reaction elements in CIDEC gene were studied, at last the function of bovine CIDEC in apoptosis and glucolipids metabolism were confirmed. The main results of this research including:
     1. CIDEC gene has a higher expression level in bovine adipose tissue
     Real-time RT-PCR was used to analyse the expression of CIDEC gene in different tissues of Qinchuan newborn and adult cattles, the results revealed that the expression of this gene in these two stages was similar, the expression level was highest in adipose tissue, then in lung and gut, in other tissues its expression was very low. These suggesting that bovine CIDEC gene has an important role in lipid metabolism.
     2. Variats in the promoter of CIDEC gene could affect its transcription thereby affect the growth traits
     Ten novel SNPs were discovered in5'regulation region of CIDEC gene by DNA pool sequencing in five Chinese cattle breeds, SNP2,3,4,6and9linked completed, SNP8and10linked completed. The association analysis revealed that different heplotypes was associated with Nanyang cattle growth traits. By detection of the transcriptional activity of different heplotypes, we found that the haplotype with less variats show higher transcriptional activity, the individuals with this haplotype also show better growth traits. Combined with the analysis of the cis-acting elements, we can speculate that these10SNPs could changed the cis-acting elements, then haplotypes of the cis-acting elements may affect transcriptional activity, thus affecting the growth traits of livestock. These10SNPs loci could be used as candidate loci in bovine molcular breeding.
     3. CIDEC and PPARg have different subcellular localization
     The recombinant eukaryotic expression vector pEGFP-C1-CIDEC and pEGFP-C1-PPARg were transfected in3T3-L1cell, CIDEC protein located in cytoplasm and PPARg protein located in nucleus, suggesting that these two protein can't interacted with each other by directed protein-protein contact. According to the research in other species, we speculated that bovine PPARg gene may regulate the transcription activity of CIDEC gene by binding to its PPRE reaction element, which located in the5'regulation region of CIDEC gene.
     4. Bovine PPARg could regulate the transcription activity of CIDEC gene
     By searching the Genomatix software, there are2promoter region (promoter1:-1936to-1336, promoter2:+3552to+4154) and3PPRE response elements (-1691to-1669,-1684to-1662,-1677to-1655) in bovine CIDEC gene. The results of dual luciferase activity analysis shown that the promoter1was the core promoter, and its active region was PPRE response elements, the activity of the PPRE response elements elevated by adding the agonist of PPARg gene:rosiglitazone. So this result confirmed our inference, bovine PPARg gene regulates the transcription activity of CIDEC gene by binding to PPRE reaction element, which located in the5'regulation region of CIDEC gene.
     5. Cloning, sequence analysis and prokaryotic expression of bovine CIDEC
     The ORF region of bovine CIDEC contain696bp, encodes peptide with222amino acids, the deduced molecular weight of CIDEC protein was25KDa, the isoelectric point was7.97. The main secondary structure of this protein was spiral tube. Phylogenetic analysis revealed that cattle exhibit greater sequence similarity with dogs, chimpanzees, humans, monkeys, pigs and mice than chicken or fish. The optimal condition for the expression of the recombinant plasmid pET-28a(+)-CIDEC were:37℃,1.0mmol/L IPTG and induced6h. Western-blot confirmed the products were the target protein.
     6. Overexpression of CIDEC inducing apoptosis of the bovine primary adipocytes
     Adenovirus vector of bovine CIDEC gene was constructed, after packaging and amplification successfully, high-titer of Ad-CIDEC was infected with bovine primary adipocytes. According to the expression of the Fas gene we found that overexpression of CIDEC gene inducing apoptosis of bovine primary adipocytes, which was consistent with the research in human and mouse.
     7. CIDEC gene regulate the glucolipid metabolism of bovine primary adipocytes
     We obtained one shRNA sequence for bovine CIDEC gene which could cause obvious interference effect (pENTR/CMV-GFP/U6-CIDEC-shRNAl). High-titer of Ad-siCIDEC was obtained after packaging and amplification (3×108PFU/mL). In bovine primary adipocytes, the RNA interference efficiency of Ad-siCIDEC was up to72%. The reduction of CIDEC gene can result in the up-regulation of PPARg, PLIN, HSL (lipoprotein metabolism), GLUT4(glucose metabolism), UCP1(mitochondrial activity). Bovine CIDEC gene participated in the glucolipids metabolism, when the expression of CIDEC was decreased, the level of lipolysis was up regulated, the balance of glucose was affected, the number and activity of mitochondrial was increased, in brief, the bovine adipocytes was changed from energy storage to energy consumption.
引文
迟铖,金苗苗,母义明,汪保安,马晓莉,贾贺堂,杨丽娟,窦京涛,陆菊明,潘长玉.2008.大黄酸上调糖尿病大鼠脂肪组织PPAR-y及GluT-4表达并改善胰岛素敏感性.中国糖尿病杂志,(12):746-748+758.
    胡红梅,许豪文,应康,季朝能,李瑶,谢毅,毛裕民.2005.有氧运动和罗格列酮对NOD小鼠PPARy、GLUT4和FABPs基因表达的影响.中国运动医学杂志,(01):55-59.
    李艳华.2008.猪CIDE家族基因的克隆及功能研究[D]:华中农业大学.
    刘永明.1999.解偶联蛋白基因-3826多态性与其mRNA表达相关性的研究.中国生物化学与分子生物学报,(02):4144.
    罗献梅,陈代文.2007.棕色脂肪组织的生理功能及影响因素.饲料工业,(19):22-26.
    牛栋,王瑞,方福德,常永生.2011.PGC1α协同PPARy调节CIDEC基因在小鼠脂肪细胞系中表达.基础医学与临床,(05):480-484.
    宋冰,刘学政.2012.大黄素对KKAy糖尿病小鼠脂肪组织PPAR-γ及GluT-4表达影响的实验研究.中国中医基础医学杂志,(05):516-517+522.
    苏清华,周波.Fas蛋白与RCAS1在甲状腺乳头状癌组织中的表达及意义.西安交通大学学报(医学版).
    王启贵,王娉,马纪,李辉,张富春.2006.鸡PPARy和C/EBPa的蛋白表达及其对肉鸡腹脂含量的影响.中国家禽,(23):14-]7.
    吴勇军,喻嵘,成细华,吴慧,夏金华.2010.左归复方对MKR转基因2型糖尿病鼠骨骼肌PPARy和GLUT-4表达的影响.湖南中医药大学学报,(09):43-46.
    向梳瑕,潘志雄,李亮,王继文2010. DNA断裂因子相似蛋白(CIDE)家族在甘油三酯代谢中的作用.生命科觉(06):575-578.
    姚丽,李青,李蓬,张静,叶菁,陈广生,王淑芳.2006.人CIDE-3基因原核表达载体的构建及蛋白的初步表达.细胞与分子免疫学杂志,(02):202-204.
    张浩卫,吴江维,王博,吕真,杨公社.2008.地塞米松和胰岛素调节猪脂肪细胞SOCS-3、OB、GLUT4和PPARy基因的表达.生物工程学报,(08):1354-1360.
    张慧敏,程旭光.2005.解偶联蛋白与肥胖及运动的关系.中国临床康复,(04):193-195.
    张晓燕,陈丽红,管又飞2005. PPAR家族及其与代谢综合征的关系.生型科学进展,(01):6-12.
    张翼鸿,杨玉辉,孙薇,谢晓滨.2011.白藜芦醇上调糖尿病大鼠脂肪组织PPAR-γ及GluT-4蛋白表达.黑龙江医学,(03):175-177.
    A, I. J., Jeannin, E., Wahli, W., Desvergne, B.1997. Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. J Biol Chem,272(32):20108-17.
    Aggrey, S. E., Yao, J., Sabour, M. P., Lin, C. Y., Zadworny, D., Hayes, J. F., Kuhnlein, U.1999. Markers within the regulatory region of the growth hormone receptor gene and their association with milk-related traits in Holsteins. J Hered,90(1):148-51.
    Aguiari, P., Leo, S., Zavan, B., Vindigni, V., Rimessi, A., Bianchi, K., Franzin, C., Cortivo, R., Rossato, M., Vettor, R. et al.2008. High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc Natl Acad Sci U S A,105(4):1226-31.
    Andersen, B., Rosenfeld, M. G.2001. POU domain factors in the neuroendocrine system:lessons from developmental biology provide insights into human disease. Endocr Rev,22(1):2-35.
    Arimura, N., Horiba, T., Imagawa, M, Shimizu, M., Sato, R.2004. The peroxisome proliferator-activated receptor gamma regulates expression of the perilipin gene in adipocytes. J Biol Chem,279(11):10070-6.
    Artaza, J. N., Singh, R., Ferrini, M. G., Braga, M., Tsao, J., Gonzalez-Cadavid, N. F.2008. Myostatin promotes a fibrotic phenotypic switch in multipotent C3H 10T1/2 cells without affecting their differentiation into myofibroblasts. J Endocrinol,196(2):235-49.
    Asakura, A., Hirai, H., Kablar, B., Morita, S., Ishibashi, J., Piras, B. A., Christ, A. J., Verma, M., Vineretsky, K. A., Rudnicki, M. A.2007. Increased survival of muscle stem cells lacking the MyoD gene after transplantation into regenerating skeletal muscle. Proc Natl Acad Sci U S A,104(42):16552-7.
    Asakura, A., Komaki, M., Rudnicki, M.2001. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation,68(4-5):245-53.
    Assa-Munt, N., Mortishire-Smith, R. J., Aurora, R., Herr, W., Wright, P. E.1993. The solution structure of the Oct-1 POU-specific domain reveals a striking similarity to the bacteriophage lambda repressor DNA-binding domain. Cell,73(1):193-205.
    Bach, D., Pich, S., Soriano, F. X., Vega, N., Baumgartner, B., Oriola, J., Daugaard, J. R., Lloberas, J., Camps, M., Zierath, J. R. et al.2003. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem,278(19):17190-7.
    Bahar, B., O'Halloran, F, Callanan, M. J., McParland, S., Giblin, L., Sweeney, T.2011. Bovine lactoferrin (LTF) gene promoter haplotypes have different basal transcriptional activities. Anim Genet,42(3):270-9.
    Barger, P. M., Kelly, D. P.2000. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med,10(6):238-45.
    Bischoff, R.1986. Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol,115(1):129-39.
    Boonen, K. J., Post, M. J.2008. The muscle stem cell niche:regulation of satellite cells during regeneration. Tissue Eng Part B Rev,14(4):419-31.
    Bortoluzzi, S., Scannapieco, P., Cestaro, A., Danieli, G. A., Schiaffino, S.2006. Computational reconstruction of the human skeletal muscle secretome. Proteins,62(3):776-92.
    Brasaemle, D. L.2007. Thematic review series:adipocyte biology. The perilipin family of structural lipid droplet proteins:stabilization of lipid droplets and control of lipolysis. J Lipid Res,48(12):2547-59.
    Brasaemle, D. L., Dolios, G., Shapiro, L., Wang, R.2004. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem,279(45):46835-42.
    Brunetti, A., Goldfine, I. D.1990. Role of myogenin in myoblast differentiation and its regulation by fibroblast growth factor. J Biol Chem,265(11):5960-3.
    Bryan, B. A., Mitchell, D. C., Zhao, L., Ma, W., Stafford, L. J., Teng, B. B., Liu, M.2005. Modulation of muscle regeneration, myogenesis, and adipogenesis by the Rho family guanine nucleotide exchange factor GEFT. Mol Cell Biol,25(24):11089-101.
    Buchanan, F. C., Fitzsimmons, C. J., Van Kessel, A. G., Thue, T. D., Winkelman-Sim, D. C., Schmutz, S. M. 2002. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genet Sel Evol,34(1):105-16.
    Chan, S. C., Lin, S. C., Li, P.2007. Regulation of Cidea protein stability by the ubiquitin-mediated proteasomal degradation pathway. Biochem J,408(2):259-66.
    Chan, W. P., Liu, G. C.2002. MR imaging of primary skeletal muscle diseases in children. AJR Am J Roentgenol, 179(4):989-97.
    Chapman, A. B., Knight, D. M., Dieckmann, B. S., Ringold, G. M.1984. Analysis of gene expression during differentiation of adipogenic cells in culture and hormonal control of the developmental program. J Biol Chem,259(24):15548-55.
    Chen, Z., Guo, K., Toh, S. Y., Zhou, Z., Li, P.2000. Mitochondria localization and dimerization are required for CIDE-B to induce apoptosis. J Biol Chem,275(30):22619-22.
    Cheong, H. S., Yoon, D. H., Park, B. L., Kim, L. H., Bae, J. S., Namgoong, S., Lee, H. W., Han, C. S., Kim, J. O., Cheong, I. C. et al.2008. A single nucleotide polymorphism in CAPN1 associated with marbling score in Korean cattle. BMC Genet,933.
    Cho, S., Park, T. S., Yoon, D. H., Cheong, H. S., Namgoong, S., Park, B. L., Lee, H. W., Han, C. S., Kim, E. M., Cheong, I. C. et al.2008. Identification of genetic polymorphisms in FABP3 and FABP4 and putative association with back fat thickness in Korean native cattle. BMB Rep,41(1):29-34.
    Christian, M., Kiskinis, E., Debevec, D., Leonardsson, G., White, R., Parker, M. G.2005. RIP 140-targeted repression of gene expression in adipocytes. Mol Cell Biol,25(21):9383-91.
    Christov, C., Chretien, F., Abou-Khalil, R., Bassez, G., Vallet, G., Authier, F. J., Bassaglia, Y., Shinin, V., Tajbakhsh, S., Chazaud, B. et al.2007. Muscle satellite cells and endothelial cells:close neighbors and privileged partners. Mol Biol Cell,18(4):1397-409.
    Cinti, S., Mitchell, G., Barbatelli, G., Murano, I., Ceresi, E., Faloia, E., Wang, S., Fortier, M., Greenberg, A. S., Obin, M. S.2005. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res,46(11):2347-55.
    Clarke, S. L., Robinson, C. E., Gimble, J. M.1997. CAAT/enhancer binding proteins directly modulate transcription from the peroxisome proliferator-activated receptor gamma 2 promoter. Biochem Biophys Res Commun,240(1):99-103.
    Collins, C. A., Olsen, I., Zammit, P. S., Heslop, L., Petrie, A., Partridge, T. A., Morgan, J. E.2005. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell, 122(2):289-301.
    Cooper, R. N., Tajbakhsh, S., Mouly, V., Cossu, G., Buckingham, M., Butler-Browne, G. S.1999. In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J Cell Sci,112 (Pt 17)2895-901.
    Crisan, M., Casteilla, L., Lehr, L., Carmona, M., Paoloni-Giacobino, A., Yap, S., Sun, B., Leger, B., Logar, A., Penicaud, L. et al.2008. A reservoir of brown adipocyte progenitors in human skeletal muscle. Stem Cells, 26(9):2425-33.
    Czubryt, M. P., McAnally, J., Fishman, G. I., Olson, E. N.2003. Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci USA,100(4):1711-6.
    Da, L., Li, D., Yokoyama, K. K., Li, T., Zhao, M.2006. Dual promoters control the cell-specific expression of the human cell death-inducing DFF45-like effector B gene. Biochem J,393(Pt 3):779-88.
    Danesch, U., Hoeck, W., Ringold, G. M.1992. Cloning and transcriptional regulation of a novel adipocyte-specific gene, FSP27. CAAT-enhancer-binding protein (C/EBP) and C/EBP-like proteins interact with sequences required for differentiation-dependent expression. J Biol Chem,267(10):7185-93.
    Du, M., Tong, J., Zhao, J., Underwood, K. R., Zhu, M., Ford, S. P., Nathanielsz, P. W.2010a. Fetal programming of skeletal muscle development in ruminant animals. J Anim Sci,88(13 Suppl):E51-60.
    Du, M., Yan, X., Tong, J. F., Zhao, J., Zhu, M. J.2010b. Maternal obesity, inflammation, and fetal skeletal muscle development. Biol Reprod,82(1):4-12.
    Ducharme, N. A., Bickel, P. E.2008. Lipid droplets in lipogenesis and lipolysis. Endocrinology,149(3):942-9.
    Duguez, S., Feasson, L., Denis, C., Freyssenet, D.2002. Mitochondrial biogenesis during skeletal muscle regeneration. Am JPhysiol Endocrinol Metab,282(4):E802-9.
    Durheim, M. T., Slentz, C. A., Bateman, L. A., Mabe, S. K., Kraus, W. E.2008. Relationships between exercise-induced reductions in thigh intermuscular adipose tissue, changes in lipoprotein particle size, and visceral adiposity. Am J Physiol Endocrinol Metab,295(2):E407-12.
    Engler, A. J., Sen, S., Sweeney, H. L., Discher, D. E.2006. Matrix elasticity directs stem cell lineage specification. Cell,126(4):677-89.
    Erdtmann, L., Franck, N., Lerat, H., Le Seyec, J., Gilot, D., Cannie, I., Gripon, P., Hibner, U., Guguen-Guillouzo, C.2003. The hepatitis C virus NS2 protein is an inhibitor of CIDE-B-induced apoptosis. J Biol Chem, 278(20):18256-64.
    Fernyhough, M. E., Okine, E., Hausman, G., Vierck, J. L., Dodson, M. V.2007. PPARgamma and GLUT-4 expression as developmental regulators/markers for preadipocyte differentiation into an adipocyte. Domest Anim Endocrinol,33(4):367-78.
    Filby, A. L., Tyler, C. R.2005. Molecular Characterization of Estrogen Receptors 1,2a, and 2b and Their Tissue and Ontogenic Expression Profiles in Fathead Minnow (Pimephales promelas). Biology of Reproduction, 73(4):648-662.
    Freda, P. U., Shen, W., Heymsfield, S. B., Reyes-Vidal, C. M., Geer, E. B., Bruce, J. N., Gallagher, D.2008. Lower visceral and subcutaneous but higher intermuscular adipose tissue depots in patients with growth hormone and insulin-like growth factor I excess due to acromegaly. J Clin Endocrinol Metab, 93(6):2334-43.
    Frohnert, B. I., Hui, T. Y., Bernlohr, D. A.1999. Identification of a functional peroxisome proliferator-responsive element in the murine fatty acid transport protein gene. J Biol Chem,274(7):3970-7.
    Fuchs, E., Segre, J. A.2000. Stem cells:a new lease on life. Cell,100(1):143-55.
    Fuchtbauer, E. M., Westphal, H.1992. MyoD and myogenin are coexpressed in regenerating skeletal muscle of the mouse. Dev Dyn,193(1):34-9.
    Fumeron, F., Durack-Bown, I., Betoulle, D., Cassard-Doulcier, A. M., Tuzet, S., Bouillaud, F., Melchior, J. C., Ricquier, D., Apfelbaum, M.1996. Polymorphisms of uncoupling protein (UCP) and beta 3 adrenoreceptor genes in obese people submitted to a low calorie diet. Int J Obes Relat Metab Disord,20(12):1051-4.
    Gallagher, D., Kelley, D. E., Yim, J. E., Spence, N., Albu, J., Boxt, L., Pi-Sunyer, F. X., Heshka, S.2009. Adipose tissue distribution is different in type 2 diabetes. Am J Clin Nutr,89(3):807-14.
    Gallagher, D., Kuznia, P., Heshka, S., Albu, J., Heymsfield, S. B., Goodpaster, B., Visser, M., Harris, T. B.2005. Adipose tissue in muscle:a novel depot similar in size to visceral adipose tissue. Am J Clin Nutr, 81(4):903-10.
    Gibson, M. C., Schultz, E.1983. Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve,6(8):574-80.
    Gnanalingham, M. G., Mostyn, A., Symonds, M. E., Stephenson, T.2005. Ontogeny and nutritional programming of adiposity in sheep:potential role of glucocorticoid action and uncoupling protein-2. Am J Physiol Regul Integr Comp Physiol,289(5):R1407-15.
    Goodpaster, B. H., Krishnaswami, S., Harris, T. B., Katsiaras, A., Kritchevsky, S. B., Simonsick, E. M., Nevitt, M., Holvoet, P., Newman, A. B.2005. Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch Intern Med,165(7):777-83.
    Gotoh, T., Albrecht, E., Teuscher, F., Kawabata, K., Sakashita, K., Iwamoto, H., Wegner, J.2009. Differences in muscle and fat accretion in Japanese Black and European cattle. Meat Sci,82(3):300-8.
    Greco, A. V., Mingrone, G., Giancaterini, A., Manco, M., Morroni, M., Cinti, S., Granzotto, M., Vettor, R., Camastra, S., Ferrannini, E.2002. Insulin resistance in morbid obesity:reversal with intramyocellular fat depletion. Diabetes,51(1):144-51.
    Greenwood, P. L., Slepetis, R. M., Hermanson, J. W., Bell, A. W.1999. Intrauterine growth retardation is associated with reduced cell cycle activity, but not myofibre number, in ovine fetal muscle. Reprod Fertil Dev,11(4-5):281-91.
    Grobet, L., Martin, L. J., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Menissier, F., Massabanda, J. et al.1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet,17(1):71-4.
    Hallberg, M., Morganstein, D. L., Kiskinis, E., Shah, K., Kralli, A., Dilworth, S. M., White, R., Parker, M. G., Christian, M.2008. A functional interaction between RIP140 and PGC-lalpha regulates the expression of the lipid droplet protein CIDEA. Mol Cell Biol,28(22):6785-95.
    Hargreaves,I. P., Heales, S. J., Land, J. M.1999. Mitochondrial respiratory chain defects are not accompanied by an increase in the activities of lactate dehydrogenase or manganese superoxide dismutase in paediatric skeletal muscle biopsies. J Inherit Metab Dis,22(8):925-31.
    Hashimoto, N., Kiyono, T., Wada, M. R., Umeda, R., Goto, Y, Nonaka, I., Shimizu, S., Yasumoto, S., Inagawa-Ogashiwa, M.2008. Osteogenic properties of human myogenic progenitor cells. Mech Dev, 125(3-4):257-69.
    Hausman, G. J., Dodson, M. V., Ajuwon, K., Azain, M., Barnes, K. M., Guan, L. L., Jiang, Z., Poulos, S. P., Sainz, R. D., Smith, S. et al.2009. Board-invited review; the biology and regulation of preadipocytes and adipocytes in meat animals. J Anim Sci,87(4):1218-46.
    Hawke, T. J., Garry, D. J.2001. Myogenic satellite cells:physiology to molecular biology. J Appl Physiol, 91(2):534-51.
    Hilton, T. N., Tuttle, L. J., Bohnert, K. L., Mueller, M. J., Sinacore, D. R.2008. Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: association with performance and function. Phys Ther,88(11):1336-44.
    Hoist, D., Luquet, S., Kristiansen, K., Grimaldi, P. A.2003. Roles of peroxisome proliferator-activated receptors delta and gamma in myoblast transdifferentiation. Exp Cell Res,288(1):168-76.
    Hu, E., Kim, J. B., Sarraf, P., Spiegelman, B. M.1996. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science,274(5295):2100-3.
    Hu, Z. L., Fritz, E. R., Reecy, J. M.2007. AnimalQTLdb:a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Res,35(Database issue):D604-9.
    Inohara, N., Koseki, T., Chen, S., Wu, X., Nunez, G.1998. CIDE, a novel family of cell death activators with homology to the 45 kDa subunit of the DNA fragmentation factor. EMBO J,17(9):2526-33.
    Iwahana, H., Yakymovych, I., Dubrovska, A., Hellman, U., Souchelnytskyi, S.2006. Glycoproteome profiling of transforming growth factor-beta (TGFbeta) signaling:nonglycosylated cell death-inducing DFF-like effector A inhibits TGFbetal-dependent apoptosis. Proteomics,6(23):6168-80.
    Jia, X. J., Wang, C. F., Yang, G. W., Huang, J. M., Li, Q. L., Zhong, J. F.2011. [Polymorphism of POU1F1 gene and PRL gene and their combined effects on milk performance traits in Chinese Holstein cattle]. Yi Chuan, 33(12):1359-65.
    Jiang, Z., Michal, J. J., Tobey, D. J., Wang, Z., Macneil, M. D., Magnuson, N. S.2008. Comparative understanding of UTS2 and UTS2R genes for their involvement in type 2 diabetes mellitus. Int J Biol Sci, 4(2):96-102.
    Jiang, Z., Pappu, S. S., Rothschild, M. F.2007. Hitting the jackpot twice:identifying and patenting gene tests related to muscle lipid accumulation for meat quality in animals and type 2 diabetes/obesity in humans. Recent Pat DNA Gene Seq,1 (2):100-11.
    Jonsen, M. D., Duval, D. L., Gutierrez-Hartmann, A.2009. The 26-amino acid beta-motif of the Pit-lbeta transcription factor is a dominant and independent repressor domain. Mol Endocrinol,23(9):1371-84.
    Kadereit, B., Kumar, P., Wang, W. J., Miranda, D., Snapp, E. L., Severina, N., Torregroza, I., Evans, T., Silver, D. L.2008. Evolutionarily conserved gene family important for fat storage. Proc Natl Acad Sci U S A, 105(1):94-9.
    Kajimura, S., Seale, P., Kubota, K., Lunsford, E., Frangioni, J. V., Gygi, S. P., Spiegelman, B. M.2009. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature, 460(7259):1154-8.
    Karbowski, M., Lee, Y. J., Gaume, B., Jeong, S. Y., Frank, S., Nechushtan, A., Santel, A., Fuller, M., Smith, C. L., Youle, R. J.2002. Spatial and temporal association of Bax with mitochondrial fission sites, Drpl, and Mfn2 during apoptosis. J Cell Biol,159(6):931-8.
    Kassar-Duchossoy, L., Gayraud-Morel, B., Gomes, D., Rocancourt, D., Buckingham, M., Shinin, V., Tajbakhsh, S.2004. Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature, 431(7007):466-71.
    Katoh, M.2005. Comparative genomics on Wnt5a and Wnt5b genes. Int J Mol Med,15(4):749-53.
    Keller, P., Petrie, J. T., De Rose, P., Gerin, I., Wright, W. S., Chiang, S. H., Nielsen, A. R., Fischer, C. P., Pedersen, B. K., MacDougald, O. A.2008. Fat-specific protein 27 regulates storage of triacylglycerol. J Biol Chem,283(21):14355-65.
    Khatib, H., Heifetz, E., Dekkers, J. C.2005. Association of the protease inhibitor gene with production traits in Holstein dairy cattle. J Dairy Sci,88(3):1208-13.
    Khatib, H., Leonard, S. D., Schutzkus, V., Luo, W., Chang, Y. M.2006. Association of the OLRI gene with milk composition in Holstein dairy cattle. J Dairy Sci,89(5):1753-60.
    Khatib, H., Monson, R. L., Schutzkus, V., Kohl, D. M., Rosa, G. J., Rutledge, J. J.2008. Mutations in the STAT5A gene are associated with embryonic survival and milk composition in cattle. J Dairy Sci, 91(2):784-93.
    Khatib, H., Zaitoun, I., Wiebelhaus-Finger, J., Chang, Y. M., Rosa, G. J.2007. The association of bovine PPARGCIA and OPN genes with milk composition in two independent Holstein cattle populations. J Dairy Sci,90(6):2966-70.
    Kim, J., Heshka, S., Gallagher, D., Kotler, D. P., Mayer, L., Albu, J., Shen, W., Freda, P. U., Heymsfield, S. B. 2004. Intermuscular adipose tissue-free skeletal muscle mass:estimation by dual-energy X-ray absorptiometry in adults. JAppl Physiol,97(2):655-60.
    Kim, J. Y., Liu, K., Zhou, S., Tillison, K., Wu, Y., Smas, C. M.2008a. Assessment of fat-specific protein 27 in the adipocyte lineage suggests a dual role for FSP27 in adipocyte metabolism and cell death. Am J Physiol Endocrinol Metab,294(4):E654-67.
    Kim, Y. J., Cho, S. Y., Yun, C. H., Moon, Y. S., Lee, T. R., Kim, S. H.2008b. Transcriptional activation of Cidec by PPARgamma2 in adipocyte. Biochem Biophys Res Commun,377(1):297-302.
    Kliewer, S. A., Lenhard, J. M., Willson, T. M., Patel, I., Morris, D. C., Lehmann, J. M.1995. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell,83(5):813-9.
    Lajtha, L. G.1979. Haemopoietic stem cells:concept and definitions. Blood Cells,5(3):447-55.
    Lan, X., Pan, C., Zhang, L., Zhao, M., Zhang, C., Lei, C., Chen, H.2009a. A novel missense (A79V) mutation of goat PROP1 gene and its association with production traits. Mol Biol Rep,36(8):2069-73.
    Lan, X. Y., Shu, J. H., Chen, H., Pan, C. Y., Lei, C. Z., Wang, X., Liu, S. Q., Zhang, Y. B.2009b. A PstI polymorphism at 3'UTR of goat POU1F1 gene and its effect on cashmere production. Mol Biol Rep, 36(6):1371-4.
    Leithauser, F., Dhein, J., Mechtersheimer, G., Koretz, K., Bruderlein, S., Henne, C., Schmidt, A., Debatin, K. M., Krammer, P. H., Moller, P.1993. Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Lab Invest, 69(4):415-29.
    Li, D., Da, L., Tang, H., Li, T., Zhao, M.2008. CpG methylation plays a vital role in determining tissue-and cell-specific expression of the human cell-death-inducing DFF45-like effector A gene through the regulation of Sp1/Sp3 binding. Nucleic Acids Res,36(1):330-41.
    Li, F., Chong, Z. Z., Maiese, K.2006. Winding through the WNT pathway during cellular development and demise. Histol Histopathol,21(1):103-24.
    Liang, L., Zhao, M., Xu, Z., Yokoyama, K. K., Li, T.2003. Molecular cloning and characterization of CIDE-3, a novel member of the cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector family. Biochem J,370(Pt 1):195-203.
    Lin, J., Arnold, H. B., Della-Fera, M. A., Azain, M. J., Hartzell, D. L., Baile, C. A.2002a. Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem Biophys Res Commun,291(3):701-6.
    Lin, J., Wu, H., Tarr, P. T., Zhang, C. Y., Wu, Z., Boss, O., Michael, L. F., Puigserver, P., Isotani, E., Olson, E. N. et al.2002b. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature,418(6899):797-801.
    Livak, K. J.,Schmittgen, T. D.2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-△△CT Method. Methods,25(4):402-408.
    Londos, C., Brasaemle, D. L., Gruia-Gray, J., Servetnick, D. A., Schultz, C. J., Levin, D. M., Kimmel, A. R. 1995. Perilipin:unique proteins associated with intracellular neutral lipid droplets in adipocytes and steroidogenic cells. Biochem Soc Trans,23(3):611-5.
    Lugovskoy, A. A., Zhou, P., Chou, J. J., McCarty, J. S., Li, P., Wagner, G.1999. Solution structure of the CIDE-N domain of CIDE-B and a model for CIDE-N/CIDE-N interactions in the DNA fragmentation pathway of apoptosis. Cell,99(7):747-55.
    Lunati, E., Marzola, P., Nicolato, E., Sbarbati, A.2001. In-vivo quantitative hydrolipidic map of perirenal adipose tissue by chemical shift imaging at 4.7 Tesla. Int J Obes Relat Metab Disord,25(4):457-61.
    Magnusson, B., Gummesson, A., Glad, C. A., Goedecke, J. H., Jernas, M., Lystig, T. C., Carlsson, B., Fagerberg, B., Carlsson, L. M., Svensson, P. A.2008. Cell death-inducing DFF45-like effector C is reduced by caloric restriction and regulates adipocyte lipid metabolism. Metabolism,57(9):1307-13.
    Martinez-Botas, J., Anderson, J. B., Tessier, D., Lapillonne, A., Chang, B. H., Quast, M. J., Gorenstein, D., Chen, K. H., Chan, L.2000. Absence of perilipin results in leanness and reverses obesity in Lepr(db/db) mice. Nat Genet,26(4):474-9.
    Matsusue, K.2010. A physiological role for fat specific protein 27/cell death-inducing DFF45-like effector C in adipose and liver. Biol Pharm Bull,33(3):346-50.
    Matsusue, K., Kusakabe, T., Noguchi, T., Takiguchi, S., Suzuki, T., Yamano, S., Gonzalez, F. J.2008. Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27. Cell Metab, 7(4):302-11.
    McCroskery, S., Thomas, M., Maxwell, L., Sharma, M., Kambadur, R.2003. Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol,162(6):1135-47.
    McPherron, A. C., Lee, S. J.2002. Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest,109(5):595-601.
    Mitra, R., Nogee, D. P., Zechner, J. F., Yea, K., Gierasch, C. M., Kovacs, A., Medeiros, D. M., Kelly, D. P., Duncan, J. G. 2012. The transcriptional coactivators, PGC-Ialpha and beta, cooperate to maintain cardiac mitochondrial function during the early stages of insulin resistance. J Mol Cell Cardiol,52(3):701-10.
    Mohlig, M., Isken, F., Ristow, M.2004. Impaired mitochondrial activity and insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med,350(23):2419-21; author reply 2419-21.
    Moldes, M., Zuo, Y, Morrison, R. F., Silva, D., Park, B. H., Liu, J., Farmer, S. R.2003. Peroxisome-proliferator-activated receptor gamma suppresses Wnt/beta-catenin signalling during adipogenesis. Biochem J,376(Pt 3):607-13.
    Morris, C. A., Cullen, N. G., Glass, B. C., Hyndman, D. L., Manley, T. R., Hickey, S. M., McEwan, J. C, Pitchford, W. S., Bottema, C. D., Lee, M. A.2007. Fatty acid synthase effects on bovine adipose fat and milk fat. Mamm Genome,18(1):64-74.
    Moss, F. P., Leblond, C. P.1971. Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec, 170(4):421-35.
    Muhlhausler, B. S., Duffield, J. A., McMillen, I. C.2007. Increased maternal nutrition stimulates peroxisome proliferator activated receptor-gamma, adiponectin, and leptin messenger ribonucleic acid expression in adipose tissue before birth. Endocrinology,148(2):878-85.
    Murphy, S., Martin, S., Parton, R. G. 2009. Lipid droplet-organelle interactions; sharing the fats. Biochim Biophys Acta,1791(6):441-7.
    Nagy, L., Tontonoz, P., Alvarez, J. G., Chen, H., Evans, R. M.1998. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell,93(2):229-40.
    Nakamura, Y, Komano, H., Nakauchi, H.1993. Two alternative forms of cDNA encoding CD34. Exp Hematol, 21(2):236-42.
    Nielsen, R., Pedersen, T. A., Hagenbeek, D., Moulos, P., Siersbaek, R., Megens, E., Denissov, S., Borgesen, M., Francoijs, K. J., Mandrup, S. et al.2008. Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev,22(21):2953-67.
    Nishino, N., Tamori, Y., Tateya, S., Kawaguchi, T., Shibakusa, T., Mizunoya, W., Inoue, K., Kitazawa, R., Kitazawa, S., Matsuki, Y. et al.2008. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest,118(8):2808-21.
    Owen-Schaub, L. B., Radinsky, R., Kruzel, E., Berry, K., Yonehara, S.1994. Anti-Fas on nonhematopoietic tumors:levels of Fas/APO-1 and bcl-2 are not predictive of biological responsiveness. Cancer Res, 54(6):1580-6.
    Parker, K. L., Rice, D. A., Lala, D. S., Ikeda, Y., Luo, X., Wong, M., Bakke, M., Zhao, L., Frigeri, C., Hanley, N. A. et al.2002. Steroidogenic factor 1:an essential mediator of endocrine development. Recent Prog Horm Res,5719-36.
    Pettersson, A. T., Laurencikiene, J., Nordstrom, E. A., Stenson, B. M., van Harmelen, V., Murphy, C., Dahlman, I., Ryden, M.2008. Characterization of the human CIDEA promoter in fat cells. Int J Obes (Lond), 32(9):1380-7.
    Pischon, T., Boeing, H., Hoffmann, K., Bergmann, M., Schulze, M. B., Overvad, K., van der Schouw, Y. T., Spencer, E., Moons, K. G., Tjonneland, A. et al.2008. General and abdominal adiposity and risk of death in Europe. N Engl J Med,359(20):2105-20.
    Polesskaya, A., Seale, P., Rudnicki, M. A.2003. Wnt signaling induces the myogenic specification of resident CD45+adult stem cells during muscle regeneration. Cell,113(7):841-52.
    Pond, C. M., Mattacks, C. A.1991. The effects of noradrenaline and insulin on lipolysis in adipocytes isolated from nine different adipose depots of guinea-pigs. Int J Obes,15(9):609-18.
    Prado, C. M., Lieffers, J. R., McCargar, L. J., Reiman, T., Sawyer, M. B., Martin, L., Baracos, V. E.2008. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts:a population-based study. Lancet Oncol,9(7):629-35.
    Puigserver, P., Wu, Z., Park, C. W., Graves, R, Wright, M., Spiegelman, B. M.1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell,92(6):829-39.
    Puri, V., Czech, M. P.2008a. Lipid droplets:FSP27 knockout enhances their sizzle. J Clin Invest,118(8):2693-6.
    Puri, V., Konda, S., Ranjit, S., Aouadi, M., Chawla, A., Chouinard, M., Chakladar, A., Czech, M. P.2007. Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. J Biol Chem, 282(47):34213-8.
    Puri, V., Ranjit, S., Konda, S., Nicoloro, S. M., Straubhaar, J., Chawla, A., Chouinard, M., Lin, C., Burkart, A., Corvera, S. et al.2008b. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl AcadSci USA,105(22):7833-8.
    Puri, V., Virbasius, J. V., Guilherme, A., Czech, M. P.2008c. RNAi screens reveal novel metabolic regulators: RIP140, MAP4k4 and the lipid droplet associated fat specific protein (FSP) 27. Acta Physiol (Oxf), 192(1):103-15.
    Qi, J., Gong, J., Zhao, T., Zhao, J., Lam, P., Ye, J., Li, J. Z., Wu, J., Zhou, H. M., Li, P.2008. Downregulation of AMP-activated protein kinase by Cidea-mediated ubiquitination and degradation in brown adipose tissue. EMBO J,27(11):1537-48.
    Renaville, R., Gengler, N., Vrech, E., Prandi, A., Massart, S., Corradini, C., Bertozzi, C., Mortiaux, F., Burny, A., Portetelle, D.1997. Pit-1 gene polymorphism, milk yield, and conformation traits for Italian Holstein-Friesian bulls. J Dairy Sci,80(12):3431-8.
    Reusch, J. E., Bridenstine, M., Regensteiner, J. G. 2013. Type 2 diabetes mellitus and exercise impairment. Rev Endocr Metab Disord.
    Rosen, E. D., Hsu, C. H., Wang, X., Sakai, S., Freeman, M. W., Gonzalez, F. J., Spiegelman, B. M.2002. C/EBPalpha induces adipogenesis through PPARgamma:a unified pathway. Genes Dev,16(1):22-6.
    Rosen, E. D., MacDougald, O. A.2006. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol, 7(12):885-96.
    Rosenblatt, J. D., Lunt, A. I., Parry, D. J., Partridge, T. A.1995. Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim,31(10):773-9.
    Rouger, K., Brault, M., Daval, N., Leroux, I., Guigand, L., Lesoeur, J., Fernandez, B., Cherel, Y.2004. Muscle satellite cell heterogeneity:in vitro and in vivo evidences for populations that fuse differently. Cell Tissue Res,317(3):319-26.
    Sarkar, D., Zhao, W., Gupta, A., Loh, W. L., Karnik, R., Karp, J. M.2011. Cell surface engineering of mesenchymal stem cells. Methods Mol Biol,698505-23.
    Satyanarayana Chakradhara Rao, U., Devendran, A., Satyamoorthy, K., Shewade, D. G., Krishnamoorthy, R., Chandrasekaran, A.2011. Functional characterization of promoter region polymorphisms of human CYP2C19 gene. Mol Biol Rep,38(6):4171-9.
    Schopfer, F. J., Lin, Y., Baker, P. R., Cui, T., Garcia-Barrio, M., Zhang, J., Chen, K., Chen, Y. E., Freeman, B. A. 2005. Nitrolinoleic acid:an endogenous peroxisome proliferator-activated receptor gamma ligand. Proc Natl Acad Sci U S A,102(7):2340-5.
    Schultz, E.1996. Satellite cell proliferative compartments in growing skeletal muscles. Dev Biol,175(1):84-94.
    Schultz, E., Gibson, M. C., Champion, T.1978. Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool,206(3):451-6.
    Schultz, E., Lipton, B. H.1982. Skeletal muscle satellite cells:changes in proliferation potential as a function of age. Mech Ageing Dev,20(4):377-83.
    Seale, P., Bjork, B., Yang, W., Kajimura, S., Chin, S., Kuang, S., Scime, A., Devarakonda, S., Conroe, H. M., Erdjument-Bromage, H. et al.2008. PRDM16 controls a brown fat/skeletal muscle switch. Nature, 454(7207):961-7.
    Seale, P., Ishibashi, J., Scime, A., Rudnicki, M. A.2004. Pax7 is necessary and sufficient for the myogenic specification of CD45+:Scal+stem cells from injured muscle. PLoS Biol,2(5):E130.
    Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., Rudnicki, M. A.2000. Pax7 is required for the specification of myogenic satellite cells. Cell,102(6):777-86.
    Serrano, A. L., Baeza-Raja, B., Perdiguero, E., Jardi, M., Munoz-Canoves, P.2008. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab,7(1):33-44.
    Shao, D., Rangwala, S. M., Bailey, S. T., Krakow, S. L., Reginato, M. J., Lazar, M. A.1998. Interdomain communication regulating ligand binding by PPAR-gamma. Nature,396(6709):377-80.
    Shefer, G., Van de Mark, D. P., Richardson, J. B., Yablonka-Reuveni, Z.2006. Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol,294(1):50-66.
    Shefer, G., Wleklinski-Lee, M., Yablonka-Reuveni, Z.2004. Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci,117(Pt 22):5393-404.
    Sherman, E. L., Nkrumah, J. D., Murdoch, B. M., Li, C., Wang, Z., Fu, A., Moore, S. S.2008. Polymorphisms and haplotypes in the bovine neuropeptide Y, growth hormone receptor, ghrelin, insulin-like growth factor 2, and uncoupling proteins 2 and 3 genes and their associations with measures of growth, performance, feed efficiency, and carcass merit in beef cattle. JAnim Sci,86(1):1-16.
    Smith, S. B., Kawachi, H., Choi, C. B., Choi, C. W., Wu, G., Sawyer, J. E.2009. Cellular regulation of bovine intramuscular adipose tissue development and composition. J Anim Sci,87(14 Suppl):E72-82.
    Smith, T. H., Block, N. E., Rhodes, S. J., Konieczny, S. F., Miller, J. B.1993. A unique pattern of expression of the four muscle regulatory factor proteins distinguishes somitic from embryonic, fetal and newborn mouse myogenic cells. Development,117(3):1125-33.
    Smorlesi, A., Frontini, A., Giordano, A., Cinti, S.2012. The adipose organ:white-brown adipocyte plasticity and metabolic inflammation. Obes Rev,13 Suppl 283-96.
    Solomon, A. M., Bouloux, P. M.2006. Modifying muscle mass-the endocrine perspective. J Endocrinol, 191(2):349-60.
    Sordella, R., Jiang, W., Chen, G. C., Curto, M., Settleman, J.2003. Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell,113(2):147-58.
    Stancekova, K., Vasicek, D., Peskovicova, D., Bulla, J., Kubek, A.1999. Effect of genetic variability of the porcine pituitary-specific transcription factor (PIT-1) on carcas traits in pigs. Anim Genet,30(4):313-5.
    Stanfel, M. N., Moses, K. A., Schwartz, R. J., Zimmer, W. E.2005. Regulation of organ development by the NKX-homeodomain factors:an NKX code. Cell Mol Biol (Noisy-le-grand), Suppl 51OL785-99.
    Tang, W., Zeve, D., Suh, J. M., Bosnakovski, D., Kyba, M., Hammer, R. E., Tallquist, M. D., Graff, J. M.2008. White fat progenitor cells reside in the adipose vasculature. Science,322(5901):583-6.
    Taniguchi, M., Utsugi, T., Oyama, K., Mannen, H., Kobayashi, M., Tanabe, Y., Ogino, A., Tsuji, S.2004. Genotype of stearoyl-coA desaturase is associated with fatty acid composition in Japanese Black cattle. Mamm Genome,15(2):142-8.
    Tansey, J. T., Sztalryd, C., Gruia-Gray, J., Roush, D. L., Zee, J. V., Gavrilova, O., Reitman, M. L., Deng, C. X., Li, C., Kimmel, A. R. et al.2001. Perilipin ablation results in a lean mouse with aberrant adipocyte Iipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci U S A, 98(11):6494-9.
    Tansey, J. T., Sztalryd, C., Hlavin, E. M., Kimmel, A. R., Londos, C.2004. The central role of perilipin a in lipid metabolism and adipocyte Iipolysis. IUBMB Life,56(7):379-85.
    Tapscott, S. J., Lassar, A. B., Davis, R. L., Weintraub, H.1989.5-bromo-2'-deoxyuridine blocks myogenesis by extinguishing expression of MyoDl. Science,245(4917):532-6.
    Tatsuda, K., Oka, A., Iwamoto, E., Kuroda, Y., Takeshita, H., Kataoka, H., Kouno, S.2008. Relationship of the bovine growth hormone gene to carcass traits in Japanese black cattle. J Anim Breed Genet,125(1):45-9.
    Taylor, J. F., Coutinho, L. L., Herring, K. L., Gallagher, D. S., Jr., Brenneman, R. A., Burney, N., Sanders, J. O., Turner, J. W., Smith, S. B., Miller, R. K. et al.1998. Candidate gene analysis of GH1 for effects on growth and carcass composition of cattle. Anim Genet,29(3):194-201.
    Teboul, L., Gaillard, D., Staccini, L., Inadera, H., Amri, E. Z., Grimaldi, P. A.1995. Thiazolidinediones and fatty acids convert myogenic cells into adipose-like cells. J Biol Chem,270(47):28183-7.
    Thomas, E. L., Saeed, N., Hajnal, J. V., Brynes, A., Goldstone, A. P., Frost, G., Bell, J. D.1998. Magnetic resonance imaging of total body fat. J Appl Physiol,85(5):1778-85.
    Toh, S. Y., Gong, J., Du, G., Li, J. Z., Yang, S., Ye, J., Yao, H., Zhang, Y., Xue, B., Li, Q. et al.2008. Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLoS One,3(8):e2890.
    Tong, J., Zhu, M. J., Underwood, K. R., Hess, B. W., Ford, S. P., Du, M.2008. AMP-activated protein kinase and adipogenesis in sheep fetal skeletal muscle and 3T3-L1 cells. JAnim Sci,86(6):1296-305.
    Tong, J. F., Yan, X., Zhu, M. J., Ford, S. P., Nathanielsz, P. W., Du, M.2009. Maternal obesity downregulates myogenesis and beta-catenin signaling in fetal skeletal muscle. Am J Physiol Endocrinol Metab, 296(4):E917-24.
    Velmala, R., Vilkki, J., Elo, K., Maki-Tanila, A.1995. Casein haplotypes and their association with milk production traits in the Finnish Ayrshire cattle. Anim Genet,26(6):419-25.
    Verdijk, L. B., Koopman, R., Schaart, G., Meijer, K., Savelberg, H. H., van Loon, L. J.2007. Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab,292(1):E151-7.
    Viswakarma, N., Yu, S., Naik, S., Kashireddy, P., Matsumoto, K., Sarkar, J., Surapureddi, S., Jia, Y, Rao, M. S., Reddy, J. K.2007. Transcriptional regulation of Cidea, mitochondrial cell death-inducing DNA fragmentation factor alpha-like effector A, in mouse liver by peroxisome proliferator-activated receptor alpha and gamma. J Biol Chem,282(25):18613-24.
    Wang, J. M., Li, B. C., Chen, L., Wang, G. B., Sun, H., Chen, Z., Zhang, L. C.2006. Cell death-inducing DFF45-like effector may take part in neuronal apoptosis of the lumbar spinal cord after sciatic nerve injury caused by a firearm. Mil Med,171(8):793-9.
    Watson, R. T., Pessin, J. E.2001. Intracellular organization of insulin signaling and GLUT4 translocation. Recent Prog Horm Res,56175-93.
    Wegner, M., Riethmacher, D.2001. Chronicles of a switch hunt:gcm genes in development. Trends Genet, 17(5):286-90.
    Weikard, R., Kuhn, C., Goldammer, T., Freyer, G., Schwerin, M.2005. The bovine PPARGC1A gene:molecular characterization and association of an SNP with variation of milk fat synthesis. Physiol Genomics, 21(1):1-13.
    Williams, P. M., Chang, D. J., Danesch, U., Ringold, G. M., Heller, R. A.1992. CCAAT/enhancer binding protein expression is rapidly extinguished in TA1 adipocyte cells treated with tumor necrosis factor. Mol Endocrinol,6(7):1135-41.
    Wood,1. A., Moser, G., Burrell, D. L., Mengersen, K. L., Hetzel, D. J.2006. A meta-analytic assessment of a thyroglobulin marker for marbling in beef cattle. Genet Sel Evol,38(5):479-94.
    Wu, C., Zhang, Y., Sun, Z., Li, P.2008. Molecular evolution of Cide family proteins:novel domain formation in early vertebrates and the subsequent divergence. BMC Evol Biol,8159.
    Wu, Z., Rosen, E. D., Brun, R., Hauser, S., Adelmant, G., Troy, A. E., McKeon, C., Darlington, G. J., Spiegelman, B. M.1999. Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell,3(2):151-8.
    Xue, K., Chen, H., Wang, S., Cai, X., Liu, B., Zhang, C. F., Lei, C. Z., Wang, X. Z., Wang, Y. M., Niu, H.2006. Effect of genetic variations of the POU1F1 gene on growth traits of Nanyang cattle. Yi Chuan Xue Bao, 33(10):901-7.
    Yamada, T., Katagiri, H., Ishigaki, Y, Ogihara, T., Imai, J., Uno, K., Hasegawa, Y, Gao, J., Ishihara, H., Niijima, A. et al.2006. Signals from intra-abdominal fat modulate insulin and leptin sensitivity through different mechanisms:neuronal involvement in food-intake regulation. Cell Metab,3(3):223-9.
    Yao, J., Aggrey, S. E., Zadworny, D., Hayes, J. F., Kuhnlein, U.1996. Sequence variations in the bovine growth hormone gene characterized by single-strand conformation polymorphism (SSCP) analysis and their association with milk production traits in Holsteins. Genetics,144(4):1809-16.
    Yim, J. E., Heshka, S., Albu, J. B., Heymsfield, S., Gallagher, D.2008. Femoral-gluteal subcutaneous and intermuscular adipose tissues have independent and opposing relationships with CVD risk. J Appl Physiol, 104(3):700-7.
    Yu, S., Matsusue, K., Kashireddy, P., Cao, W. Q., Yeldandi, V., Yeldandi, A. V., Rao, M. S., Gonzalez, F. J., Reddy, J. K.2003. Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor gamma] (PPARgammal) overexpression. J Biol Chem, 278(1):498-505.
    Zhang, C., Liu, B., Chen, H., Lan, X., Lei, C., Zhang, Z., Zhang, R.2009. Associations of a HinflI PCR-RFLP of POU1F1 gene with growth traits in Qinchuan cattle. Anim Biotechnol,20(2):71-4.
    Zhou, Z., Yon Toh, S., Chen, Z., Guo, K., Ng, C. P., Ponniah, S., Lin, S. C., Hong, W., Li, P.2003. Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat Genet,35(1):49-56.
    Ziouzenkova, O., Orasanu, G., Sukhova, G., Lau, E., Berger, J. P., Tang, G., Krinsky, N. I., Dolnikowski, G. G., Plutzky, J.2007. Asymmetric cleavage of beta-carotene yields a transcriptional repressor of retinoid X receptor and peroxisome proliferator-activated receptor responses. Mol Endocrinol,21(1):77-88.
    Ziouzenkova, O., Plutzky, J.2008. Retinoid metabolism and nuclear receptor responses:New insights into coordinated regulation of the PPAR-RXR complex. FEBS Lett,582(1):32-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700