马链球菌兽疫亚种类M蛋白抗巨噬细胞吞噬机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马链球菌兽疫亚种(Streptococcus equi ssp. zooepidemicus,SEZ)属于兰氏分群的C群链球菌,可感染马,奶牛,猪,羊以及犬等,主要引起败血症、关节炎、心内膜炎以及脑膜炎等。在我国,该菌是猪链球菌病的主要病原之一。人食用被细菌污染的食物或是与患病动物有过密切接触亦可感染。病原微生物感染首先要突破宿主免疫系统,细菌表面的一些结构或成分可以帮助其逃逸宿主吞噬细胞的吞噬,本文对SEZ表面类M蛋白(SzP)抗巨噬细胞吞噬机理等进行了研究。
     1、从巨噬细胞cDNA文库中筛选与SEZ SzP有相互作用的蛋白
     巨噬细胞是机体重要的免疫细胞,在抗感染免疫中起重要作用。SEZ SzP具有抗巨噬细胞吞噬的功能,但具体机理不明。本实验从猪肺泡巨噬细胞中提取并纯化总RNA,合成First-strand cDNA,再通过PCR扩增出双链cDNA,同时在两端加上接头,用SfiI进行酶切后除去小片段cDNA,与pPR3-N载体连接,电转化入E.coli DH10B,建成原始文库,对原始文库进行扩增,PCR鉴定重组子插入片段大小。提取的总RNA分子完整,纯度高;成功合成双链cDNA,符合建库要求。原始文库滴度达到2×106CFU/mL,扩增后的文库滴度为1×109CFU/mL.插入片段大小分布在750-2500bp,平均长度约为1000bp,所构建文库的各项指标均达标。之后构建了SzP-pDHB1诱饵酵母株,在确定了SzP在诱饵株中的表达以及诱饵株的功能性正常之后,采用分离泛素酵母双杂交方法从文库中钓取与SzP有相互作用的蛋白质,经过营养缺陷筛选和β半乳糖甘酶活性分析,一共获得了12个可能与SzP有相互作用的候选蛋白,经过免疫共沉淀分析以及进一步的返板验证,最终筛选到了硫氧还蛋白与SzP之间的互作。这一发现有助于揭示SzP帮助SEZ逃逸巨噬细胞吞噬的分子机制。
     2、SzP与硫氧还蛋白互作影响SEZ抵抗吞噬作用的机理
     SzP是SEZ的重要毒力因子,与该菌的感染和抗吞噬等活动密切相关。该蛋白与硫氧还蛋白之间存在互作。还原态或氧化态的硫氧还蛋白都可以与SzP发生相互作用而不会影响到自身的活性与功能。经C3转化酶活性实验和H因子结合实验发现硫氧还蛋白不仅可以通过抑制C3转化酶的活性来调节补体途径,还对H因子具有亲和能力。硫氧还蛋白可以抑制C3分解成C3a和C3b,这一效果在H因子存在时会得到增益。C3b沉积实验发现硫氧还蛋白可以被募集到菌体表面而减少菌体表面的C3b沉积。通过对巨噬细胞中硫氧还蛋白进行RNA干扰,并在此基础上进行的吞噬试验发现SEZ可以通过菌体表面的SzP募集硫氧还蛋白从而增强自身的抗吞噬能力。这些发现说明SEZ通过菌体表面的SzP募集硫氧还蛋白来抑制补体途径,减少C3b沉积,从而达到抵抗宿主巨噬细胞的吞噬。
     3、SzP在SEZ感染过程中对巨噬细胞的影响
     为了阐明SzP在SEZ感染巨噬细胞过程中的作用,分别使用SEZ ATCC35246野生株和SzP缺失株对猪肺泡巨噬细胞进行感染,再用猪全基因组表达谱芯片(Roche NimbleGen)对处理后的细胞进行分析。结果发现两组不同处理的细胞中有446个基因的表达出现了差异,野生株处理组中134基因个表达量上调,312个基因表达量下调,下调基因中有许多与抗病原微生物感染相关的基因。采用GO聚类分析对基因的功能进行了归纳,这些基因分属于多种功能范畴,包括免疫反应,趋化因子的产生,信号转导以及细胞凋亡等。KEGG通路分析显示出多条与差异基因相关的信号通路,其中比较重要的三条包括Jak-STAT信号通路,Cytokine-cytokine receptor interaction信号通路和Toll-like receptor信号通路。最后利用STRING分析对所得的差异基因之间的关系进行了解析。使用Real-time PCR对芯片结果的可靠性进行了验证。以上结果有助于更好的了解SzP在细菌感染过程中对巨噬细胞的影响。
     4、SEZ UDP葡萄糖焦磷酸化酶基因的分子克隆与分析
     透明质酸是一种高分子生物合成物,由透明质酸构成的荚膜是链球菌的重要毒力因子。UDP葡萄糖焦磷酸化酶(UDP-Glucose Pyrophosphorylase,UGPase, EC2.7.7.9)在SEZ透明质酸荚膜的合成过程中起着至关重要的作用。本研究中,通过PCR扩增得到了UGPase的基因片段(789bp),采用基因步移技术对该基因在细菌基因组上进行了定位(GenBank No.GQ423507).对UGPase进行了表达与纯化,并利用Western-Blot技术鉴定了这一蛋白。UGPase的酶学分析显示其最适温度为37℃,最适pH7.5。该酶对UTP以及G1c-1-P的米氏常数(Km)和催化速度常数(Kcat)分别为8.5μM,69.05s-1和36.41μM,48.81s-1。另外还对UGPase做了同源建模,分析其活性中心。UGPase在SEZ中的过表达对其透明质酸合成和毒力都有影响。通过荧光定量PCR对UGPase的表达情况进行了监控,指数期表达到达峰值,进入衰亡期表达量减小。
Streptococcus equi ssp. zooepidemicus (SEZ), a member of the Lancifield's group C, is an pathogen that could infect a wide variety of species, including important domesticated animals such as horses, cows, swine, sheep, and dogs, causing septicemia, arthritis, endocarditis and meningitis.. In China, SEZ is the major cause of diseases in swine. It can infect humans via zoonotic transmission from domesticated animals and cause invasive infections in humans. Pathogenic microorganisms in a host must evade from the immune system before the infection can be established. Our paper was about the mechanism of M-like protein facilitates antiphagocytosis and the relationship among UDP-Glucose Pyrophosphorylase, hyaluronic acid capsule and bacterial virulence.
     1. Screen the interacting protein of SEZ M-like protein in macrophage cDNA library
     Macrophage plays an important role in the host immunity system. Streptococcus equi ssp. zooepidemicus can resist macrophage phagocytize with the help of its surface M-like protein (SzP). In order to indicate the molecular mechanism of this antiphagocytosis, we constructed a yeast two-hybrid cDNA library from porcine pulmonary alveolar macrophage (PAM). Total RNA was prepared from porcine PAM. First-strand cDNA was synthesized from the purified RNA. Double-stranded cDNA was amplified and ligated to adaptor, digested with Sfil enzyme and removed the small fragments, then cloned into the pPR3-N vector. The recombinant vector was electro-transformed into E. coli DH10B to obtain a primary cDNA library. The primary library was amplified and used to determine the size of cDNA inserts through enzyme digestion. The total RNA was good quality. The primary cDNA library titer was2×106CFU/mL and the amplified library titer was1×109CFU/mL. The size of the inserts varied from750to2500bp, with an average value of about1000bp. A yeast two-hybrid cDNA library has been successfully generated from porcine PAM and can be used for future screening of proteins interacting with M-like protein of SEZ. We constructed the SzP-pDHB1yeast bait strain and confirmed the expression of SzP and the function of this bait strain. After the heterotrophia selection and β-galactosidase activity analysis, we got12candidate proteins which maybe interact with SzP from the cDNA library of PAM with split-ubiquitin yeast two-hybrid system. The co-immunoprecipitation results showed that the thioredoxin of PAM interacted with SzP. Our findings could contribute to the general understanding on how SzP could confer phagocytosis resistance.
     2. The mechanism of interaction between M-like protein and thioredoxin facilitates antiphagocytosis for SEZ
     M-like protein (SzP) is an important virulence factor of SEZ and contributes to bacterial infection and antiphagocytosis. The interaction between SzP of SEZ and porcine thioredoxin (TRX) was revealed by Yeast Two-hybrid and further confirmed by co-immunoprecipitation. SzP interacted with both reduced and oxidized TRX without inhibiting TRX activity. We found that when TRX was recruited by SzP anchored on the surface of SEZ, it facilitated antiphagocytosis of the bacteria. Further experiments revealed that TRX regulated the alternative complement pathway by inhibiting the activity of C3convertase and had affinity to Factor H (FH). TRX alone inhibited C3cleavage and C3a production, the inhibitory effect was additive when FH was also present. TRX inhibited C3deposition on the bacterial surface when recruited by SzP of SEZ. These new findings indicated SEZ recruited TRX by SzP and regulated alternative complement pathways to evade host immune phagocytosis.
     3. The effect of M-like protein in SEZ infecting macrophage
     To increase our knowledge of the mechanism of SzP in infection, we profiled the response of porcine pulmonary alveolar macrophage (PAM) to infection of SEZ ATCC35246wild strain and SzP-knockout strain using the Roche NimbleGen Porcine Genome Expression Array. We found SzP contributed to differential expression (DE) of446genes, with upregulation of134genes and downregulation of312genes, some of these downregulated genes were related to defence pathogen infection. Gene Ontology category showed that these genes were represented in a variety of functional categories, including genes involved in immune response, regulation of chemokine production, signal transduction and regulation of apoptosis. Three important signal pathways were revealed by the KEGG pathway analysis, including Jak-STAT signal pathway, Cytokine-cytokine receptor interaction pathway and Toll-like receptor signal pathway. STRING anlysis show the relationship among some of these DE genes. The reliability of the data obtained from the microarray was verified by performing quantitative real-time PCR on12representative genes. The data will contribute to understanding of SzP mediated mechanisms of SEZ pathogenesis.
     4. Molecular cloning and analysis of the UDP-glucose gene pyrophosphorylase in SEZ
     Capsula of hyaluronic acid (HA) is considered an important virulence factor in other streptococci. UDP-Glucose Pyrophosphorylase (EC2.7.7.9, UGPase) plays an important role in SEZ hyaluronic acid capsula biosynthesis and it is also recognized as a virulence determinant in several bacterial species. In this study, The UGPase gene fragment (789bp) obtained from previous research was amplified using PCR, and located by Genome walking technology (GenBank No.GQ423507). The UGPase was expressed, purified and identified using UGPase antibody. The enzyme kinetic parameters were determined, the temperature and pH of the highest activity for the cloned UGPase were37℃, pH7.5. The Km and Kcat value against UTP and G-1-P was8.5μM,69.05s-1and36.41uM,48.81s-1respectively. The homology-modeling was operated. Overexpression of the UGPase in SEZ, its virulence was affected. Real-Time PCR was carried out to determine the UGPase expression levels of both SEZp and SEZugp in different grow period, the level is high in logarithmic phase and low in Decline phase.
引文
[1]Timoney J F, Mukhtar M M. The protective M proteins of the equine group C streptococci[J]. Vet Microbiol,1993,37(3-4):389-395
    [2]Wood J L, Newton J R, Chanter N, et al. Association between respiratory disease and bacterial and viral infections in British racehorses[J]. J Clin Microbiol,2005,43(1):120-126
    [3]Wood J L, Burrell M H, Roberts C A, et al. Streptococci and Pasteurella spp. associated with disease of the equine lower respiratory tract[J]. Equine Vet J,1993,25(4):314-318
    [4]Sharp M W, Prince M J, Gibbens J. S zooepidemicus infection and bovine mastitis[J]. Vet Rec,1995, 137(5):128
    [5]Las Heras A, Vela A I, Fernandez E, et al. Unusual outbreak of clinical mastitis in dairy sheep caused by Streptococcus equi subsp. zooepidemicus[J]. J Clin Microbiol,2002,40(3):1106-1108
    [6]Salasia S I, Wibawan I W, Pasaribu F H, et al. Persistent occurrence of a single Streptococcus equi subsp. zooepidemicus clone in the pig and monkey population in Indonesia[J]. J Vet Sci,2004, 5(3):263-265
    [7]Matz-Rensing K, Winkelmann J, Becker T, et al. Outbreak of Streptococcus equi subsp. zooepidemicus infection in a group of rhesus monkeys (Macaca mulatta)[J]. J Med Primatol,2009, 38(5):328-334
    [8]Byun J W, Yoon S S, Woo G H, et al. An outbreak of fatal hemorrhagic pneumonia caused by Streptococcus equi subsp. zooepidemicus in shelter dogs[J]. J Vet Sci,2009,10(3):269-271
    [9]Akineden O, Alber J, Lammler C, et al. Relatedness of Streptococcus equi subsp. zooepidemicus strains isolated from harbour seals (Phoca vitulina) and grey seals (Halichoerus grypus) of various origins of the North Sea during 1988-2005[J]. Vet Microbiol,2007,121(1-2):158-162
    [10]Timoney J F. The pathogenic equine streptococci[J]. Vet Res,2004,35(4):397-409
    [11]Moore B O, Bryans J T. Antigenic classification of group C animal streptococci[J]. J Am Vet Med Assoc,1969,155(2):416-421
    [12]R.E.布坎南,N.E.吉本斯等.伯杰细菌鉴定手册[J].北京:科学出版社,1984:677-697
    [13]Feng ZG H J. Outbreak of swine streptococcosis in Sichan province and identification of pathogen[J]. Anim Husbandry Vet Med Lett,1977,2:7-12
    [14]Liu PH S S, Wang YK, Zhang SH. Identification of swine Streptococcus isolates in Shanghai[J]. Chin J Vet Med,2001,21:42-46
    [15]Eyre D W.J S K, Bowler I C, et al. Streptococcus equi subspecies zooepidemicus meningitis-a case report and review of the literature[J]. Eur J Clin Microbiol Infect Dis,2010,
    [16]Abbott Y, Acke E, Khan S, et al. Zoonotic transmission of Streptococcus equi subsp. zooepidemicus from a dog to a handler[J]. J Med Microbiol,2009,
    [17]Jovanovic M, Stevanovic G, Tosic T, et al. Streptococcus equi subsp. zooepidemicus meningitis[J]. J Med Microbiol,2008,57(Pt 3):373-375
    [18]Nicholson M L, Ferdinand L, Sampson J S, et al. Analysis of immunoreactivity to a Streptococcus equi subsp. zooepidemicus M-like protein To confirm an outbreak of poststreptococcal glomerulonephritis, and sequences of M-like proteins from isolates obtained from different host species[J]. J Clin Microbiol,2000,38(11):4126-4130
    [19]陈永林,关孚时.动物病原性链球菌的血清学分群鉴定[J].中国兽医杂志,1993,19(9):3-4
    [20]刘佩红,沈素芳,王永康,张苏华,姚火春,陆承平.上海地区猪源链球菌分离株的病原特性鉴定[J].中国兽医学报,2001,12(1):42-46
    [21]耿建新,陆承平,范红结.马链球菌兽疫亚种10株国内猪源分离株对小鼠免疫效力的评价[J].中国人兽共患病学报,2007,23(2):201-204
    [22]Miller L, Gray L, Beachey E, et al. Antigenic variation among group A streptococcal M proteins. Nucleotide sequence of the serotype 5 M protein gene and its relationship with genes encoding types 6 and 24 M proteins[J]. J Biol Chem,1988,263(12):5668-5673
    [23]Timoney J F, and M. Mukhtar. Variability in the M proteins of equine strains of Streptococcus equi subsp. zooepidemicus[J].In W.Plowright, P. D. Rossdale, and J. F. Wade (ed.), Equine infectious diseases VI. R&W Publications, Newmarket, England.,1992:15-20
    [24]Timoney J F, Walker J, Zhou M, et al. Cloning and sequence analysis of a protective M-Iike protein gene from Streptococcus equi subsp. zooepidemicus[J]. Infect Immun,1995,63(4):1440-1445
    [25]Timoney J F, Artiushin S C, Boschwitz J S. Comparison of the sequences and functions of Streptococcus equi M-like proteins SeM and SzPSe[J]. Infect Immun,1997,65(9):3600-3605
    [26]Fischetti V A. Streptococcal M protein:molecular design and biological behavior[J]. Clin Microbiol Rev,1989,2(3):285-314
    [27]Navarre W W, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope[J]. Microbiol Mol Biol Rev,1999,63(1):174-229
    [28]Fischetti V A, Jones K F, Hollingshead S K, et al. Structure, function, and genetics of streptococcal M protein[J]. Rev Infect Dis,1988,10 Suppl 2:S356-359
    [29]Walker J A, Timoney J F. Molecular basis of variation in protective SzP proteins of Streptococcus zooepidemicus[J]. Am J Vet Res,1998,59(9):1129-1133
    [30]Bessen D, Jones K F, Fischetti V A. Evidence for two distinct classes of streptococcal M protein and their relationship to rheumatic fever[J]. J Exp Med,1989,169(1):269-283
    [31]Bessen D E, Fiorentino T R, Hollingshead S K. Molecular markers for throat and skin isolates of group A streptococci[J]. Adv Exp Med Biol,1997,418:537-543
    [32]Smeesters P R, Mardulyn P, Vergison A, et al. Genetic diversity of Group A Streptococcus M protein:implications for typing and vaccine development[J]. Vaccine,2008,26(46):5835-5842
    [33]Smeesters P R, Dramaix M, Van Melderen L. The emm-type diversity does not always reflect the M protein genetic diversity-is there a case for designer vaccine against GAS[J]. Vaccine,2010, 28(4):883-885
    [34]Fischetti V A, Jones K F, Scott J R. Size variation of the M protein in group A streptococci[J]. J Exp Med,1985,161(6):1384-1401
    [35]Haanes E J, Cleary P P. Identification of a divergent M protein gene and an M protein-related gene family in Streptococcus pyogenes serotype 49[J]. J Bacteriol,1989,171(12):6397-6408
    [36]McNamara C, Zinkernagel A S, Macheboeuf P, et al. Coiled-coil irregularities and instabilities in group A Streptococcus M1 are required for virulence[J]. Science,2008,319(5868):1405-1408
    [37]Nilson B H, Frick I M, Akesson P, et al. Structure and stability of protein H and the M1 protein from Streptococcus pyogenes. Implications for other surface proteins of gram-positive bacteria[J]. Biochemistry,1995,34(41):13688-13698
    [38]Akerstrom B, Lindahl G, Bjorck L, et al. Protein Arp and protein H from group A streptococci. Ig binding and dimerization are regulated by temperature[J]. J Immunol,1992,148(10):3238-3243
    [39]Rouadi P, Baroody F M, Abbott D, et al. A technique to measure the ability of the human nose to warm and humidify air[J]. J Appl Physiol,1999,87(1):400-406
    [40]Dinkla K, Nitsche-Schmitz D P, Barroso V, et al. Identification of a streptococcal octapeptide motif involved in acute rheumatic fever[J]. J Biol Chem,2007,282(26):18686-18693
    [41]Wistedt A C, Ringdahl U, Muller-Esterl W, et al. Identification of a plasminogen-binding motif in PAM, a bacterial surface protein[J]. Mol Microbiol,1995,18(3):569-578
    [42]Johnsson E, Them A, Dahlback B, et al. A highly variable region in members of the streptococcal M protein family binds the human complement regulator C4BP[J]. J Immunol,1996, 157(7):3021-3029
    [43]Johnsson E, Berggard K, Kotarsky H, et al. Role of the hypervariable region in streptococcal M proteins:binding of a human complement inhibitor[J]. J Immunol,1998,161(9):4894-4901
    [44]Carlsson F, Berggard K, Stalhammar-Carlemalm M, et al. Evasion of phagocytosis through cooperation between two ligand-binding regions in Streptococcus pyogenes M protein[J]. J Exp Med,2003,198(7):1057-1068
    [45]Berggard K, Johnsson E, Morfeldt E, et al. Binding of human C4BP to the hypervariable region of M protein:a molecular mechanism of phagocytosis resistance in Streptococcus pyogenes[J]. Mol Microbiol,2001,42(2):539-551
    [46]Persson J, Beall B, Linse S, et al. Extreme sequence divergence but conserved ligand-binding specificity in Streptococcus pyogenes M protein[J]. PLoS Pathog,2006,2(5):e47
    [47]Perez-Caballero D, Alberti S, Vivanco F, et al. Assessment of the interaction of human complement regulatory proteins with group A Streptococcus. Identification of a high-affinity group A Streptococcus binding site in FHL-1[J]. Eur J Immunol,2000,30(4):1243-1253
    [48]Fischetti V A, Horstmann R D, Pancholi V. Location of the complement factor H binding site on streptococcal M6 protein[J]. Infect Immun,1995,63(1):149-153
    [49]Perez-Casal J, Okada N, Caparon M Q et al. Role of the conserved C-repeat region of the M protein of Streptococcus pyogenes[J], Mol Microbiol,1995,15(5):907-916
    [50]Horstmann R D, Sievertsen H J, Knobloch J, et al. Antiphagocytic activity of streptococcal M protein:selective binding of complement control protein factor H[J]. Proc Natl Acad Sci U S A, 1988,85(5):1657-1661
    [51]Sandin C, Carlsson F, Lindahl G. Binding of human plasma proteins to Streptococcus pyogenes M protein determines the location of opsonic and non-opsonic epitopes[J]. Mol Microbiol,2006, 59(1):20-30
    [52]Perez-Caballero D, Garcia-Laorden I, Cortes G, et al. Interaction between complement regulators and Streptococcus pyogenes:binding of C4b-binding protein and factor H/factor H-like protein 1 to Ml8 strains involves two different cell surface molecules[J]. J Immunol,2004,173(11):6899-6904
    [53]Carlsson F, Sandin C, Lindahl G. Human fibrinogen bound to Streptococcus pyogenes M protein inhibits complement deposition via the classical pathway[J]. Mol Microbiol,2005,56(1):28-39
    [54]Courtney H S, Hasty D L, Dale J B. Anti-phagocytic mechanisms of Streptococcus pyogenes: binding of fibrinogen to M-related protein[J]. Mol Microbiol,2006,59(3):936-947
    [55]Ringdahl U, Svensson H G, Kotarsky H, et al. A role for the fibrinogen-binding regions of streptococcal M proteins in phagocytosis resistance[J]. Mol Microbiol,2000,37(6):1318-1326
    [56]Horstmann R D, Sievertsen H J, Leippe M, et al. Role of fibrinogen in complement inhibition by streptococcal M protein[J]. Infect Immun,1992,60(12):5036-5041
    [57]Courtney H S, Liu S, Dale J B, et al. Conversion of M serotype 24 of Streptococcus pyogenes to M serotypes 5 and 18:effect on resistance to phagocytosis and adhesion to host cells[J]. Infect Immun, 1997,65(6):2472-2474
    [58]Retnoningrum D S, Cleary P P. M12 protein from Streptococcus pyogenes is a receptor for immunoglobulin G3 and human albumin[J].Infect Immun,1994,62(6):2387-2394
    [59]Gubbe K, Misselwitz R, Welfle K, et al. C repeats of the streptococcal M1 protein achieve the human serum albumin binding ability by flanking regions which stabilize the coiled-coil conformation[J]. Biochemistry,1997,36(26):8107-8113
    [60]Johnsson E, Andersson G, Lindahl G, et al. Identification of the IgA-binding region in streptococcal protein Arp[J].J Immunol,1994,153(8):3557-3564
    [61]Stenberg L, O'Toole P, Lindahl G. Many group A streptococcal strains express two different immunoglobulin-binding proteins, encoded by closely linked genes:characterization of the proteins expressed by four strains of different M-type[J]. Mol Microbiol,1992,6(9):1185-1194
    [62]Ben Nasr A, Herwald H, Sjobring U, et al. Absorption of kininogen from human plasma by Streptococcus pyogenes is followed by the release of bradykinin[J]. Biochem J,1997,326 (Pt 3):657-660
    [63]Sanderson-Smith M L, Dinkla K, Cole J N, et al. M protein-mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate[J]. FASEB J,2008, 22(8):2715-2722
    [64]Sun H, Ringdahl U, Homeister J W, et al. Plasminogen is a critical host pathogenicity factor for group A streptococcal infection[J]. Science,2004,305(5688):1283-1286
    [65]Fan H, Wang Y, Tang F, et al. Determination of the mimic epitope of the M-like protein adhesin in swine Streptococcus equi subsp. zooepidemicus[J]. BMC Microbiol,2008,8:170
    [66]Frick I M, Akesson P, Rasmussen M, et al. SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides[J]. J Biol Chem,2003,278(19):16561-16566
    [67]Berkower C, Ravins M, Moses A E, et al. Expression of different group A streptococcal M proteins in an isogenic background demonstrates diversity in adherence to and invasion of eukaryotic cells[J]. Mol Microbiol,1999,31(5):1463-1475
    [68]Ryan P A, Pancholi V, Fischetti V A. Group A streptococci bind to mucin and human pharyngeal cells through sialic acid-containing receptors[J]. Infect Immun,2001,69(12):7402-7412
    [69]Lembke C, Podbielski A, Hidalgo-Grass C, et al. Characterization of biofilm formation by clinically relevant serotypes of group A streptococci[J]. Appl Environ Microbiol,2006,72(4):2864-2875
    [70]Cho K H, Caparon M G Patterns of virulence gene expression differ between biofilm and tissue communities of Streptococcus pyogenes[J]. Mol Microbiol,2005,57(6):1545-1556
    [71]Courtney H S e a. Relationship between expression of the family of M proteins and lipoteichoic acid to hydrophobicity and biofilm formation in Streptococcus pyogenes[J]. PLoS ONE,2009, 4(1):e4166
    [72]Jonsson H, Lindmark H, Guss B. A protein G-related cell surface protein in Streptococcus zooepidemicus[S]. Infect Immun,1995,63(8):2968-2975
    [73]Valentin-Weigand P, Traore M Y, Blobel H, et al. Role of alpha 2-macroglobulin in phagocytosis of group A and C streptococci[J]. FEMS Microbiol Lett,1990,58(3):321-324
    [74]Moses A E, Wessels M R, Zalcman K, et al. Relative contributions of hyaluronic acid capsule and M protein to virulence in a mucoid strain of the group A Streptococcus[J]. Infect Immun,1997, 65(1):64-71
    [75]Krahulec J, Krahulcova J. Increase in hyaluronic acid production by Streptococcus equi subsp. zooepidemicus strain deficient in beta-glucuronidase in laboratory conditions[J]. Appl Microbiol Biotechnol,2006,71(4):415-422
    [76]Wessels M R, Goldberg J B, Moses A E, et al. Effects on virulence of mutations in a locus essential for hyaluronic acid capsule expression in group A streptococci[J]. Infect Immun,1994, 62(2):433-441
    [77]Schrager H M, Alberti S, Cywes C, et al. Hyaluronic acid capsule modulates M protein-mediated adherence and acts as a ligand for attachment of group A Streptococcus to CD44 on human keratinocytes[J]. J Clin Invest,1998,101(8):1708-1716
    [1]Kelly W, Stumpf M. Protein-protein interactions:from global to local analyses[J]. Curr Opin Biotechnol,2008,19(4)396-403
    [2]Hermjakob H, Montecchi-Palazzi L, Lewington C, et al. IntAct:an open source molecular interaction database[J]. Nucleic Acids Res,2004,32(Database issue):D452-455
    [3]Licata L, Briganti L, Peluso D, et al. MINT, the molecular interaction database:2012 update[J]. Nucleic Acids Res,2012,40(Database issue):D857-861
    [4]Fields S, Song O. A novel genetic system to detect protein-protein interactions[J]. Nature,1989, 340(6230):245-246
    [5]Gandhi T K, Zhong J, Mathivanan S, et al. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets[J]. Nat Genet,2006,38(3):285-293
    [6]Rhodes D R, Tomlins S A, Varambally S, et al. Probabilistic model of the human protein-protein interaction network[J]. Nat Biotechnol,2005,23(8):951-959
    [7]Lim J, Hao T, Shaw C, et al. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration[J]. Cell,2006,125(4):801-814
    [8]Silver P A, Keegan L P, Ptashne M. Amino terminus of the yeast GAL4 gene product is sufficient for nuclear localization[J]. Proc Natl Acad Sci U S A,1984,81(19):5951-5955
    [9]Charbonnier S, Gallego O, Gavin A C. The social network of a cell:recent advances in interactome mapping[J]. Biotechnol Annu Rev,2008,14:1-28
    [10]Formstecher E, Aresta S, Collura V, et al. Protein interaction mapping:a Drosophila case study[J]. Genome Res,2005,15(3):376-384
    [11]Fromont-Racine M, Mayes A E, Brunet-Simon A, et al. Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins[J]. Yeast,2000,17(2):95-110
    [12]Uetz P, Giot L, Cagney G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae[J]. Nature,2000,403(6770):623-627
    [13]Ito T, Chiba T, Ozawa R, et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome[J]. Proc Natl Acad Sci U S A,2001,98(8):4569-4574
    [14]Bryant G O, Ptashne M. Independent recruitment in vivo by Gal4 of two complexes required for transcription[J]. Mol Cell,2003,11(5):1301-1309
    [15]Keegan L, Gill G, Ptashne M. Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein[J]. Science,1986,231(4739):699-704
    [16]Horecka J, Sprague G F, Jr. Use of imidazoleglycerolphosphate dehydratase (His3) as a biological reporter in yeast[J]. Methods Enzymol,2000,326:107-119
    [17]Struhl K. The yeast his3 promoter contains at least two distinct elements[J]. Proc Natl Acad Sci U S A,1982,79(23):7385-7389
    [18]Klopotowski T, Wiater A. Synergism of aminotriazole and phosphate on the inhibition of yeast imidazole glycerol phosphate dehydratase[J]. Arch Biochem Biophys,1965,112(3):562-566
    [19]Gedvilaite A, Sasnauskas K. Control of the expression of the ADE2 gene of the yeast Saccharomyces cerevisiae[J]. Curr Genet,1994,25(6):475-479
    [20]Hiep T T, Noskov V N, Pavlov Y I. Transformation in the methylotrophic yeast Pichia methanolica utilizing homologous ADE1 and heterologous Saccharomyces cerevisiae ADE2 and LEU2 genes as genetic markers[J]. Yeast,1993,9(11):1189-1197
    [21]Cerantola V, Guillas I, Roubaty C, et al. Aureobasidin A arrests growth of yeast cells through both ceramide intoxication and deprivation of essential inositolphosphorylceramides[J]. Mol Microbiol, 2009,71(6):1523-1537
    [22]Kuroda M, Hashida-Okado T, Yasumoto R, et al. An aureobasidin A resistance gene isolated from Aspergillus is a homolog of yeast AUR1, a gene responsible for inositol phosphorylceramide (IPC) synthase activity[J]. Mol Gen Genet,1999,261(2):290-296
    [23]Durfee T, Becherer K, Chen P L, et al. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit[J]. Genes Dev,1993,7(4):555-569
    [24]李尧锋,张楠阳,赵永聚.酵母双杂交中诱饵蛋白载体的构建与鉴定方法[J].中国生物工程杂志,2012,32(2):123-127
    [25]Bruckner A, Polge C, Lentze N, et al. Yeast two-hybrid, a powerful tool for systems biology[J]. Int J Mol Sci,2009,10(6):2763-2788
    [26]Hirst M, Ho C, Sabourin L, et al. A two-hybrid system for transactivator bait proteins[J]. Proc Natl Acad Sci U S A,2001,98(15):8726-8731
    [27]Wafa L A, Cheng H, Rao M A, et al. Isolation and identification of L-dopa decarboxylase as a protein that binds to and enhances transcriptional activity of the androgen receptor using the repressed transactivator yeast two-hybrid system[J]. Biochem J,2003,375(Pt 2):373-383
    [28]Huang A, Ho C S, Ponzielli R, et al. Identification of a novel c-Myc protein interactor, JPO2, with transforming activity in medulloblastoma cells[J]. Cancer Res,2005,65(13):5607-5619
    [29]Joshi P B H, M.; Malcolm, T.; Parent, J.; Mitchell, D.; Lund, K.; Sadowski, I. Identification of protein interaction antagonists using the repressed transactivator two-hybrid system[J]. Biotechniques,2007,42:635-644
    [30]Aronheim A, Engelberg D, Li N, et al. Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway[J]. Cell,1994,78(6):949-961
    [31]Ehrhard K N, Jacoby J J, Fu X Y, et al. Use of G-protein fusions to monitor integral membrane protein-protein interactions in yeast[J]. Nat Biotechnol,2000,18(10):1075-1079
    [32]Hershko A. The ubiquitin system for protein degradation and some of its roles in the control of the cell-division cycle (Nobel lecture)[J]. Angew Chem Int Ed Engl,2005,44(37):5932-5943
    [33]Mayer R J. The meteoric rise of regulated intracellular proteolysis[J]. Nat Rev Mol Cell Biol,2000, 1(2):145-148
    [34]Johnsson N, Varshavsky A. Split ubiquitin as a sensor of protein interactions in vivo[J]. Proc Natl Acad Sci U S A,1994,91(22):10340-10344
    [35]Laser H, Bongards C, Schuller J, et al. A new screen for protein interactions reveals that the Saccharomyces cerevisiae high mobility group proteins Nhp6A/B are involved in the regulation of the GAL1 promoter[J]. Proc Natl Acad Sci U S A,2000,97(25):13732-13737
    [36]Kerkmann K, Lehming N. Genome-wide expression analysis of a Saccharomyces cerevisiae strain deleted for the Tuplp-interacting protein Cdc73p[J]. Curr Genet,2001,39(5-6):284-290
    [37]Eckert J H, Johnsson N. Pex10p links the ubiquitin conjugating enzyme Pex4p to the protein import machinery of the peroxisome[J]. J Cell Sci,2003,116(Pt 17):3623-3634
    [38]Wittke S, Lewke N, Muller S, et al. Probing the molecular environment of membrane proteins in vivo[J]. Mol Biol Cell,1999,10(8):2519-2530
    [39]Varshavsky A. The N-end rule pathway of protein degradation[J]. Genes Cells,1997,2(1):13-28
    [40]Hooker B S, Bigelow D J, Lin C T. Methods for mapping of interaction networks involving membrane proteins[J]. Biochem Biophys Res Commun,2007,363(3):457-461
    [41]Thaminy S, Auerbach D, Arnoldo A, et al. Identification of novel ErbB3-interacting factors using the split-ubiquitin membrane yeast two-hybrid system[J]. Genome Res,2003,13(7):1744-1753
    [42]Wang B, Pelletier J, Massaad M J, et al. The yeast split-ubiquitin membrane protein two-hybrid screen identifies BAP31 as a regulator of the turnover of endoplasmic reticulum-associated protein tyrosine phosphatase-like B[J]. Mol Cell Biol,2004,24(7):2767-2778
    [43]Matsuda S, Giliberto L, Matsuda Y, et al. The familial dementia BRI2 gene binds the Alzheimer gene amyloid-beta precursor protein and inhibits amyloid-beta production[J]. J Biol Chem,2005, 280(32):28912-28916
    [44]Felkl M, Leube R E. Interaction assays in yeast and cultured cells confirm known and identify novel partners of the synaptic vesicle protein synaptophysin[J]. Neuroscience,2008, 156(2):344-352
    [45]Miller J P, Lo R S, Ben-Hur A, et al. Large-scale identification of yeast integral membrane protein interactions[J]. Proc Natl Acad Sci U S A,2005,102(34):12123-12128
    [46]Urech D M, Lichtlen P, Barberis A. Cell growth selection system to detect extracellular and transmembrane protein interactions[J]. Biochim Biophys Acta,2003,1622(2):117-127
    [47]Pollock S, Kozlov G, Pelletier M F, et al. Specific interaction of ERp57 and calnexin determined by NMR spectroscopy and an ER two-hybrid system[J]. EMBO J,2004,23(5):1020-1029
    [48]Li J J, Herskowitz I. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system[J]. Science,1993,262(5141):1870-1874
    [49]Pyvovarenko T, Lopato S. Isolation of plant transcription factors using a yeast one-hybrid system[J]. Methods Mol Biol,2011,754:45-66
    [50]Ouwerkerk P B, Meijer A H. Yeast one-hybrid screens for detection of transcription factor DNA interactions[J]. Methods Mol Biol,2011,678:211-227
    [51]Martin F, Michel F, Zenklusen D, et al. Positive and negative mutant selection in the human histone hairpin-binding protein using the yeast three-hybrid system[J]. Nucleic Acids Res,2000, 28(7):1594-1603
    [52]Wurster S E, Bida J P, Her Y F, et al. Characterization of anti-NF-kappaB RNA aptamer-binding specificity in vitro and in the yeast three-hybrid system[J]. Nucleic Acids Res,2009, 37(18):6214-6224
    [53]Jaeger S, Eriani G, Martin F. Critical residues for RNA discrimination of the histone hairpin binding protein (HBP) investigated by the yeast three-hybrid system[J]. FEBS Lett,2004,556(1-3):265-270
    [54]Takahashi N, Sasagawa N, Suzuki K, et al. The CUG-binding protein binds specifically to UG dinucleotide repeats in a yeast three-hybrid system[J]. Biochem Biophys Res Commun,2000, 277(2):518-523
    [55]Wisner A L, Potter A A, Koster W. Effect of the Salmonella pathogenicity island 2 type III secretion system on Salmonella survival in activated chicken macrophage-like HD11 cells[J]. PLoS One, 2011,6(12):e29787
    [56]Bernal-Bayard J, Ramos-Morales F. Salmonella type III secretion effector SlrP is an E3 ubiquitin ligase for mammalian thioredoxin[J]. J Biol Chem,2009,284(40):27587-27595
    [57]Bernal-Bayard J, Cardenal-Munoz E, Ramos-Morales F. The Salmonella type III secretion effector, salmonella leucine-rich repeat protein (SlrP), targets the human chaperone ERdj3[J]. J Biol Chem, 2010,285(21):16360-16368
    [58]Parienti J J, Cattoir V, Thibon P, et al. Hospital-wide modification of fluoroquinolone policy and meticillin-resistant Staphylococcus aureus rates:a 10-year interrupted time-series analysis[J]. J Hosp Infect,2011,78(2):118-122
    [59]Haim M, Trost A, Maier C J, et al. Cytokeratin 8 interacts with clumping factor B:a new possible virulence factor target[J]. Microbiology,2010,
    [60]Bugarel M, Martin A, Fach P, et al.Virulence gene profiling of enterohemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli strains:a basis for molecular risk assessment of typical and atypical EPEC strains[J]. BMC Microbiol,2011,11:142
    [61]Shames S R, Deng W, Guttman J A, et al. The pathogenic E. coli type III effector EspZ interacts with host CD98 and facilitates host cell prosurvival signalling[J]. Cell Microbiol,2010, 12(9):1322-1339
    [62]Wu T, Yuan F, Chang H, et al. Identification of a novel angiogenin inhibitor 1 and its association with hyaluronidase of Streptococcus suis serotype 2[J]. Microb Pathog,2010,49(1-2):32-37
    [63]Osborne M A, Zenner G, Lubinus M, et al. The inositol 5'-phosphatase SHIP binds to immunoreceptor signaling motifs and responds to high affinity IgE receptor aggregation[J]. J Biol Chem,1996,271(46):29271-29278
    [64]Fukada M, Kawachi H, Fujikawa A, et al. Yeast substrate-trapping system for isolating substrates of protein tyrosine phosphatases:Isolation of substrates for protein tyrosine phosphatase receptor type z[J]. Methods,2005,35(1):54-63
    [65]von Mering C, Krause R, Snel B, et al. Comparative assessment of large-scale data sets of protein-protein interactions[J]. Nature,2002,417(6887):399-403
    [66]Mockli N, Deplazes A, Hassa P O, et al. Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins[J]. Biotechniques,2007,42(6):725-730
    [67]Fetchko M, Stagljar I. Application of the split-ubiquitin membrane yeast two-hybrid system to investigate membrane protein interactions[J]. Methods,2004,32(4):349-362
    [68]贺凌婕,张澍田,朱圣韬.COX-2诱饵载体的构建及其在酵母双杂交系统中自激活作用的检测[J].首都医科大学学报,2011,32(1):106-109
    [69]Jackson M, Song W, Liu M Y, et al. Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins[J]. Nature,2001,410(6824):89-93
    [70]Tanaka H, Katoh H, Negishi M. Pragmin, a novel effector of Rnd2 GTPase, stimulates RhoA activity[J]. J Biol Chem,2006,281(15):10355-10364
    [71]Burklen T S, Hirschy A, Wallimann T. Brain-type creatine kinase BB-CK interacts with the Golgi Matrix Protein GM130 in early prophase[J]. Mol Cell Biochem,2007,297(1-2):53-64
    [72]Hornemann T, Kempa S, Himmel M, et al. Muscle-type creatine kinase interacts with central domains of the M-band proteins myomesin and M-protein[J]. J Mol Biol,2003,332(4):877-887
    [1]Gaywee J, Radulovic S, Higgins J A, et al. Transcriptional analysis of Rickettsia prowazekii invasion gene homolog (invA) during host cell infection[J]. Infect Immun,2002,70(11):6346-6354
    [2]Rovery C, Renesto P, Crapoulet N, et al. Transcriptional response of Rickettsia conorii exposed to temperature variation and stress starvation[J]. Res Microbiol,2005,156(2):211-218
    [3]Cummings C A, Relman D A. Using DNA microarrays to study host-microbe interactions[J]. Emerg Infect Dis,2000,6(5):513-525
    [4]Fournier P E, Drancourt M, Raoult D. Bacterial genome sequencing and its use in infectious diseases[J].Lancet Infect.Dis.,2007,7:711
    [5]Pinkel D, Segraves R, Sudar D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays[J]. Nat Genet,1998,20(2):207-211
    [6]Ren B, Robert F, Wyrick J J, et al. Genome-wide location and function of DNA binding proteins[J]. Science,2000,290(5500):2306-2309
    [7]Schena M, Shalon D, Davis R W, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J]. Science,1995,270(5235):467-470
    [8]Yang Y H, Dudoit S, Luu P, et al. Normalization for cDNA microarray data:a robust composite method addressing single and multiple slide systematic variation[J]. Nucleic Acids Res,2002, 30(4):e15
    [9]Picard F, Robin S, Lavielle M, et al. A statistical approach for array CGH data analysis[J]. BMC Bioinformatics,2005,6:27
    [10]Tusher V G, Tibshirani R, Chu G.Significance analysis of microarrays applied to the ionizing radiation response[J]. Proc Natl Acad Sci U S A,2001,98(9):5116-5121
    [11]Jenssen T K, Laegreid A, Komorowski J, et al. A literature network of human genes for high-throughput analysis of gene expression[J]. Nat Genet,2001,28(1):21-28
    [12]Eisen M B, Spellman P T, Brown P O, et al. Cluster analysis and display of genome-wide expression patterns[J]. Proc Natl Acad Sci U S A,1998,95(25):14863-14868
    [13]Saeed A I, Sharov V, White J, et al. TM4:a free, open-source system for microarray data management and analysis[J]. Biotechniques,2003,34(2):374-378
    [14]Dudoit S, Gentleman R C, Quackenbush J. Open source software for the analysis of microarray data[J]. Biotechniques,2003, Suppl:45-51
    [15]Leroy Q, Raoult D. Review of microarray studies for host-intracellular pathogen interactions[J]. J Microbiol Methods,2010,81(2):81-95
    [16]王升启.基因芯片技术及应用研究进展[J].生物工程进展,1999,19(4):45-50
    [17]Linton D, Lawson A J, Owen R J, et al. PCR detection, identification to species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples[J]. J Clin Microbiol,1997,35(10):2568-2572
    [18]Schlosser R, Gesierich T, Kaufmann B, et al. Altered effective connectivity during working memory performance in schizophrenia:a study with with and structural equation modeling[J]. Neuroimage, 2003,19(3):751-763
    [19]Wang Q, Wang M, Kong F, et al. Development of a DNA microarray to identify the Streptococcus pneumoniae serotypes contained in the 23-valent pneumococcal polysaccharide vaccine and closely related serotypes[J]. J Microbiol Methods,2007,68(1):128-136
    [20]Tomita Y, Okamoto A, Yamada K, et al. A new microarray system to detect Streptococcus pneumoniae serotypes[J]. J Biomed Biotechnol,2011,2011:352736
    [21]Schoolnik G K. Microarray analysis of bacterial pathogenicity[J]. Adv Microb Physiol,2002, 46:1-45
    [22]McMillan D J, Geffers R, Buer J, et al. Variations in the distribution of genes encoding virulence and extracellular proteins in group A Streptococcus are largely restricted to 11 genomic loci[J]. Microbes Infect,2007,9(3):259-270
    [23]Rato M G, Nerlich A, Bergmann R, et al. Virulence gene pool detected in bovine group C Streptococcus dysgalactiae subsp. dysgalactiae isolates by use of a group A S. pyogenes virulence microarray[J]. J Clin Microbiol,2011,49(7):2470-2479
    [24]Livezey J, Perez L, Suciu D, et al. Analysis of group A Streptococcus gene expression in humans with pharyngitis using a microarray[J]. J Med Microbiol,2011,60(Pt 12):1725-1733
    [25]Liu M, Fang L, Tan C, et al. Understanding Streptococcus suis serotype 2 infection in pigs through a transcriptional approach[J]. BMC Genomics,2011,12:253
    [26]Liu M, Tan C, Fang L, et al. Microarray analyses of THP-1 cells infected with Streptococcus suis serotype 2[J]. Vet Microbiol,2011,150(1-2):126-131
    [27]Goldmann O, von Kockritz-Blickwede M, Holtje C, et al. Transcriptome analysis of murine macrophages in response to infection with Streptococcus pyogenes reveals an unusual activation program[J]. Infect Immun,2007,75(8):4148-4157
    [28]Shiu S H, Borevitz J O. The next generation of microarray research:applications in evolutionary and ecological genomics[J]. Heredity (Edinb),2008,100(2):141-149
    [29]胡强,张正国.基于网络的基因芯片数据存储分析系统[J].中国生物医学工程学报,2007,23(3):474-479
    [1]Feng ZG H J. Outbreak of swine streptococcosis in Sichan province and identification of pathogen[J]. Anim Husbandry Vet Med Lett,1977,2:7-12
    [2]Liu PH S S, Wang YK, Zhang SH. Identification of swine Streptococcus isolates in Shanghai[J]. Chin J Vet Med,2001,21:42-46
    [3]Eyre D W, J S K, Bowler I C, et al. Streptococcus equi subspecies zooepidemicus meningitis-a case report and review of the literature[J]. Eur J Clin Microbiol Infect Dis,2010,
    [4]Abbott Y, Acke E, Khan S, et al. Zoonotic transmission of Streptococcus equi subsp. zooepidemicus from a dog to a handler[J]. J Med Microbiol,2009,
    [5]Jovanovic M, Stevanovic G, Tosic T, et al. Streptococcus equi subsp. zooepidemicus meningitis[J]. J Med Microbiol,2008,57(Pt 3):373-375
    [6]Nicholson M L, Ferdinand L, Sampson J S, et al. Analysis of immunoreactivity to a Streptococcus equi subsp. zooepidemicus M-like protein To confirm an outbreak of poststreptococcal glomerulonephritis, and sequences of M-like proteins from isolates obtained from different host species[J]. J Clin Microbiol,2000,38(11):4126-4130
    [7]Basta S, Carrasco C P, Knoetig S M, et al. Porcine alveolar macrophages:poor accessory or effective suppressor cells for T-lymphocytes[J]. Vet Immunol Immunopathol,2000,77(3-4):177-190
    [8]Choi I S, Collisson E W, Maheswaran S K, et al. Evaluation of cytokine gene expression in porcine spleen cells, peripheral blood mononuclear cells, and alveolar macrophages by competitive RT-PCR[J]. FEMS Immunol Med Microbiol,2002,34(2):119-126
    [9]Jannatabadi A A, Mohammadi G R, Rad M, et al. Molecular identification of Streptococcus equi subsp. equi and Streptococcus equi subsp. zooepidemicus in nasal swabs samples from horses suffering respiratory infections in Iran[J]. Pak J Biol Sci,2008,11(3):468-471
    [10]Walker R L, Runyan C A. Identification of variations in SzP proteins of Streptococcus equi subspecies zooepidemicus and the relationship between protein variants and clinical signs of infection in horses[J]. Am J Vet Res,2003,64(8):976-981
    [11]Hong-Jie F, Fu-yu T, Ying M, et al. Virulence and antigenicity of the szp-gene deleted Streptococcus equi ssp. zooepidemicus mutant in mice[J]. Vaccine,2009,27(1):56-61
    [12]Timoney J F, Walker J, Zhou M, et al. Cloning and sequence analysis of a protective M-like protein gene from Streptococcus equi subsp. zooepidemicus[J]. Infect Immun,1995,63(4):1440-1445
    [13]Walker J A, Timoney J F. Molecular basis of variation in protective SzP proteins of Streptococcus zooepidemicus[J]. Am J Vet Res,1998,59(9):1129-1133
    [14]Wensvoort G, Terpstra C, Pol J M, et al. Mystery swine disease in The Netherlands:the isolation of Lelystad virus[J]. Vet Q,1991,13(3):121-130
    [15]Yoon I J, Joo H S, Christianson W T, et al. Isolation of a cytopathic virus from weak pigs on farms with a history of swine infertility and respiratory syndrome[J]. J Vet Diagn Invest,1992, 4(2):139-143
    [16]Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction:twenty-something years on[J]. Nat Protoc,2006, 1(2):581-585
    [17]Schmidt W M, Mueller M W. CapSelect:a highly sensitive method for 5' CAP-dependent enrichment of full-length cDNA in PCR-mediated analysis of mRNAs[J]. Nucleic Acids Res,1999, 27(21):e31
    [18]Franz O, Bruchhaus I, Roeder T. Verification of differential gene transcription using virtual northern blotting[J]. Nucleic Acids Res,1999,27(11):e3
    [19]Diatchenko L, Lau Y F, Campbell A P, et al. Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries[J]. Proc Natl Acad Sci USA,1996,93(12):6025-6030
    [20]Diatchenko L, Lukyanov S, Lau Y F, et al. Suppression subtractive hybridization:a versatile method for identifying differentially expressed genes[J]. Methods Enzymol,1999,303:349-380
    [21]Timoney J F, Artiushin S C, Boschwitz J S. Comparison of the sequences and functions of Streptococcus equi M-like proteins SeM and SzPSe[J]. Infect Immun,1997,65(9):3600-3605
    [22]Bruckner A, Polge C, Lentze N, et al. Yeast two-hybrid, a powerful tool for systems biology[J]. Int J Mol Sci,2009,10(6):2763-2788
    [23]Felkl M, Leube R E. Interaction assays in yeast and cultured cells confirm known and identify novel partners of the synaptic vesicle protein synaptophysin[J]. Neuroscience,2008, 156(2):344-352
    [24]Jackson M, Song W, Liu M Y, et al. Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins[J]. Nature,2001,410(6824):89-93
    [25]Tanaka H, Katoh H, Negishi M. Pragmin, a novel effector of Rnd2 GTPase, stimulates RhoA activity[J]. J Biol Chem,2006,281(15):10355-10364
    [26]Burklen T S, Hirschy A, Wallimann T. Brain-type creatine kinase BB-CK interacts with the Golgi Matrix Protein GM130 in early prophase[J]. Mol Cell Biochem,2007,297(l-2):53-64
    [27]Hornemann T, Kempa S, Himmel M, et al. Muscle-type creatine kinase interacts with central domains of the M-band proteins myomesin and M-protein[J]. J Mol Biol,2003,332(4):877-887
    [1]Holmgren A, Bjornstedt M. Thioredoxin and thioredoxin reductase[J]. Methods Enzymol,1995, 252:199-208
    [2]Callister M E, Pinhu L, Catley M C, et al. PMX464, a thiol-reactive quinol and putative thioredoxin inhibitor, inhibits NF-kappaB-dependent proinflammatory activation of alveolar epithelial cells[J]. Br J Pharmacol,2008,155(5):661-672
    [3]Inomata Y, Tanihara H, Tanito M, et al. Suppression of choroidal neovascularization by thioredoxin-1 via interaction with complement factor H[J]. Invest Ophthalmol Vis Sci,2008, 49(11):5118-5125
    [4]Kondo N, Ishii Y, Kwon Y W, et al. Redox-sensing release of human thioredoxin from T lymphocytes with negative feedback loops[J]. J Immunol,2004,172(1):442-448
    [5]Jarva H, Jokiranta T S, Wurzner R, et al. Complement resistance mechanisms of streptococci[J]. Mol Immunol,2003,40(2-4):95-107
    [6]Rautemaa R, Meri S. Complement-resistance mechanisms of bacteria[J]. Microbes Infect,1999, 1(10):785-794
    [7]Rodriguez de Cordoba S, Esparza-Gordillo J, Goicoechea de Jorge E, et al. The human complement factor H:functional roles, genetic variations and disease associations[J]. Mol Immunol,2004, 41(4):355-367
    [8]Carlsson F, Berggard K, Stalhammar-Carlemalm M, et al. Evasion of phagocytosis through cooperation between two ligand-binding regions in Streptococcus pyogenes M protein[J]. J Exp Med, 2003,198(7):1057-1068
    [9]Staali L, Morgelin M, Bjorck L, et al. Streptococcus pyogenes expressing M and M-like surface proteins are phagocytosed but survive inside human neutrophils[J]. Cell Microbiol,2003, 5(4):253-265
    [10]Nishiyama A, Matsui M, Iwata S, et al. Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression[J]. J Biol Chem,1999,274(31):21645-21650
    [11]Fan H, Wang Y, Tang F, et al. Determination of the mimic epitope of the M-like protein adhesin in swine Streptococcus equi subsp. zooepidemicus[J]. BMC Microbiol,2008,8:170
    [12]Amer E S, Zhong L, Holmgren A. Preparation and assay of mammalian thioredoxin and thioredoxin reductase[J]. Methods Enzymol,1999,300:226-239
    [13]Luthman M, Holmgren A. Rat liver thioredoxin and thioredoxin reductase:purification and characterization[J]. Biochemistry,1982,21(26):6628-6633
    [14]Dave S, Brooks-Walter A, Pangburn M K, et al. PspC, a pneumococcal surface protein, binds human factor H[J]. Infect Immun,2001,69(5):3435-3437
    [15]Hong-Jie F, Fu-yu T, Ying M, et al. Virulence and antigenicity of the szp-gene deleted Streptococcus equi ssp. zooepidemicus mutant in mice[J]. Vaccine,2009,27(1):56-61
    [16]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods,2001,25(4):402-408
    [17]Hoe N P, Ireland R M, DeLeo F R, et al. Insight into the molecular basis of pathogen abundance: group A Streptococcus inhibitor of complement inhibits bacterial adherence and internalization into human cells[J]. Proc Natl Acad Sci U S A,2002,99(11):7646-7651
    [18]Campbell J R, Baker C J, Edwards M S. Deposition and degradation of C3 on type III group B streptococci[J]. Infect Immun,1991,59(6):1978-1983
    [19]McRae J L, Duthy T G, Griggs K M, et al. Human factor H-related protein 5 has cofactor activity, inhibits C3 convertase activity, binds heparin and C-reactive protein, and associates with lipoprotein[J]. J Immunol,2005,174(10):6250-6256
    [20]Tiwari R, Qin A, Artiushin S, et al. Se18.9, an anti-phagocytic factor H binding protein of Streptococcus equi[J]. Vet Microbiol,2007,121(1-2):105-115
    [21]Junn E, Han S H, Im J Y, et al. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function[J]. J Immunol,2000,164(12):6287-6295
    [22]Billiet L, Furman C, Larigauderie G, et al. Extracellular human thioredoxin-1 inhibits lipopolysaccharide-induced interleukin-lbeta expression in human monocyte-derived macrophages[J]. J Biol Chem,2005,280(48):40310-40318
    [23]Andersen J F, Sanders D A, Gasdaska J R, et al. Human thioredoxin homodimers:regulation by pH, role of aspartate 60, and crystal structure of the aspartate 60 asparagine mutant[J]. Biochemistry, 1997,36(46):13979-13988
    [24]Weichsel A, Gasdaska J R, Powis G, et al. Crystal structures of reduced, oxidized, and mutated human thioredoxins:evidence for a regulatory homodimer[J]. Structure,1996,4(6):735-751
    [25]Heath D G, Cleary P P. Fc-receptor and M-protein genes of group A streptococci are products of gene duplication[J]. Proc Natl Acad Sci U S A,1989,86(12):4741-4745
    [26]Johnsson E, Them A, Dahlback B, et al. A highly variable region in members of the streptococcal M protein family binds the human complement regulator C4BP[J]. J Immunol,1996, 157(7):3021-3029
    [27]Kantor F S. Fibrinogen Precipitation by Streptococcal M Protein. I. Identity of the Reactants, and Stoichiometry of the Reaction[J]. J Exp Med,1965,121:849-859
    [28]Horstmann R D, Sievertsen H J, Knobloch J, et al. Antiphagocytic activity of streptococcal M protein:selective binding of complement control protein factor H[J]. Proc Natl Acad Sci U S A, 1988,85(5):1657-1661
    [29]Joiner K A. Complement evasion by bacteria and parasites[J]. Annu Rev Microbiol,1988, 42:201-230
    [30]Wessels M R, Moses A E, Goldberg J B, et al. Hyaluronic acid capsule is a virulence factor for mucoid group A streptococci[J]. Proc Natl Acad Sci U S A,1991,88(19):8317-8321
    [31]Bartelt M A, Duncan J L. Adherence of group A streptococci to human epithelial cells[J]. Infect Immun,1978,20(1):200-208
    [32]Holden M T, Heather Z, Paillot R, et al. Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens[J]. PLoS Pathog, 2009,5(3):e1000346
    [1]Cummings C A, Relman D A. Using DNA microarrays to study host-microbe interactions[J]. Emerg Infect Dis,2000,6(5):513-525
    [2]Schoolnik G K. Microarray analysis of bacterial pathogenicity[J]. Adv Microb Physiol,2002, 46:1-45
    [3]Hornef M W, Wick M J, Rhen M, et al. Bacterial strategies for overcoming host innate and adaptive immune responses[J]. Nat Immunol,2002,3(11):1033-1040
    [4]Ernst J D. Bacterial inhibition of phagocytosis[J]. Cell Microbiol,2000,2(5):379-386
    [5]Campo R E, Schultz D R, Bisno A L. M proteins of group G streptococci:mechanisms of resistance to phagocytosis[J]. J Infect Dis,1995,171(3):601-606
    [6]Bisno A L. Alternate complement pathway activation by group A streptococci:role of M-protein[J]. Infect Immun,1979,26(3):1172-1176
    [7]Moore B O, Bryans J T. Antigenic classification of group C animal streptococci[J]. J Am Vet Med Assoc,1969,155(2):416-421
    [8]Hong-Jie F, Fu-yu T, Ying M, et al. Virulence and antigenicity of the szp-gene deleted Streptococcus equi ssp. zooepidemicus mutant in mice[J]. Vaccine,2009,27(1):56-61
    [9]Erol E, Locke S J, Donahoe J K, et al. Beta-hemolytic Streptococcus spp. from horses:a retrospective study (2000-2010)[J]. J Vet Diagn Invest,2012,24(1):142-147
    [10]Abbott Y, Acke E, Khan S, et al. Zoonotic transmission of Streptococcus equi subsp. zooepidemicus from a dog to a handler[J]. J Med Microbiol,2009,
    [11]Eyre D W, J S K, Bowler I C, et al. Streptococcus equi subspecies zooepidemicus meningitis-a case report and review of the literature[J]. Eur J Clin Microbiol Infect Dis,2010,
    [12]Jovanovic M, Stevanovic G, Tosic T, et al. Streptococcus equi subsp. zooepidemicus meningitis[J]. J Med Microbiol,2008,57(Pt 3):373-375
    [13]Nicholson M L, Ferdinand L, Sampson J S, et al. Analysis of immunoreactivity to a Streptococcus equi subsp. zooepidemicus M-like protein To confirm an outbreak of poststreptococcal glomerulonephritis, and sequences of M-like proteins from isolates obtained from different host species[J]. J Clin Microbiol,2000,38(11):4126-4130
    [14]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods,2001,25(4):402-408
    [15]Smeesters P R, McMillan D J, Sriprakash K S. The streptococcal M protein:a highly versatile molecule[J]. Trends Microbiol,2010,18(6):275-282
    [16]Locke J B, Aziz R K, Vicknair M R, et al. Streptococcus iniae M-like protein contributes to virulence in fish and is a target for live attenuated vaccine development[J]. PLoS One,2008, 3(7):e2824
    [17]Fan H, Wang Y, Tang F, et al. Determination of the mimic epitope of the M-like protein adhesin in swine Streptococcus equi subsp. zooepidemicus[J], BMC Microbiol,2008,8:170
    [18]Gu L, Tseng S, Horner R M, et al. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1 [J]. Nature,2000,404(6776):407-411
    [19]Chae P, Im M, Gibson F, et al. Mice lacking monocyte chemoattractant protein 1 have enhanced susceptibility to an interstitial polymicrobial infection due to impaired monocyte recruitment[J]. Infect Immun,2002,70(6):3164-3169
    [20]Barichello T, dos Santos I, Savi G D, et al. Tumor necrosis factor alpha (TNF-alpha) levels in the brain and cerebrospinal fluid after meningitis induced by Streptococcus pneumoniae[J]. Neurosci Lett,2009,467(3):217-219
    [21]You Y O, Shin H Y, Yu H H, et al. Effect of Powerdental on caries-inducing properties of Streptococcus mutans and TNF-alpha secretion from HMC-1 cells[J]. J Ethnopharmacol,2004, 92(2-3):331-335
    [22]Mostefaoui Y, Bart C, Frenette M, et al. Candida albicans and Streptococcus salivarius modulate IL-6, IL-8, and TNF-alpha expression and secretion by engineered human oral mucosa cells[J]. Cell Microbiol,2004,6(11):1085-1096
    [23]Vallejo J G, Knuefermann P, Mann D L, et al. Group B Streptococcus induces TNF-alpha gene expression and activation of the transcription factors NF-kappa B and activator protein-1 in human cord blood monocytes[J]. J Immunol,2000,165(1):419-425
    [24]Rajaram M V, Ni B, Morris J D, et al. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b[J]. Proc Natl Acad Sci U S A,2011,108(42):17408-17413
    [25]Hess D J, Henry-Stanley M J, Bendel C M, et al. Escherichia coli and TNF-alpha modulate macrophage phagocytosis of Candida glabrata[J]. J Surg Res,2009,155(2)-.217-224
    [26]Marodi L, Kaposzta R, Nemes E. Survival of group B Streptococcus type III in mononuclear phagocytes:differential regulation of bacterial killing in cord macrophages by human recombinant gamma interferon and granulocyte-macrophage colony-stimulating factor[J]. Infect Immun,2000, 68(4):2167-2170
    [27]Schwertassek U, Balmer Y, Gutscher M, et al. Selective redox regulation of cytokine receptor signaling by extracellular thioredoxin-1[J]. EMBO J,2007,26(13):3086-3097
    [28]Xu H, Zhang Y, Hua Y, et al. IL-12 p35 silenced dendritic cells modulate immune responses by blocking IL-12 signaling through JAK-STAT pathway in T lymphocytes[J]. Biochem Biophys Res Commun,2007,353(3):812-816
    [29]Rawlings J S, Rosler K M, Harrison D A. The JAK/STAT signaling pathway[J]. J Cell Sci,2004, 117(Pt 8):1281-1283
    [30]Aderem A, Ulevitch R J. Toll-like receptors in the induction of the innate immune response[J]. Nature,2000,406(6797):782-787
    [31]Henneke P, Morath S, Uematsu S, et al. Role of lipoteichoic acid in the phagocyte response to group B Streptococcus[J]. J Immunol,2005,174(10):6449-6455
    [32]Zheng H, Luo X, Segura M, et al. The role of toll-like receptors in the pathogenesis of Streptococcus suis[J]. Vet Microbiol,2011,
    [33]Dey R, Ji K, Liu Z, et al. A cytokine-cytokine interaction in the assembly of higher-order structure and activation of the interleukine-3:receptor complex[J]. PLoS One,2009,4(4):e5188
    [34]Liu M, Tan C, Fang L, et al. Microarray analyses of THP-1 cells infected with Streptococcus suis serotype 2[J]. Vet Microbiol,2011,150(1-2):126-131
    [1]吴晓俊,刘涤,胡之璧.尿苷二磷酸葡萄糖焦磷酸化酶[J].植物生理学通讯,2000,36(3):193-200
    [2]Weissbom AE L Q, Rumley MK. UTP:α -D-glucose-1-Phosphate uridylytransferase of Escheichia coli:isolation and DNA sequence of the galU gene and purification of the enzyme[J]. Bacteriol, 1994,176:2611-2618
    [3]Eimert K, Villand P, Kilian A, et al. Cloning and characterization of several cDNAs for UDP-glucose pyrophosphorylase from barley (Hordeum vulgare) tissues[J]. Gene,1996,170(2):227-232
    [4]Kleczkowski L A, Martz F, Wilczynska M. Factors affecting oligomerization status of UDP-glucose pyrophosphorylase[J]. Phytochemistry,2005,66(24):2815-2821
    [5]Martz F, Wilczynska M, Kleczkowski L A. Oligomerization status, with the monomer as active species, defines catalytic efficiency of UDP-glucose pyrophosphorylase[J]. Biochem J,2002,367(Pt 1):295-300
    [6]Gandhi T K, Zhong J, Mathivanan S, et al. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets[J]. Nat Genet,2006,38(3):285-293
    [7]Crater DL D B, van de Rijn I. Molecular characterization of hasC from an operon required for hyaluronic acid synthesis in group A streptococci. Demonstration of UDP-glucose pyrophosphorylase activity[J]. J Biol Chem,1995,270(48):28676-28680
    [8]Wessels M R, Moses A E, Goldberg J B, et al. Hyaluronic acid capsule is a virulence factor for mucoid group A streptococci[J]. Proc Natl Acad Sci U S A,1991,88(19):8317-8321
    [9]Bartelt M A, Duncan J L. Adherence of group A streptococci to human epithelial cells[J]. Infect Immun,1978,20(1):200-208
    [10]Mao Y, Fan H, Lu C. Immunoproteomic assay of extracellular proteins in Streptococcus equi ssp. zooepidemicus[J]. FEMS Microbiol Lett,2008,286(1):103-109
    [11]Lai X, Wu J, Chen S, et al. Expression, purification, and characterization of a functionally active Mycobacterium tuberculosis UDP-glucose pyrophosphorylase[J]. Protein Expr Purif,2008, 61(1):50-56
    [12]Arnold K. B L, Kopp J., and Schwede T. The SWISS-MODEL Workspace:A web-based environment for protein structure homology modelling.[J]. Bioinformatics,2006,22:195-201
    [13]Kiefer F A K, Kunzli M, Bordoli L, Schwede T. The SWISS-MODEL Repository and associated resources.[J]. Nucleic Acids Research.,2009,37:D387-D392
    [14]Peitsch M C. Protein modeling by E-mail[J]. Bio/Technology,1995,13:658-660
    [15]Lun S, Willson P J. Expression of green fluorescent protein and its application in pathogenesis studies of serotype 2 Streptococcus suis[J]. J Microbiol Methods,2004,56(3):401-412
    [16]Zhang J, Hao N, Chen G Q. Effect of expressing polyhydroxybutyrate synthesis genes (phbCAB) in Streptococcus zooepidemicus on production of lactic acid and hyaluronic acid[J]. Appl Microbiol Biotechnol,2006,71(2):222-227
    [17]Silveira ED A-F M, Guimaraes LA, da Silva FR, Carneiro VT. Selection of reference genes for quantitative real time PCR expression studies in the apomictic and sexual grass Brachiaria brizantha[J]. BMC Plant Biol 2009,9(1):84
    [18]Gao J G A, Scott JR, Churchward G. Binding of the global response regulator protein CovR to the sag promoter of Streptococcus pyogenes reveals a new mode of CovR-DNA interaction[J]. J Biol Chem,2005,280 (47):38948-38956
    [19]Blank LM H P, Nielsen LK.. Evolution of the hyaluronic acid synthesis (has) operon in Streptococcus zooepidemicus and other pathogenic streptococci[J]. J Mol Evol,2008,67(1):13-22
    [20]Geisler M, Wilczynska M, Karpinski S, et al. Toward a blueprint for UDP-glucose pyrophosphorylase structure/function properties:homology-modeling analyses[J]. Plant Mol Biol, 2004,56(5):783-794
    [21]Gottschalk L M, Bon E P, Nobrega R. Lignin peroxidase from Streptomyces viridosporus T7A: enzyme concentration using ultrafiltration[J]. Appl Biochem Biotechnol,2008,147(1-3):23-32
    [22]Jensen P R, Hammer K. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters[J]. Appl Environ Microbiol,1998,64(1):82-87
    [23]Chen W Y, Marcellin E, Hung J, et al. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus[J]. J Biol Chem,2009, 284(27):18007-18014
    [24]Blank L M, Hugenholtz P, Nielsen L K. Evolution of the hyaluronic acid synthesis (has) operon in Streptococcus zooepidemicus and other pathogenic streptococci[J]. J Mol Evol,2008,67(1):13-22
    [25]Chassaing D A F. The Imo1078 gene encoding a putative UDP-glucose pyrophosphorylase is involved in growth of Listeria monocytogenes at low temperature.[J]. FEMS Microbiol Lett 2007, 2007,275(1):31-37
    [26]Wibawan I W, Pasaribu F H, Utama I H, et al. The role of hyaluronic acid capsular material of Streptococcus equi subsp. zooepidemicus in mediating adherence to HeLa cells and in resisting phagocytosis[J]. Res Vet Sci,1999,67(2):131-135
    [27]Vilches S, Canals R, Wilhelms M, et al. Mesophilic Aeromonas UDP-glucose pyrophosphorylase (GalU) mutants show two types of lipopolysaccharide structures and reduced virulence[J]. Microbiology, 2007,153(Pt 8):2393-2404

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700