胸膜肺炎放线杆菌IV型菌毛结构蛋白ApfA功能及免疫原性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪传染性胸膜肺炎是由胸膜肺炎放线杆菌(Actinobacillus pleuropneumoniae, APP)引起的一种高度传染性呼吸道疾病,给世界各地的养猪业造成了巨大的经济损失。APP通过飞沫传播或感染动物接触传播,定植于猪下呼吸道表皮细胞。APP血清型众多,根据表面多糖抗原性差异可将该病原分为15个血清型。胸膜肺炎放线杆菌在不同国家和地区的流行情况具有一定差异,我国已分离到APP血清1、2、3、4、5、7和8型菌株,其中以7型最多,其次为1型、2型和3型。
     APP致病过程涉及众多毒力因子,目前围绕其致病机制开展了大量研究工作,然而APP早期定植感染的致病机理尚不明确。Ⅳ型菌毛在多种病原菌致病过程中发挥重要作用,其中包括介导粘附定植、突破免疫屏障、影响生物被膜形成、颤搐运动、DNA摄取等。为了更好地控制和预防APP导致的疾病,研究APP致病机理,尤其是APP早期粘附定植的作用机制具有重要意义。本课题对APPⅣ型菌毛的功能和在致病过程发挥的作用进行探讨,并对Ⅳ型菌毛结构蛋白白ApfA的免疫原性与免疫保护力进行了研究。
     1.胸膜肺炎放线杆菌Ⅳ型菌毛介导粘附和定植
     粘附是细菌建立感染的第一步,在致病过程中起着决定性作用。因此本课题对APPⅣ型菌毛是否参与APP宿主粘附定植过程进行研究,研究结果如下:首先,通过荧光定量PCR的方法对APP与猪肺上皮细胞(SJPLC)互作后Ⅳ型菌毛操纵子基因表达水平进行检测,发现与细胞互作后apf操纵子整体表达水平显著上升。其次,本研究构建了Ⅳ型菌毛结构蛋白基因缺失突变株4074△apfA,以及互补菌株C40740△apfA。以猪髋动脉内皮细胞(PIEC)和SJPLC为粘附模型,通过粘附和粘附抑制实验共同证明Ⅳ型菌毛在APP粘附宿主细胞的过程中发挥作用。同时,通过共聚焦显微镜对粘附结果进行观察,发现4074ΔapfA基因缺失突变株粘附能力显著减弱,而互补菌株与野生株粘附能力相当,再次证明Ⅳ型菌毛参与粘附过程。最后,在小鼠活体感染模型中证明Ⅳ型菌毛在APP肺部定植过程中发挥重要作用,并影响APP致病力。以上结果表明APPⅣ型菌毛是细胞接触诱导表达型,参与了APP定植感染过程,在致病过程中发挥重要作用。
     2.胸膜肺炎放线杆菌Ⅳ型菌毛负调控生物被膜的形成
     Ⅳ型菌毛参与粘附外的多种致病机制,本研究对APPⅣ型菌毛可能参与的其他致病机制进行探讨。为了研究Ⅳ型菌毛是否与APP生物被膜形成调控相关,我们通过结晶紫染色方法对野生菌株和4074ΔapfA基因缺失突变株的生物被膜形成能力进行定量比较,结果发现4074ΔapfA基因缺失突变株生物被膜形成能力显著增强。该结果表明Ⅳ型菌毛负调控APP生物被膜的形成,我们推测Ⅳ型菌毛可能参与了群体感应调节因子LuxS对于生物被膜形成的负调控过程。此外,我们还对比了野生菌株和4074ΔapfA基因缺失突变株溶血活性和细胞毒性的差异,结果发现Ⅳ型菌毛的缺失不影响APP溶血毒素和细胞毒素的分泌。
     3.胸膜肺炎放线杆菌Ⅳ型菌毛潜在受体的寻找
     以上研究证明了Ⅳ型菌毛主要是通过介导细胞粘附在APP早期感染过程中发挥重要作用。在奈瑟球菌属中,Ⅳ型菌毛的已知细胞粘附受体是CD46分子,为了验证CD46分子是否为APP Ⅳ型菌毛的特异性受体,我们进行了以下研究:首先,构建pcDNA-CD46真核表达质粒并转染幼仓鼠肾传代细胞(BHK)(CD46分子阴性细胞),通过流式细胞术检测转染效率,证明CD46分子在BHK细胞中表达。通过粘附实验发现,CD46分子的表达并没有显著提高APP对细胞的粘附效率。其次,用CD46抗体处理SJPLC和PIEC细胞(CD46分子阳性细胞),进行粘附抑制实验,结果显示CD46分子抗体封闭不影响APP对细胞的粘附作用。因此,上述结果证明CD46并非APP特异性粘附受体。
     为了进一步寻找Ⅳ型菌毛的可能性受体,我们通过酵母双杂交的方法来进行研究:构建pGBKT7-apfA作为诱饵载体,转化酵母Y187菌株后与猪肺部cDNA酵母文库进行杂交,经过三轮筛选获得4个阳性克隆。对阳性克隆进行测序并分析,结果发现其中一个可能是Ⅳ型菌毛互作受体蛋白。该蛋白与猪Talinl蛋白同源,是一种细胞骨架蛋白,其与APPIV型菌毛的互作关系还有待进一步的验证。
     4.胸膜肺炎放线杆菌Ⅳ型菌毛结构蛋白ApfA是良好的保护性抗原
     本研究对Ⅳ型菌毛基因簇在APP13个血清型中的分布情况和同源性进行比较分析,结果发现编码ap/A基因的结构蛋白在12个血清型中高度保守;Ⅳ型菌毛基因簇在11个血清型中高度保守。为了检测Ⅳ型菌毛结构蛋白ApfA的免疫原性,我们首先表达纯化了重组ApfA (rApfA)蛋白,然后用纯化的rApfA免疫小鼠,发现能够诱发小鼠产生免疫应答,产生较高抗体水平。其次,我们用rApfA-ELISA对猪APP感染血清和阴性血清中anti-ApfA抗体水平进行检测,发现感染血清中的抗体水平显著高于阴性血清。以上结果说明Ⅳ型菌毛结构蛋白ApfA不仅存在于所有血清型中,序列高度保守,并且具有很强的免疫原性。
     以上研究发现APP IV型菌毛结构蛋白ApfA具有较好的免疫原性并且高度保守,有可能发展成为是良好的保护性抗原。因此,我们接下来对菌毛结构蛋白ApfA能否提供有效的免疫保护力进行评估。首先,通过rApfA主动免疫小鼠后感染致死剂量APP,发现该抗原能够对APP血清1型4074菌株感染提供90%的保护,对APP血清7型WF83菌株感染提供80%的保护。其次,对免疫血清中anti-rApfA抗体进行分型,发现rApfA能够诱导Th2型主导的免疫反应。用rApfA免疫血清通过静脉注射被动免疫小鼠,发现该免疫血清能够对APP血清1型4074菌株感染提供40%的保护,对APP血清7型WF83菌株感染提供60%的保护。以上结果表明Ⅳ型菌毛结构蛋白ApfA不仅是一种高效的保护性抗原,能够激发小鼠产生Th2型为主导的免疫应答,对于中国流行血清型1型和7型APP感染提供有效保护,而且ApfA诱导的抗体也具有被动免疫保护力,对于APP不同血清型的感染能够提供一定保护。
Actinobacillus pleuropneumoniae (APP) is the etiological agent of porcine contagious pleuropneumonia, a highly contagious respiratory disease of pig which causes serious economic losses in the pig farming industry worldwide. The A. pleuropneumoniae organism is transmitted via respiratory droplets or through direct contact with infected animals. It colonizes the epithelial cells of the lower respiratory tract of pigs. A total of15serotypes of A. pleuropneumoniae have been identified on the base of surface polysaccharide antigens. Serotype prevalence varies in different countries and regions. Strains of serovar1,2,3,4,5,7, and8have been isolated in China, among which serovar7is the most prevalent serotype and followed by serovar1,2and3.
     APP enrolls multiple virulence factors during the infection process. Currently, a lot of study focuses on its pathogenesis. However, the mechanism of colonization in early infection phase is still unclear. Type Ⅳ pili of different pathogenic bacteria play important roles during infection process, including mediating adherence, breaking immunity barrier, affecting biofilm formation, twitching motility and DNA uptaking. Consequently, to better prevent and control the diseases caused by APP, study of the APP pathogenesis, especially the colonization mechanism in early infection phase is meaningful. In this study we investigate the role of APP type Ⅳ pili play in the infection process and also evaluate the pilus structural protein ApfA as a protective antigen.
     1. Type Ⅳ pili of APP involve in adherence and colonization
     Adherence is the first step to establish infection, which plays a critical role in the infection process. Therefore, in this study, we examined if type Ⅳ pili are involved in APP colonization to host. The results are as follows:First, we analyzed the expression level of type Ⅳ pili operon after contacting with St. Jude porcine lung cells (SJPLC) via RT-PCR analysis. The results showed that after cell contacting, the expression level ofapf operon genes significantly increase. Second, type Ⅳ fimbrial protein mutant strain4074△apfA and complementary strain C4074△apfA are constructed in this study. With adherence cell models of porcine iliac artery endothelial cell (PIEC) and SJPLC, we certified type Ⅳ pili involve in APP adherence to host cells by adherence and adherence inhibition assay. Meanwhile, we observed significantly reduced adherence capacity of4074△apfA mutant strain by confocal microscopy, while the apfA complementary strain had this capability restored, which proved the involvement of type Ⅳ pili in adherence process. Third, in mice infection model, type Ⅳ pili were proved to be involved in colonization and virulence in early infection stage. So far, these results showed that type IV pili of APP are cell-contact induced and play an important role in colonization during infection process, which contribute critically to the pathogenicity.
     2. APP type Ⅳ pili involve in negative regulation of biofilm formation
     Type IV pili are involved in multiple pathogenic mechanisms. In this study, we further explored other roles type Ⅳ pili may play in the pathogenesis during APP infection. To determine whether type Ⅳ pili involve in the regulation of biofilm formation, the capacity of parent and mutant strains to form biofilm is quantificationally compared by crystal violet staining assay. The mutation of apfA significantly enhanced the biofilm formation ability of APP, implying that type Ⅳ pili take part in the negative regulation of biofilm formation. We speculated that type Ⅳ pili of APP could involve in the negative regulation of biofilm formation by LuxS, a quorum sensing regulator. Furthermore, we compared4074△apfA with parent strain in hemolytic and cytotoxicity assays. The results showed no differences between the two strains in hemolysis and cytotoxicity, which indicates that the absence of type Ⅳ pili didn't affect the secretion of hemolysins and cytotoxins.
     3. Searching for the potential receptors for APP type Ⅳ pili
     Type IV pili are proved to mediate colonization in early stage of APP infection. In Neisseria, CD46is proved to be the specific receptor of type IV pili. To verify whether CD46is the specific receptor of APP type IV pili, we constructed pcDNA-CD46eukaryotic expression vector and transfected it into baby hamster kidney (BHK) cells (CD46negative). CD46is verified to be expressed in transfected BHK cells by flow cytometry analysis. However, APP didn't show enhanced adherence to BHK cells with CD46expression. In adherence inhibition assay, blocking SJPLC and PIEC cells (CD46positive) with CD46specific monoclone antibody didn't reduce the adherence by APP. These results indicated that CD46is not a specific receptor for APP adherence.
     We further applied yeast two-hybrid system to look for potential receptors for APP type IV pili. Bait vector pGBKT7-apfA was constructed and transformed into yeast strain Y187. Four positive clones were captured in porcine lung cDNA yeast library by yeast mating. Sequencing analysis found that only one of the four positive clones could be the potential receptor of type IV pili. The protein is homologous with Talinl, a cytoskeletal protein. The interaction between type Ⅳ pili and Talinl remains to be further verified.
     5. Type Ⅳ pilius structural protein ApfA is a good protective antigen
     We analyzed the homology of type Ⅳ cluster genes in13APP strains of different serotypes and found that ApfA is conserved in12serotypes and type Ⅳ pili operon is conserved in11serotypes. To investigate the immunogenicity of ApfA, recombinant ApfA (rApfA) is expressed in E. coli and purified. Then mice immunized with purified rApfA were induced an elevated humoral immune response and produced high levels of specific antibody. Then pig convalescent serum samples and control serum samples were examined with a rApfA-based ELISA. The results showed that the titers of anti-rApfA antibody in convalescent serum are significantly higher than that in control serum. These results suggest that structural protein ApfA of type Ⅳ pili, which exists in all A. pleuropneumoniae serotypes, is not only highly conserved in sequences, but also highly immunogenic.
     APP type Ⅳ pilus structural protein ApfA, with good immunogenicity and conserved identity is a promising protective antigen. In next study, we evaluated the protection provided by ApfA in mice. The rApfA showed a90%protective efficacy against lethal infection of serovar1strain4074. For serovar7strain WF83, rApfA conferred80%protection. Antibody typing found that rApfA mainly induces Th2type immune response. Then, naive mice were passively immunized with anti-rApfA serum via i.v. injection and the results showed that the anti-rApfA serum provided protection against both strain WF83(serovar7,60%) and strain4074(serovar1,40%). So far, the results suggested that type Ⅳ pilus structural protein ApfA is a highly effective protective antigen, mainly induce Th2type humoral immune response, which confer significant protection against APP infection of Chinese prevalent serotypes. In addition, the antibody raised against ApfA is effective in passive immunization, which could also provide protection against APP infection of different serotypes.
引文
1.贝为成,严琳,何启盖,肖少波,陈焕春。猪传染性胸膜肺炎放线杆菌毒素apxIIA基因的真核表达及其核酸疫苗。农业生物技术学报,2005,13:616-619
    2.贝为成。猪胸膜肺炎放线杆菌apxll基因工程突变株构建及其生物学特性研究。[博士学位论文]。武汉:华中农业大学图书馆,2005
    3.蔡宝祥。猪传染性胸膜肺炎的诊断与防治。辽宁畜牧兽医,1996,3:41-42
    4.陈帆。胸膜肺炎放线杆菌血清学分型和基因分型的研究。[硕士学位论文]。武汉:华中农业大学图书馆,2004
    5.陈小玲,杨旭夫,朱士盛.猪传染性胸膜肺炎的流行现状和防制措施。中国兽医杂志,2001,37:33-35
    6.逯忠新,鲁炳义。用间接血凝试验检测猪传染性胸膜肺炎。中国兽医科技,1999,29:25-27
    7.逯忠新,赵萍,邵英德,柳纪省,鲁炳义,邱昌庆,李宝玉,叶培根,陈焕春,吴斌。猪传染性胸膜肺炎三价灭活疫苗的研究—效力、最小免疫量、免疫持续期和保存期试验。中国兽医科技,2002,32:8-10
    8.逯忠新。猪传染性胸膜肺炎。见:陈焕春主编,规模化猪场疫病监控与净化。北京:中国农业出版社,2000:273-276
    9.万云。与猪链球菌2型SntA蛋白互作的猪脑组织蛋白质的鉴定。[硕士学位论文]。武汉:华中农业大学图书馆,2009
    10.吴硕显。胸膜肺炎放线杆菌血清型的地理分布。中国兽医杂志,1995,21:13
    11.张彦明,张耀相,刘春花,李健强。胸膜肺炎放线杆菌的分离鉴定及免疫预防.中国兽医科技,2002,32:21-22
    12. Abul-Milh M, Paradis S E, Dubreuil J D, Jacques M. Binding of Actinobacillus pleuropneumoniae lipopolysaccharides to glycosphingolipids evaluated by thin-layer chromatography. Infect Immun,1999,67:4983-4987
    13. Abu-Milh M, Wu Y, Lau B, Lingwood CA & Foster DB. Induction of epithelial cell death including apoptosis by enteropathogenic Escherichia coli expressing bundle-forming pili. Infect Immun,2001,69,7356-7364
    14. Ajito T, Haga Y, Homma S, Goryo M, Okada K. Immunohis-tological evaluation on respiratory lesions of pigs intranasally inoculated with Actinobacillus pleuropneumoniae serotype 1. J Vet Med Sci,1996,58:297-303.
    15. Ali T, Oldfield NJ, Wooldridge KG, Turner DP, Ala'Aldeen DA. Functional characterization of AasP, a maturation protease autotransporter protein of Actinobacillus pleuropneumoniae. Infect Immun,2008,76:5608-5614
    16. Archambault M, Rioux S, Jacques M. Evaluation of the hemoglobin-binding activity of Actinobacillus pleuropneumoniae using fluorescein-labeled pig hemoglobin and flow cytometry, FEMS Microbiol Lett,1999,173:17-25
    17. Aroeti B, Friedman G, Zlotkin-Rivkin E, Donnenberg MS. Retraction of enteropathogenic E. coli type Ⅳ pili promotes efficient host cell colonization, effector translocation and tight junction disruption. Gut Microbes,2012,3:267-71
    18. Arts J, van Boxtel R, Filloux A, Tommassen J, Koster M. Export of the pseudopilin XcpT of the Pseudomonas aeruginosa type Ⅱ secretion system via the signal recognition particle-Sec pathway. JBacteriol,2007,189:2069-2076.
    19. Auger E, Deslandes V, Ramjeet M, Contreras I, Nash J.H.E, Harel J, Gottschalk M, Olivier M, Jacques M, Host-pathogen interactions of Actinobacillus pleuropneumoniae with porcine lung and tracheal epithelial cells. Infect. Immun, 2009,77:1426-1441
    20. Ayala BP, Vasquez B, Clary S, Tainer JA, Rodland K, So M. The pilus-induced Ca flux triggers lysosome exocytosis and increases the amount of Lamp1 accessible to Neisseria IgA1 protease. Cell Microbiol,2001,3:265-275
    21. Baltes N, Buettner F.F.R, Gerlach GF, Selective capture of transcribed sequences (SCOTS) of Actinobacillus pleuropneumoniae in the chronic stage of disease reveals a HlyX-regulated autotransporter protein. Vet Microbiol,2007,123:110-121
    22. Baltes N, Gerlach G.F. Identification of genes transcribed by Actinobacillus pleuropneumoniae in necrotic porcine lung tissue by using selective capture of transcribed sequences. Infect. Immun,2004,72:6711-6716.2
    23. Baltes N, Hennig-Pauka I, Jacobsen I, Gruber AD, Gerlach GF. Identification of dimethyl sulfoxide reductase in Actinobacillus pleuropneumoniae and its role in infection. Infect Immun,2003a,71:6784-6792
    24. Baltes N, N'diaye M, Jacobsen ID, Maas A, Buettner FFR, Gerlach G. Deletion of the anaerobic regulator HlyX causes reduced colonization and persistence of Actinobacillus pleuropneumoniae in the porcine respiratory tract. Infect Immun,2005, 73:4614-4619
    25. Baltes N, Tonpitak W, Hennig-Pauka I, Gruber AD, Gerlach GF. Actinobacillus pleuropneumoniae serotype 7 siderophore receptor FhuA is not required for virulence. FEMS Microbiol Lett,2003b,220:41-48
    26. Bandara AB, Lawrence ML, Veit HP, Inzana TJ, Association of Actinobacillus pleuropneumoniae capsular polysaccharide with virulence in pigs. Infect Immun, 2003,71:3320-3328
    27. Beaudet R, Mcsween G, Boulay G, Rousseau P, Bisaillon JG, Descoteaux JP and Ruppanner R. Protection of mice and swine against infection with Actinobacillus pleuropneumoniae by vaccination. Vet Microbiol,1994,39:71-81.
    28. Beddek AJ, Sheehan BJ, Bosse'JT, Rycroft AN, Kroll JS, Langford PR. Two TonB systems in Actinobacillus pleuropneumoniae:their roles in iron acquisition and virulence. Infect Immun,2004,2:701-708.
    29. Bei W, He Q, Yan L, Fang L, Tan Y, Xiao S, Zhou R, Jin M, Guo A, Lv J, Huang H, Chen H. Construction and characterization of a live, attenuated apxⅡCA inactivation mutant of Actinobacillus pleuropneumoniae lacking a drug resistance marker. FEMS Microbiol Lett,2005,243:21-27.
    30. Bei W, He Q, Zhou R, Yan L, Huang H and Chen H. Evaluation of immunogenicity and protective efficacy of Actinobacillus pleuropneumoniae HB04C(-) mutant lacking a drug resistance marker in the pigs. Vet Microbiol,2007,125:120-127.
    31. Belanger M, Be'gin C, Jacques M. Lipopoly saccharides of Actinobacillus pleuropneumoniae bind pig hemoglobin. Infect Immun,1995,63:656-662.
    32. Belanger M, Dubreuil D, Harel J, Girard C, Jacques M. Role of lipopolysaccharides in adherence of Actinobacillus pleuropneumoniae to porcine tracheal rings. Infect Immun,1990,58:3523-3530.
    33. Belanger M, Dubreuil D, Jacques M. Proteins found within porcine respiratory tract secretions bind lipopolysaccharides of Actinobacillus pleuropneumoniae. Infect Immun,1994,62:868-873.
    34. Bertram TA Quantitative morphology of peracute pulmonary lesions in swine induced by Haemophilus pleuropneumoniae. Vet Pathol,1985,22:598-609.
    35. Bilinski T. Oxygen toxicity and microbial evolution. Biosystems,1991,24:305-312.
    36. Blackall PJ, Klaasen HL, van den Bosch H, Kuhnert P, and Frey J. Proposal of a new serovar of Actinobacillus pleuropneumoniae:serovar 15. Vet Microbiol,2002,84: 47-52
    37. Boekema BK, Kamp EM, Smits MA, Smith HE, Stockhofe-Zurwieden N. Both Apxl and ApxⅡ of Actinobacillus pleuropneumoniae serotype 1 are necessary for full virulence. Vet Microbiol,2004,100:17-23
    38. Boekema BKHL, Stockhofe-Zurwieden N, Smith HE, Kamp EM, van Putten JP, Verheijden JH, Adherence of Actinobacillus pleuropneumoniae to primary cultures of porcine lung epithelial cells. Vet. Microbiol,2003,93:133-144
    39. Boslego JW, Tramont EC, Chung RC, McChesney DG, Ciak J, Sadoff JC, Piziak MV, Brown JD, Brinton CC, JR, Wood SW, Bryan JR. Efficacy trial of a parenteral gonococcal pilus vaccine in men. Vaccine,1991,9:154-162.
    40. Bosse JT, Gilmour HD, Macinnes JI. Novel genes affecting urease activity in Actinobacillus pleuropneumoniae. J. Bacteriol,2001,183:1242-1247.
    41. Bosse JT, Janson H, Sheehan BJ, Beddek AJ, Rycroft AN, Kroll JS, Langford PR. Actinobacillus pleuropneumoniae:pathobiology and pathogenesis of infection. Microbes and Infection,2002,4:225-235
    42. Bosse JT, Johnson RP, Nemec M and Rosendal S. Protective local and systemic antibody responses of swine exposed to an aerosol of Actinobacillus pleuropneumoniae serotype 1. Infect Immun,1992,60:479-484.
    43. Bosse JT, MacInnes JI. Genetic and biochemical analyses of Actinobacillus pleuropneumoniae urease. Infect Immun,1997,65:4389-4394
    44. Bosse JT, Macinnes JI. Urease activity may contribute to the ability of Actinobacillus pleuropneumoniae to establish infection. Can J Vet Res,2000,64:145-150
    45. Bosse JT, Sinha S, Schippers T, Kroll JS, Redfield RJ, Langford PR, Natural competence in strains of Actinobacillus pleuropneumoniae. FEMS Microbiol Lett, 2009,298:124-130
    46. Boyen F, Eeckhaut V, Van Immerseel F, Pasmans F, Ducatelle R, Haesebrouck F, Quorum sensing in veterinary pathogens:mechanisms, clinical importance and future perspectives. Vet. Microbiol,2009,135:187-195
    47. Buettner FF, Bendallah IM, Bosse JT, Dreckmann K, Nash JH, Langford PR, Gerlach GF. Analysis of the Actinobacillus pleuropneumoniae ArcA regulon identifies fumarate reductase as a determinant of virulence. Infect Immun,2008,76: 2284-2295
    48. Buettner FF, Maas A, Gerlach GF. An Actinobacillus pleuropneumoniae arcA deletion is attenuated and deficient in biofilm formation. Vet Microbiol,2008,127: 106-115
    49. Byrd W, Hooke AM. Immunization with temperature-sensitive mutants of Actinobacillus pleuropneumoniae induces protective hemolysin-neutralizing antibodies in mice. Curr Microbiol,1997,34:149-154
    50. Byrd W and Kadis S. Preparation, characterization, and immunogenicity of conjugate vaccines directed against Actinobacillus pleuropneumoniae virulence determinants. Infect Immun,1992,60:3042-3051.
    51. Carbonnelle E, Helaine S, Prouvensier L, Nassif X, and Pelicic V. Type IV pilus biogenesis in Neisseria meningitidis:PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. Mol Microbiol,2005,55:54-64
    52. Castric P, Cassels FJ & Carlson RW Structural characterization of the Pseudomonas aeruginosa 1244 pilin glycan. JBiol Chem,2001,276:26479-26485
    53. Chami M, Guilvout I, Gregorini M, Remigy HW, Muller SA, Valerio M, Engel A, Pugsley AP, Bayan N. Structural insights into the secretin PulD and its trypsin-resistant core. J Biol Chem,2005,280:37732-37741
    54. Chang C F, Yeh T M, Chou C C, Chang Y F, Chiang T S. Antimicrobial susceptibility and plasmid analysis of Actinobacillus pleuropneumoniae isolated in Taiwan. Vet Microbiol,2002,84:169-177
    55. Chiang CH, Huang WF, Huang LP, Lin SF, Yang WJ. Immunogenicity and protective efficacy of ApxIA and ApxIIA DNA vaccine against Actinobacillus pleuropneumoniae lethal challenge in murine model. Vaccine,2009,27:4565-70.
    56. Chien MS, Chan YY, Chen ZW, Wu CM, Liao JW, Chen TH, Lee WC, Yeh KS, Hsuan L. Actinobacillus pleuropneumoniae serotype 10 derived Apxl induces apoptosis in porcine alveolar macrophages. Vet Microbiol,2009,135:327-333
    57. Chiers K, De Waele T, Pasmans F, Ducatelle R, Haesebrouck F. Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Vet Res,2010,41:65
    58. Chiers K, Haesebrouck F, van Overbeke I, Charlier G, Ducatelle R. Early in vivo interactions of Actinobacillus pleuropneumoniae with tonsils of pigs, Vet. Microbiol, 1999,68:301-306.
    59. Chiers K, van Overbeke I, De Laender P, Ducatelle R, Carel S and Haesebrouck F. Effects of endobronchial challenge with Actinobacillus pleuropneumoniae serotype 9 of pigs vaccinated with inactivated vaccines containing the Apx toxins. Vet Quart, 1998,20:65-69
    60. Chiers K, van Overbeke I, Donne E, Baele M, Ducatelle R, De Baere T, Haesebrouck F. Detection of Actinobacillus pleuropneumoniae in cultures from nasal and tonsillar swabs of pigs by a PCR assay based on the nucleotide sequence of a dsbE-like gene. Vet Microbiol,2001,83:147-159
    61. Cho WS, Chae C. Expression of the apxIV gene in pigs naturally infected with Actinobacillus pleuropneumoniae. J Comp Pathol,2001,125:34-40
    62. Cho WS, Chae C. PCR detection of Actinobacillus pleuropneumoniae apxIV gene in formalin-fixed paraffin-embedded lung tissues and comparison with in situ hybridization. Lett Appl Microbiol,2003,37:56-60
    63. Chung JW, Ng-Thow-Hing C, Budman LI, Gibbs BF, Nash JHE, Jacques M, Coulton JW, Outer membrane proteome of Actinobacillus pleuropneumoniae:LC-MS/MS analyses validate in silico predictions, Proteomics,2007,7:1854-1865
    64. Collins RF, Frye SA, Balasingham S, Ford RC, Tonjum T, and Derrick JP. Interaction with type IV pili induces structural changes in the bacterial outer membrane secretin PilQ. J Biol Chem,2005,280:18923-18930
    65. Collins RF, Frye SA, Kitmitto A, Ford RC, Tonjum T, and Derrick JP. Structure of the Neisseria meningitidis outer membrane PilQ secretin complex at 12 A resolution. J Biol Chem,2004,279:39750-39756
    66. Comer JE, Marshall MA, Blanch VJ, Deal CD & Castric P. Identification of the Pseudomonas aeruginosa 1244 pilin glycosylation site. Infect. Immun,2002,70, 2837-2845
    67. Coureuil M, Mikaty G, Miller F, Lecuyer H, Bernard C, Bourdoulous S, Dumenil G, Mege R, Weksler BB, Romero IA, Couraud PO, Nassif X. Meningococcal type IV pili recruit the polarity complex to cross the brain endothelium. Science,2009, 325:83-87.
    68. Craig L, Li J. Type IV pili:paradoxes in form and function. Curr Opin Struct Biol, 2008 18:267-77
    69. Craig L, Pique ME, and Tainer JA. Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol.2004 2:363-378
    70. Cruijsen TL, van Leengoed LA, Dekker-Nooren TC, Schoevers EJ, Verheijden JH. Phagocytosis and killing of Actinobacillus pleuropneumoniae by alveolar macrophages and polymorphonuclear leukocytes isolated from pigs. Infect Immun, 1992,60:4867-4871.
    71. Cruijsen T, Van Leengoed LA, Ham-Hoffies M and Verheijden JH. Convalescent pigs are protected completely against infection with a homologous Actinobacillus pleuropneumoniaestrain but incompletely against a heterologous-serotype strain. Infect Immun,1995a,63:2341-2343.
    72. Cruijsen TL, van Leengoed LA, Kamp EM, Bartelse A, Korevaar A, Verheijden JH. Susceptibility to Actinobacillus pleuropneumoniae infection in pigs from an endemically infected herd is related to the presence of toxin-neutralizing antibodies. Vet Microbiol,1995b,47:219-228
    73. Cruz WT, Nedialkov YA, Thacker BJ and Mulks MH. Molecular characterization of a common 48-kilodalton outer membrane protein of Actinobacillus pleuropneumoniae. Infect Immun,1996,64:83-90.
    74. Cullen JM, Rycroft AN. Phagocytosis by pig alveolar macrophages of Actinobacillus pleuropneumoniae serotype-2 mutant strains defective in hemolysin-Ⅱ (ApxⅡ) and pleurotoxin (ApxⅢ). Microbiology,1994,140:237-244
    75. Dalai B, Zhou R, Wan Y, Kang M, Li T, Zhang S, Chen H. Histone-like protein H-NS regulates biofilm formation and virulence of Actinobacillus pleuropneumoniae. Microb Pathog,2009,46:128-134
    76. Deneer HG, Potter AA. Identification of a maltose-inducible major outer membrane protein in Actinobacillus pleuropneumoniae, Microb. Pathog,1989,6:425-432.
    77. Deslandes V, Nash JHE, Harel J, Coulton JW, Jacques M, Transcriptional profiling of Actinobacillus pleuropneumoniae under iron-restricted conditions. BMC Genomics, 2007,8:72.
    78. Diarra MS, Dolence J, Dolence EK, Darwish I, Miller MJ, Malouin F, Jacques M. Growth of Actinobacillus pleuropneumoniae is promoted by exogenous hydroxamate and catechol siderophores. Appl Environ Microbiol,1996,62:853-859.
    79. Dom P, Haesebrouck F, De Baetselier P, Stimulation and suppression of the oxygenation activity of porcine pulmonary alveolar macrophages by Actinobacillus pleuropneumoniae and its metabolites, Am J Vet Res,1992,53:1113-1118
    80. Dom P, Haesebrouck F, Ducatelle R, Charlier G. In vivo association of Actinobacillus pleuropneumoniae serotype 2 with the respiratory epithelium of pigs. Infect Immun, 1994,62:1262-1267
    81. Donlan RM, Costerton JW. Biofilm:survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev,2002,15:167-193
    82. Dreyfus A, Schaller A, Nivollet S, Segers RPAM, Kobisch M, Mieli L, Soerensen V, Hussy D, Miserez R, Zimmermann W, Inderbitzin F, Frey J. Use of recombinant ApxIV in serodiagnosis of Actinobacillus pleuropneumoniae infections, development and prevalidation of the ApxIV ELISA. Vet Microbiol,2004,99:227-238
    83. Dubreuil JD, Jacques M, Mittal KR and Gottschalk M. Actinobacillus pleuropneumoniae surface polysaccharides:their role in diagnosis and immunogenicity. Animal Health Research Reviews/Conference of Research Workers in Animal Diseases,2000,1:73-93.
    84. Duff JP, Scott WA, Wilkes MK, Hunt B. Otitis in a weaned pig:a new pathological role for Actinobacillus (Haemophilus) pleuropneumoniae. Vet Rec,1996,139:561-563.
    85. Enriquez-Verdugo I, Guerrero A.L, Serrano J.J, Godinez D, Rosales J.L, Tenorio V, de la Garza M, Adherence of Actinobacillus pleuropneumoniae to swine-lung collagen. Microbiology,2004,150:2391-2400
    86. Fenwick BW, Osburn B, Immune responses to the lipopolysaccharides and capsular polysaccharides of Haemophilus pleuropneumoniae in convalescent and immunized pigs. Infect Immun,1986,54:575-582
    87. Fenwick BW, Henry S. Porcine pleuropneumoniae. JAVMA,1994,204:1334-1340
    88. Finkel SE, Kolter R. DNA as a nutrient novel role for bacterial competence gene homologs. J. Bacteriol,2001,183:6288-6293.
    89. Forest KT, Dunham SA, Koomey M & Tainer JA. Crystallographic structure reveals phosphorylated pilin from Neisseria:phosphoserine sites modify type IV pilus surface chemistry and fibre morphology. Mol Microbiol,1999,31,743-752.
    90. Francetic O, Buddelmeijer N, Lewenza S, Kumamoto CA, and Pugsley AP. Signal recognition particle-dependent inner membrane targeting of the PulG pseudo-pilin component of a type Ⅱ secretion system. J Bacteriol,2007,189:1783-1793
    91. Frey J. Virulence in Actinobacillus pleuropneumoniae and Apx toxins. Trends Microbiol,1995,3:257-261.
    92. Frey J, Bosse JT, Chang YF, Cullen JM, Fenwick B, Gerlach GF, Gygi D, Haesebrouck F, Inzana TJ, Jansen R. Actinobacillus pleuropneumoniae RTX-toxins: uniform designation of haemolysins, cytolysins, pleurotoxin and their genes. J Gen Microbiol,1993,139:1723-1728
    93. Frey J, Kuhn R, Nicolet J. Association of the CAMP phenomenon in Actinobacillus pleuropneumoniae with the RTX toxins ApxⅠ, ApxⅡ and ApxⅢ. FEMS Microbiol Lett,1994,124:245-251
    94. Frey J, Kuhnert P, Villiger L and Nicolet J. Cloning and characterization of an Actinobacillus pleuropneumoniae outer membrane protein belonging to the family of PAL lipoproteins. Res Microbiol,1996,147:351-361.
    95. Fuller TE, Thacker BJ, Duran CO, Mulks MH. A genetically-defined riboflavin auxotroph of Actinobacillus pleuropneumoniae as a live attenuated vaccine. Vaccine, 2000,18:2867-2877
    96. Fuller TE, Thacker BJ, Mulks MH. A riboflavin auxotroph of Actinobacillus pleuropneumoniae is attenuated in swine. Infect Immun,1996,64:4659-4664
    97. Garside LH, Collins M, Langford PR and Rycroft AN. Actinobacillus pleuropneumoniae serotype 1 carrying the defined aroA mutation is fully avirulent in the pig. Res Vet Sci,2002,72:163-167.
    98. Gerlach GF, Anderson C, Potter AA, Klashinsky S and Willson PJ. Cloning and expression of a transferrin-binding protein from Actinobacillus pleuropneumoniae. Infect Immun,1992a,60:892-898.
    99. Gerlach GF, Klashinsky S, Anderson C, Potter AA and Willson PJ. Characterization of two genes encoding distinct transferrin-binding proteins in different Actinobacillus pleuropneumoniae isolates. Infect Immun,1992b,60:3253-3261.
    100.Gerlach GF, Anderson C, Klashinsky S, Rossi-Campos A, Potter AA and Willson PJ. Molecular characterization of a protective outer membrane lipoprotein (OmlA) from Actinobacillus pleuropneumoniae serotype 1. Infect Immun,1993,61:565-572.
    101.Goethe R, Gonzales OF, Lindner T and Gerlach GF. A novel strategy for protective Actinobacillus pleuropneumoniae subunit vaccines:detergent extraction of cultures induced by iron restriction. Vaccine,2000,19:966-975.
    102.Gram T, Ahrens P, Andreasen M, Nielsen JP. An. Actinobacillus pleuropneumoniae PCR typing system based on the apx and omlA genes--evaluation of isolates from lungs and tonsils of pigs. Vet Microbiol,2000,75:43-57
    103.Gunnarsson A, Hurvell B, Biberstein E L. Serologic studies of Haemophilus parahaemolyticus (pleuropneumoniae):antigenic specificity and relationship between serotypes. Am J Vet Res,1978,39:1286-1292
    104.Gutierrez CB, Rodriguez Barbosa JI, Suarez J, Gonzalez OR, Tascon RI, Rodriguez Ferri EF. Efficacy of a variety of disinfectants against Actinobacillus pleuropneumoniae serotype 1. Am J Vet Res,1995,56:1025-1029.
    105.Haas R, Schwarz H & Meyer TF. Release of soluble pilin antigen coupled with gene conversion in Neisseria gonorrhoeae. Proc Natl Acad Sci USA,1987,84:9079-9083
    106.Habrun B, Bilic V, Cvetnic Z, Humski A and Benic M. Porcine pleuropneumonia:the first evaluation of field efficacy of a subunit vaccine in Croatia. Vet Med-Czech, 2002,47:213-218.
    107.Habrun B, Bilic V, Humski A. Comparison of ELISA and 2-META assays used in serological diagnosis of infection with Actinobacillus pleuropneumoniae serotypes 2 and 4-7 in breeding pigs in Croatia. Prev Vet Med,1998,36:179-186
    108.Haesebrouck F, Chiers K, Van Overbeke I, Ducatelle R. Actinobacillus pleuropneumoniae infections in pigs:the role of virulence factors in pathogenesis and protection. Vet Microbiol,1997,58:239-249
    109.Haesebrouck F, Van De Kerkhof A, Dom P, Chiers K and Ducatelle R. Cross-protection between Actinobacillus pleuropneumoniae biotypes-serotypes in pigs. Vet Microbiol,1996,52:277-284.
    110.Haga Y, Ogino S, Ohashi S, Ajito T, Hashimoto K and Sawada T. Protective efficacy of an affinity-purified hemolysin vaccine against experimental swine pleuropneumonia. J Vet Med Sci,1997,59:115-120.
    111.Hagblom, P., Segal E., Billyard E.& So M. Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature,1985,315:156-158
    112.Hansen JK, Forest K. Type Ⅳ pilin structures:Insights on shared architecture, fiber assembly, receptor binding and Type Ⅱ secretion. J Mol Microb Biotech,2006, 11:192-207
    113.Haslberger A, Kohl G, Felnerova D, Mayr UB, Furst-Ladani S, Lubitz W. Activation, stimulation and uptake of bacterial ghosts in antigen presenting cells. J Biotechnol, 2000,83:57-66
    114.Hensel A, Huter V, Katinger A, Raza P, Strnistschie C, Roesler U, Brand E, Lubitz W. Intramuscular immunization with genetically inactivated (ghosts) Actinobacillus pleuropneumoniae serotype 9 protects pigs against homologous aerosol challenge and prevents carrier state. Vaccine,2000,18:2945-2955
    115.Hensel A, van Leengoed L A, Szostak M, Windt H, Weissenbock H, Stockhofe-Zurwieden N, Katinger A, Stadler M, Ganter M, Bunka S, Pabst R, Lubitz W. Induction of protective immunity by aerosol or oral application of candidate vaccines in a dose-controlled pig aerosol infection model. J Biotechnol,1996,44: 171-81
    116.Hensel A, Windt H, Stockhofe-Zurwieden N, Lodding N, Koch W, Petzoldt K. A porcine aerosol infection model for studying dose dependent effects caused by Actinobacillus pleuropneumoniae bacteria. J Aerosol Med,1993,6:73-88.
    117.Higgins R, Lariviere S, Mittal K R, Martineau GP, Rousseau P, Cameron J. Evaluation of a killed vaccine against porcine pleuropneumonia due to Haemophilus pleuropneumoniae. Can Vet J,1985,26:86-89
    118.Hodgetts A, Bosse JT, Kroll JS and Langford PR. Analysis of differential protein expression in Actinobacillus pleuropneumoniae by Surface Enhanced Laser Desorption Ionisation-ProteinChip (SELDI) technology.Vet Microbiol,2004,99: 215-225.
    119.Hu D H, Han H Y, Zhou R, Dong F, Bei W C, Jia F, Chen H C. Gold(Ⅲ) enhanced chemiluminescence immunoassay for detection of antibody against ApxIV of Actinobacillus pleuropneumoniae. Analyst,2008,133:768-773
    120.Huter V, Hensel A, Brand E, Lubitz W. Improved protection against lung colonization by Actinobacillus pleuropneumoniae ghosts:characterization of a genetically inactivated vaccine. J Biotechnol,2000,83:161-172
    121.Huygen K, Content J, Denis O, Montgomery DL, Yawman AM, Deck RR, DeWitt CM, Orme I M, Baldwin SD, D'Souza C, Drowart A, Lozes E, Vandenbussche P, van Vooren JP, Liu M A, Ulmer JB. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nature Medicine,1996,2:893-897
    122.Inzana TJ. Simplified procedure for preparation of sensitized latex particles to detect capsular polysaccharides:application to typing and diagnosis of Actinobacillus pleuropneumoniae. JClin Microbiol,1995,33:2297-2303
    123.Inzana T.J, Ma J, Workman T, Gogolewski R.P, Anderson P, Virulence properties and protective efficacy of the capsular polymer of Haemophilus(Actinobacillus) pleuropneumoniae serotype 5. Infect Immun,1988,56:1880-1889
    124.Inzana TJ, Todd J, Ma JN and Veit H. Characterization of a non-hemolytic mutant of Actinobacillus pleuropneumoniae serotype 5:role of the 110 kilodalton hemolysin in virulence and immunoprotection. Microb Pathogenesis,1991,10:281-296.
    125.Inzana TJ, Todd J, Veit HP. Safety, stability, and efficacy of noncapsulated mutants of Actinobacillus pleuropneumoniae for use in live vaccines. Infect Immun,1993,61: 1682-1686
    126.Izano EA, Sadovskaya I, Vinogradov E, Mulks MH, Velliyagounder K, Ragunath C, Kher WB, Ramasubbu N, Jabbouri S, Perry MB, Kaplan JB. Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae, Microb Pathog,2007,43:1-9
    127.Jacobsen I, Hennig-Pauka I, Baltes N, Trost M, Gerlach GF, Enzymes involved in anaerobic respiration appear to play a role in Actinobacillus pleuropneumoniae virulence. Infect Immun,2005,73:226-234.
    128.Jacobsen MJ, Nielsen JP. Development and evaluation of a selective and indicative medium for isolation of Actinobacillus pleuropneumoniae from tonsils. Vet Microbiol,1995,47:191-197.
    129.Jacques M. Surface polysaccharides and iron-uptake systems of Actinobacillus pleuropneumoniae. Can J Vet Res,2004,68:81-85.
    130.Jalava K, Hensel A, Szostak M, Resch S, Lubitz W. Bacterial ghosts as vaccine candidates for veterinary applications. J Control Release,2002,85:17-25
    131.Jendrossek V, Fillon S, Belka C, Muller I, Puttkammer B, Lang F. et al. Apoptotic response of Chang cells to infection with Pseudomonas aeruginosa strains PAK and PAO-I:molecular ordering of the apoptosis signaling cascade and role of type IV pili. Infect. Immun,2003,71,2665-2673
    132.Jensen TK, Boye M, Hagedorn-Olsen T, Riising HJ, Angen O. Actinobacillus pleuropneumoniae osteomyelitis in pigs demonstrated by fluorescent in situ hybridization. Vet Pathol,1999,36:258-261.
    133.Jin H, Zhou R, Kang M, Luo R, Cai X, Chen H. Biofilm formation by field isolates and reference strains of Haemophilus parasuis. Vet Microbiol,2006,118:117-23
    134.Jolie RA, Mulks MH, Thacker BJ. Antigenic differences within Actinobacillus pleuropneumoniae serotype 1. Vet Microbiol,1994,38:329-349.
    135.Jones CH, Bolken TC, Jones KF, Zeller GO, Hruby DE. Conserved DegP protease in gram-positive bacteria is essential for thermal and oxidative tolerance and full virulence in Streptococcus pyogenes. Infect Immun,2001,69:5538-5545.
    136. Jonsson AB,Ⅱver D, Falk P, Pepose J & Normark S. Sequence changes in the pilus subunit lead to tropism variation of Neisseria gonorrhoeaeto human tissue. Mol Microbiol,1994,13,403-416
    137.Kallstrom H and Jonsson A B. Characterization of the region downstream of the pilus biogenesis gene pilCl in Neisseria gonorrhoeae. Biochim Biophys Acta,1998,1397: 137-140
    138.Kallstrom H, Liszewski MK, Atkinson JP, Jonsson AB. Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria. Mol Microbiol, 1997,25:639-647
    139.Kamp E M, Popma J K, Van Leengoed L A M G. Serotyping of Haemophilus pleuropneumoniae in the Netherlands, with emphasis on heterogeneity within serotype 1 and (proposed) serotype 9. Veterinary Microbiology,1987,13:249-257
    140.Kang M, Zhou R, Liu L, Langford P R, Chen H. Analysis of an actinobacillus pleuropneumoniae multi-resistence plasmid pHB003. Plasmid,2009,61:135-139
    141.Kaplan JB, Mulks MH. Biofilm formation is prevalent among field isolates of Actinobacillus pleuropneumoniae. Vet. Microbiol,2005,108:89-94
    142.Kaplan JB, Velliyagounder K, Ragunath C, Rohde H, Mack D, Knobloch JK, Ramasubbu N. Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. JBacteriol,2004,186:8213-8220
    143.Katinger A, Lubitz W, Szostak MP, Stadler M, Klein R, Indra A, Huter V, Hesel A. Pigs aerogenously immunized with genetically inactivated (ghosts) or irradiated Actinobacillus pleuropneumoniae are protected against a homologous aerosol challenge despite differing in pulmonary cellular and antibody response. J Biotech, 1999,73:251-260
    144.Kume K, Nakai T, Sawata A. Efficacy of Haemophilus pleuropneumoniae vaccine in pigs. Nippon Juiqaku Zasshi,1985,47:201-206
    145.Labrie J, Pelletier-Jacques G, Deslandes V, Ramjeet M, Auger E, Nash JHE, Jacques M. Effects of growth conditions on biofilm formation by Actinobacillus pleuropneumoniae. Vet Res,2010,41:03
    146.Langford PR, Loynds BM, Kroll JS. Cloning and molecular characterization of Cu, Zn superoxide dismutase from Actinobacillus pleuropneumoniae. Infect Immun,1996, 64:5035-5041
    147.LaPointe CF, and Taylor RK. The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases. J Biol Chem,2000,275:1502-1510
    148.Lee KY, Kim DH, Kang TJ, Kim J, Chung GH, Yoo HS, Arntzen CJ, Yang MS, Jang YS. Induction of protective immune responses against the challenge of Actinobacillus pleuropneumonaie by the oral administration of transgenic tobacco plant expressing ApxIIA toxin from the bacteria. FEMS Immunol Med Microbiol, 2006,48:381-389
    149.Li J, Xia J, Tan C, Zhou Y, Wang Y, Zheng C, Chen H, Bei W. Evaluation of the immunogenicity and the protective efficacy of a novelidentified immunogenicprotein, SsPepO, of Streptococcus suis serotype 2. Vaccine,2011,29:6514-6519.
    150.Li L, Xu Z, Zhou Y, Li T, Sun L, Chen H, Zhou R. Analysis on Actinobacillus pleuropneumoniae LuxS regulated genes reveals pleiotropic roles of LuxS/AI-2 on biofilm formation, adhesion ability and iron metabolism. Microb Pathog,2011,50: 293-302
    151.Li L, Zhou R, Li T, Kang M, Wan Y, Xu Z, Chen H. Enhanced biofilm formation and reduced virulence of Actinobacillus pleuropneumoniae luxS mutant. Microb Pathog,2008,45:192-200
    152.Li T, Xu Z, Zhang T, Li L, Chen H, Zhou R. The genetic analysis of the flp locus of Actinobacillus pleuropneumoniae. Arch Microbiol,2012,194:167-76.
    153.Liao CW, Chiou HY, Yeh KS, Chen JR, Weng CN. Oral immunization using formalin-inactivated Actinobacillus pleuropneumoniae antigens entrapped in microspheres with aqueous dispersion polymers prepared using a co-spray drying process. Prev Vet Med,2003,61:1-15
    154.Liao CW, Cheng IC, Yeh KS, Lin FY, Weng CN. Release characteristics of microspheres prepared by cospray drying Actinobacillus pleuropneumoniae antigens and aqueous ethyl-cellulose dispersion. JMicroencapsulation,2001,18:285-297
    155.Liggett AD, Harrison LR, Farrell RL. Sequential study of lesion development in experimental Haemophilus pleuropneumonia, Res Vet Sci,1987,42:204-212
    156.Lin L, Bei W, Sha Y, Liu J, Guo Y, Liu W, Tu S, He Q, Chen H. Construction and immunogenicity of a △apxIC/△apxⅡC double mutant of Actinobacillus pleuropneumoniae serovar 1. FEMS Microbiol Lett,2007,274:55-62
    157.Liu JL, Chen X, Tan C, Guo Y, Chen Y, Fu SL, Bei W, Chen H, In vivo induced RTX toxin ApxIVA is essential for the full virulence of Actinobacillus pleuropneumoniae, Vet Microbiol,2009,137:282-289.
    158.Liu JL, Chen X, Lin LW, et al. Potential use an Actinobacillus pleuropneumoniae double mutant strain DeltaapxIICDeltaapxIVA as live vaccine that allows serological differentiation between vaccinated and infected animals. Vaccine,2007,25: 7696-7705.
    159.Liszewski, M. K.s Post, T. W.& Atkinson, J. P. Membrane cofactor protein (MCP or CD46):newest member of the regulators of complement activation gene cluster. Annu Rev Immunol,1991,9,431-455
    160.Lone AG, Deslandes V, Nash JHE, Jacques M, MacInnes JI. malT knockout mutation invokes a stringent type gene-expression profile in Actinobacillus pleuropneumoniae in bronchoalveolar fluid. BMC Microbiol,2009a,9:195
    161.Lone AG, Deslandes V, Nash JHE, Jacques M, MacInnes JI. Modulation of gene expression in Actinobacillus pleuropneumoniae exposed to bronchoalveolar fluid. PLoS ONE,2009b,4:e6139
    162.Long CD., Madraswala R N & Seifert HS. Comparisons between colony phase variation of Neisseria gonorrhoeaeFA1090 and pilus, pilin, and S-pilin expression. Infect. Immun,1998,66,1918-1927
    163.Lowrie DB, Tascon RE, Colston MJ, Silva CL. Towards a DNA vaccine against tuberculosis. Vaccine,1994,12:1537-1540
    164.Maas A, Meens J, Baltes N, Hennig-Pauka I and Gerlach GF. Development of a DIVA subunit vaccine against Actinobacillus pleuropneumoniae infection. Vaccine, 2006,24:7226-7237.
    165.Madsen ME, Carnahan KG and Thwaits RN. Evaluation of pig lungs following an experimental challenge with Actinobacilius pleuropneumoniae serotype 1 and 5 in pigs inoculated with either hemolysin protein and/or outer membrane proteins. FEMS Microbiol Lett,1995,131:329-335
    166.Marceau M, Forest K, Beretti JL, Tainer J & Nassif X. Consequences of the loss of O-linked glycosylation of meningococcal type IV pilin on piliation and pilus-mediated adhesion. Mol. Microbiol,1998.27:705-715
    167.Meeusen EN, Walker J, Peters A, Pastoret PP and Jungersen G Current status of veterinary vaccines. Clin Microbiol Rev,2007,20:489-510.
    168.Meyer TF, Billyard E, Haas R, Storzbach S & So M. Pilus genes of Neisseria gonorrheae:chromosomal organization and DNA sequence. Proc Natl Acad Sci USA, 1984,81:6110-6114
    169.Mikael LG, Pawelek PD, Labrie J, Sirois M, Coulton JW, Jacques M. Molecular cloning and characterization of the ferric hydroxamate uptake (fhu) operon in Actinobacilluspleuropneumoniae. Microbiology,2002,148:2869-2882.
    170.Mikael LG, Srikumar R, Coulton JW, Jacques M, fhuA of Actinobacillus pleuropneumoniae encodes a ferrichrome receptor but is not regulated by iron, Infect. Immun,2003,71:2911-2915
    171.Min K, Chae C. Detection and distribution of DNA of Actinobacillus pleuropneumoniae in the lungs of naturally infected pigs by in-situ hybridization, J Comp Pathol,1998,119:169-175.
    172. Mittal K R, Higgins R, Lariviere S, Leblanc D. A 2-mercaptoethanol tube agglutination test for diagnosis of Haemophilus pleuropneumoniae infection in pigs. Am J Vet Res,1984,45:715-719
    173.Mosier D, Iandolo J, Rogers D, Uhlich G and Crupper S. Characterization of a 54-kDa heat-shock-inducible protein of Pasteurella haemolytica. Vet Microbiol,1998, 60:67-73.
    174.Mullen LM, Bosse'JT, Nair SP, Ward JM, Rycroft AN, Robertson G, Langford PR, Henderson B, Pasteurellaceae ComEl proteins combine the properties of fibronectin adhesins and DNA binding competence proteins, PLoS ONE,2008,3:e3991
    175.Nassif, X. et al. Roles of pilin and PilC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells. Proc Natl Aca. Sci USA,1994,91:3769-3773
    176.Negrete-Abascal E, Garcia RM, Reyes ME, Godinez D, de la Garza M. Membrane vesicles released by Actinobacillus pleuropneumoniae contain proteases and Apx toxins, FEMS Microbiol Lett,2000,191:109-113
    177.Negrete-Abascal E, Reyes ME, Garcia RM, Vaca S, Giron JA, Garcia O, Zenteno E, De La Garza M. Flagella and Motility in Actinobacillus pleuropneumoniae. J Bacteriol,2003,185:664-668
    178.Negrete-Abascal E, Tenorio VR, Guerrero AL, Garcia RM, Reyes ME, de la Garza M. Purification and characterization of a protease from Actinobacillus pleuropneumoniae serotype 1, an antigen common to all the serotypes, Can. J. Vet. Res,1998,62:183-190.
    179.Negrete-Abascal E, Tenorio V.R, Serrano JJ, Garcia C, de la Garza M. Secreted proteases from Actinobacillus pleuropneumoniae serotype 1 degrade porcine gelatin, hemoglobin and immunoglobulin A, Can J Vet Res,1994,58:83-86
    180.Nielsen R. Haemophilus pleuropleumoniae(Actinobacillus pleuropleumoniae) serotype 8,3 and 6 serological response and cross immunity in pigs. Nord vet Med, 1985,37:217-227
    181.Nielsen R. Haemophilus pleuropneumoniae serotypes-cross protection experiments. Nord Vet Med,1984,36:221-234
    182.Nielsen R. Pleuropneumonia of swine caused by Haemophilus parahaemolyticus. Studies on the protection obtained by vaccination. Nord Vet Med,1976,28:337-348
    183.Niven DF, Levesque M. V-factor-dependent growth of Actinobacillus pleuropneumoniae biotype 2, IntJSys Bacteriol,1988,38:319-320.
    184.Opalka N, Beckmann R, Boisset N, Simon MN, Russel M. and Darst SA. Structure of the filamentous phage pIV multimer by cryo-electron microscopy. J Mol Biol,2003, 325:461-470.
    185.Paradis SE, Dubreuil D, Rioux S, Gottschalk M, Jacques M. High-molecular-mass lipopolysaccharides are involved in Actinobacillus pleuropneumoniae adherence to porcine respiratory tract cells. Infect Immun,1994,62:3311-3319
    186.Paradis SE, Dubreuil JD, Gottschalk M, Archambault M, Jacques M. Inhibition of adherence of Actinobacillus pleuropneumoniae to porcine respiratory tract cells by monoclonal antibodies directed against LPS and partial characterization of the LPS receptors. Curr Microbiol,1999,39:313-320
    187.Parge HE, Forest KT, Hickey MJ, Christensen DA, Getzoff ED, Tainer JA. Structure of the fibre-forming protein pilin at 2.6 A resolution. Nature,1995,378:32-38.
    188.Peabody CR., Chung YJ, Yen MR, Vidal-Ingigliardi D, Pugsley AP, and Saier MH, Jr Type Ⅱ protein secretion and its relationship to bacterial type Ⅳ pili and archaeal flagella. Microbiology,2003,149:3051-3072
    189.Pelicic V. Type IV pili:e pluribus unum? Mol Microbiol,2008,68:827-37
    190.Perry MB. Structural analysis of the lipopolysaccharide of Actinobacillus (Haemophilus) pleuropneumoniae serotype 10. Biochem Cell Biol,1990a,68: 808-810
    191.Perry MB, Altman E, Brisson JR, Beynon LM, Richards JC. Structural characteristics of the antigen capsular polysaccharides and lipopolysaccharides involved in the serological classi fication of Actinobacillus (Haemophilus) pleuropneumoniae strains. Serodiagn Immunother Infect Dis,1990b,4:299-308.
    192.Porsch EA, Kehl-Fie TE, Geme JW 3rd. Modulation of Kingella kingae adherence to human epithelial cells by type IV Pili, capsule, and a novel trimeric autotransporter. MBio,2012,3:5
    193.Power S B, Quiqley F C, Pritchard D G, Croston P. Porcine pleuropneumonia associated with Haemophilus pleuropneumoniae serotype 3 in the Republic of Ireland. Vet Rec,1983,113:113-114.
    194.Provost M, Harel J, Labrie J, Sirois M, Jacques M, Identification, cloning and characterization of rfaE of Actinobacillus pleuropneumoniae serotype 1, a gene involved in lipopolysaccharide inner-core biosynthesis, FEMS Microbiol Lett,2003, 223:7-14
    195.Prideaux CT, Pierce L, Krywult J, Hodgson AL. Protection of mice against challenge with homologous and heterologous serovars of Actinobacillus pleuropneumoniae after live vaccination. Curr Microbiol,1998,37:324-332
    196.Ramjeet M, Deslandes V, Goure'J, Jacques M, Actinobacillus pleuropneumoniae vaccines:from bacterins to new insights into vaccination strategies. Anim Health Res Rev,2008,9:25-45
    197.Ramjeet M, Deslandes V, St Michael F, Cox A, Kobisch MN, Gottschalk M, Jacques M, Truncation of the lipopolysaccharide outer core affects susceptibility to antimicrobial peptides and virulence of Actinobacillus pleuropneumoniae serotype 1. J Biol Chem,2005,280:39104-39114
    198.Rapp V J, Munson R S, Jr., Ross R F. Outer membrane protein profiles of Haemophilus pleuropneumoniae. Infect Immun,1986,52:414-420.
    199.Rapp VJ, Ross RF, Erickson B Z. Serotyping of Haemophilus pleuropneumoniae by rapid slide agglutination and indirect fluorescent antibody tests in swine. Am J Vet Res,1985,46:185-192
    200.Rioux S, Galarneau C, Harel J, Frey J, Nicolet J, Kobisch M, Dubreuil JD, Jacques M. Isolation and characterization of mini-Tn10 lipopolysaccharide mutants of Actinobacillus pleuropneumoniae serotype 1. Can J Microbiol,1999,45:1017-1026
    201.Rioux S, Galarneau C, Harel J, Kobisch M, Frey J, Gottschalk M, Jacques M. Isolation and characterization of a capsule-deficient mutant of Actinobacillus pleuropneumoniae serotype 1. Microb Pathog,2000,28:279-289
    202.Rioux S, Dubreuil D, Begin C, Laferriere C, Martin D and Jacques M. Evaluation of protective efficacy of an Actinobacillus pleuropneumoniae serotype 1 lipopolysaccharide-protein conjugate in mice. Comp Immunol Microb,1997,20: 63-74.
    203.Rioux S, Girard C, Dubreuil JD and Jacques M. Evaluation of the protective efficacy of Actinobacillus pleuropneumoniae serotype 1 detoxified lipopolysaccharides or O-polysaccharide-protein conjugate in pigs. Res Vet Sci,1998,65:165-167.
    204.Rogers RJ, Eaves LE, Blackall PJ, Truman KF. The comparative pathogenicity of four serovars of Actinobacillus (Haemophi-lus) pleuropneumoniae. Aust Vet J,1990, 67:9-12.
    205.Rosendal S, Boyd DA, Gilbride KA. Comparative virulence of porcine Haemophilus bacteria. Can J Comp Med,1985,49:68-74.
    206.Rosendal S, Lombin L and De Moor J. Serotyping and detection of Haemophilus pleuropneumoniae by indirect fluorescent antibody technique. Can J Comp Med, 1981,45:271-274
    207.Rosendal S, Mitchell WR. Epidemiology of Haemophilus pleu-ropneumoniae infection in pigs. Can J Comp Med,1983,47:1-5.
    208.Rossi-Campos A, Anderson C, Gerlach GF, Klashinsky S, Potter AA and Willson PJ. Immunization of pigs against Actinobacillus pleuropneumoniae with two recombinant protein preparations. Vaccine,1992,10:512-518.
    209.Rudel T, Scheurerpflug I & Meyer TF. Neisseria PilC protein identified as type-4 pilus tip-1
    210.Salonius K, Simard N, Harland R, Ulmer JB. The road to licensure of a DNA vaccine. Curr Opin Investig Drugs,2007,8:635-41
    211.Satran P and Nedbalcova K. Prevalence of serotype, production of Apx toxins, and antibiotic resistance in strains of Actinobacillus pleuropneumoniae isolated in the Czech Republic. Vet Med,2002,47:92-98.
    212.Saze K, Kinoshita C, Shiba F, Haga Y, Sudo T and Hashimoto K. Effect of passive immunization with serotype-specific monoclonal antibodies on Actinobacillus pleuropneumoniae infection of mice. J Vet Med Sci,1994,56:97-102.
    213.Serebrin S, Rosendal S, Valdivieso-Garcia A, Little PB. Endot-helial cytotoxicity of Actinobacillus pleuropneumoniae. Res Vet Sci,1991,50:18-22.
    214.Schaller A, Kuhn R, Kuhnert P, Nicolet J, Anderson TJ, MacInnes JI, Seger RP, Frey J. Characterization of apxIVA, a new RTX determinant of Actinobacillus pleuropneumoniae. Microbiology,1999,8:2105-2116
    215.Seah JN and Kwang J. Localization of linear cytotoxic and pro-apoptotic epitopes in RTX toxin ApxⅢ of Actinobacillus pleuropneumoniae. Vaccine,2004,22: 1494-1497.
    216.Seah JN, Frey J and Kwang. The N-terminal domain of RTX toxin ApxI of Actinobacillus pleuropneumoniae elicits protective immunity in mice. Infect Immun, 2002,70:6464-6467.
    217.Sebunya TN, Saunders JR, Osborne AD. Dose response relationship of Haemophilus pleuropneumoniae aerosols in pigs. Can J Comp Med,1983,47:54-56.
    218.Segal E, Billyard E, So M, Storzbach S & Meyer TF. Role of chromosomal rearrangement in N. gonorrhoeae pilus phase variation. Cell,1985,40,293-300
    219.Serebrin S, Rosendal S, Valdivieso-Garcia A, Little P, Endothelial cytotoxicity of Actinobacillus pleuropneumoniae, Res Vet Sci,1991,50:18-22
    220.Shakarji L, Mikael LG, Srikumar R, Kobisch M, Coulton JW, Jacques M, FhuA and HgbA. outer membrane proteins of Actinobacillus pleuropneumoniae:their role as virulence determinants. Can. J. Microbiol,2006,52:391-396.
    221.Sheehan BJ, Langford PR, Rycroft AN, Kroll JS, [Cu,Zn]-superoxide dismutase mutants of the swine pathogen Actinobacillus pleuropneumoniae are unattenuated in infections of the natural host, Infect Immun,2000,68:4778-4781
    222.Sheehan BJ, Bosse JT, Beddek AJ, Rycroft AN, Kroll JS, Langford PR. Identification of Actinobacillus pleuropneumoniae genes important for survival during infection in its natural host, Infect Immun,2003,71:3960-3970
    223.Sheng ZH, Han HY, Hu DH, Liang JG, He QG, Jin ML, Zhou R, Chen HC. Quantum dots-gold(III)-based indirect fluorescence high-throughput screening of APP. Chem Comm,2009,14:2559-61
    224.Sidibe M, Messier S, Lariviere S, Gottschalk M, Mittal K R. Detection of Actinobacillus pleuropneumoniae in the porcine upper respiratory tract as a complement to serological tests. Can J Vet Res,1993,57:204-208
    225.Silin DS, Lyubomska V. Overcoming immune tolerance during oral vaccination against Actinobacillus pleuropneumoniae. J Vet Med B Infect Dis Vet Public Health, 2002,49:169-175
    226.Srikumar R, Mikael LG, Pawelek PD, Khamessan A, Gibbs BF, Jacques M, Coulton JW. Molecular cloning of haemoglobin-binding protein HgbA in the outer membrane of Actinobacillus pleuropneumoniae. Microbiology,2004,150:1723-1734.
    227.Strom MS and Lory S. Mapping of export signals of Pseudomonas aeruginosa pilin with alkaline phosphatase fusions. J Bacteriol.1987,169:3181-3188
    228.Strom MS, Lory S. Structure-function and biogenesis of the Type IV pili. Annu Rev Microbiol,1993,47:565-596
    229.Subashchandrabose S, LeVeque RM, Wagner TK, Kirkwood RN, Kiupel M, Mulks MH. Branched-chain amino acids are required for the survival and virulence of Actinobacillus pleuropneumoniae in swine, Infect Immun,2009,77:4925-4933
    230.Tacket CO., Taylor RK., Losonsky G, Lim Y, Nataro JP, Kaper JB and Levine MM. Investigation of the roles of toxin-coregulated pili and mannose-sensitive hemag-glutinin pili in the pathogenesis of Vibrio cholerae 0139 infection. Infect Immun,1998,66,692-295
    231.Tanghe A, Lefevre P, Denis O, D'Souza S, Braibant M, Lozes E, Singh M, Montgomery D, Content J, Huygen K. Immunogenicity and protective efficacy of tuberculosis DNA vaccines encoding putative phosphate transport receptors. J Immunol,1999,162:1113-1119
    232.Tarigan S, Slocombe RF, Browning GF, Blackall PJ. Characterisation of haemolytic RTX toxins produced by Australian isolates of Actinobacillus pleuropneumoniae. Aust Vet J,1996,73:164-9
    233.Tarigan S, Slocombe RF, Browning GF, Kimpton W. Functional and structural changes of porcine alveolar macrophages induced by sublytic doses of a heat-labile, hemolytic, cytotoxic substance produced by Actinobacillus pleuropneumoniae. Am. J. Vet. Res.1994,55:1548-1557
    234.Taylor DJ, Actinobacillus pleuropneumoniae. In:Shaw BE, Allaire SD,. Mengeling WL, Taylor DJ eds., Diseases of Swine. Oxford:Blackwell Science,1999.343-354.
    235.Tegetmeyer H.E, Fricke K, Baltes N, An isogenic Actinobacillus pleuropneumoniae AasP mutant exhibits altered biofilm formation but retains virulence. Vet. Microbiol, 2009,137:392-396.
    236.Thomas LD, Dunkley ML, Moore R, Reynolds S, Bastin DA, Kyd JM, Cripps AW. Catalase immunization from Pseudomonas aeruginosa enhances bacterial clearance in the rat lung. Vaccine,2000,19:348-357.
    237.Tonpitak W, Baltes N, Hennig-Pauka I, Gerlach GF. Construction of an Actinobacillus pleuropneumoniae serotype 2 prototype live negative-marker vaccine. Infect Immun,2002,70:7120-7125
    238.Tumamao JQ, Bowles RE, Van Den Bosch H, Klaasen HL, Fenwick BW, Storie GJ, Blackall PJ. Comparison of the efficacy of a subunit and a live streptomycin-dependent porcine pleuropneumonia vaccine. Aust Vet J,2004,82: 370-374.
    239.Utrera V, Pijoan C. Fimbriae in Actinobacillus pleuropneumoniae strains isolated from pig respiratory tracts. Vet Rec,1991,128:357-358
    240.van de Kerkhof A, Haesebrouck F, Chiers K, Ducatelle R, Kamp E.M, Smits M.A. Influence of Actinobacillus pleuropneumoniae and its metabolites on porcine alveolar epithelial cells. Infect. Immun,1996,64:3905-3907
    241.van den Bosch H, Frey J. Interference of outer membrane protein PalA with protective immunity against Actinobacillus pleuropneumoniae infections in vaccinated pigs. Vaccine,2003,21:3601-3607
    242.van Overbeke I, Chiers K, Charlier G, Vandenberghe I, Van Beeumen J, Ducatelle R, Haesebrouck F. Characterization of the in vitro adhesion of Actinobacillus pleuropneumoniae to swine alveolar epithelial cells. Vet Microbiol,2002,88:59-74
    243.van Overbeke I, Chiers K, Ducatelle R, Haesebrouck F. Effect of endobronchial challenge with Actinobacillus pleuropneumoniae serotype 9 of pigs vaccinated with a vaccine containing Apx toxins and transferrin binding proteins. J Vet Med B Infect Dis Vet Public Health,2001,48:15-20
    244.Vigre H, Angen O, Barfod K, Lavritsen D T, Sorensen V. Transmission of Actinobacillus pleuropneumoniae in pigs under field-like conditions:emphasis on tonsillar colonization and passively acquired colostral antibodies. Vet Microbiol, 2002,89:151-159.
    245.Virji M, Heckels JE. The role of common and type-specific pilus antigenic domains in adhesion and virulence of gonococci for human epithelial cells. J Gen Microbiol, 1984,130:1089-1095
    246.Wagner C, Hensel M. Adhesive mechanisms of Salmonella enterica. Adv Exp Med Biol,2011,715:17-34
    247. Ward CK, Inzana TJ. Resistance of Actinobacillus pleuropneumoniae to bactericidal antibody and complement is mediated by capsular polysaccharide and blocking antibody specific for lipopolysacharide. J. Immunol,1994,153:2110-2121
    248.Ward CK, Lawrence ML, Veit HP, Inzana TJ. Cloning and mutagenesis of a serotype-specific DNA region involved in encapsulation and virulence of Actinobacillus pleuropneumoniae serotype 5a:concomitant expression of serotype 5a and 1 capsular polysaccharides in recombinant A. Pleuropneumoniae serotype 1. Infect Immun,1998,66:3326-3336
    249. Wei B, Li F, Yang H, Yu L, Zhao K, Zhou R, Hu Y. Magnetic beads-based enzymatic spectrofluorometric assay for rapid and sensitive detection of antibody against ApxIVA of Actinobacilluspleuropneumoniae. Biosens Bioelectron,2012,35:390-3
    250.Willson PJ, Gerlach GF, Klashinsky S and Potter AA. Cloning and characterization of the gene coding for NADPH-sulfite reductase hemoprotein from Actinobacillus pleuropneumoniae and use of the protein product as a vaccine. Can J Vet Res,2001, 65:206-212.
    251.Willson PJ, Rossi-Campos A and Potter AA (1995). Tissue reaction and immunity in swine immunized with Actinobacillus pleuropneumoniae vaccines. Can J Vet Res, 1995,59:299-305.
    252.Winther-Larsen HC, Hegge FT, Wolfgang M, Hayes SF, van Putten JP, Koomey M. Neisseria gonorrhoeae PilV, a type IV pilus-associated protein essential to human epithelial cell adherence. Proc Natl Acad Sci USA,2001,98:15276-15281
    253.Wolfgang M, van Putten JP, Hayes SF, Dorward D, and Koomey M. Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili. EMBO J,2000,19:6408-6418
    254.Xu F, Chen X, Shi A, Yang B, Wang J, Li Y. Characterization and immunogenicity of an apxIA mutant of Actinobacillus pleuropneumoniae. Vet Microbiol,2006, 118:230-239
    255.Xu Z, Chen X, Li L, Li T, Wang S, Chen H, Zhou R. Comparative genomic characterization of Actinobacillus pleuropneumoniae. J Bacterial,2010,92: 5625-5636.
    256.Xu Z, Zhou Y, Li L, Zhou R, Xiao S, Wan Y, Zhang S, Wang K, Li W, Li L, Jin H, Kang M, Dalai B, Li T, Liu L, Cheng Y, Zhang L, Xu T, Zheng H, Pu S, Wang B, Gu W, Zhang X, Zhu G-F, Wang S, Zhao G-P, Chen H. Genome Biology of Actinobacillus pleuropneumoniae JL03, an Isolate of Serotype 3 Prevalent in China. PLoS ONE,2008,3:e1450
    257.Zaas AK, Schwartz DA, Innate immunity and the lung:defense at the interface between host and environment. Trends Cardiovasc. Med,2005,15:195-202
    258.Zhang Y, Tennent JM, Ingham A, Beddome G, Prideaux C, Michalski WP. Identification of type 4 fimbriae in Actinobacillus pneuropneumoniae. FEMS Microbiol Lett,2000,189:15-18
    259.Zhou Y, Li L, Chen Z, Yuan H, Chen H, Zhou R. Adhesion protein ApfA of Actinobacillus pleuropneumoniae is required for pathogenesis and is a potential target for vaccine development. Clin Vaccine Immunol,2013,20:287-94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700