不同种类FRP加固钢筋混凝土梁的试验研究及理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内外学者对纤维复合材料(FRP)加固混凝土结构主要集中在碳纤维复合材料(CFRP)、玻璃纤维复合材料(GFRP)和芳纶纤维复合材料(AFRP)的研究上。玄武岩纤维复合材料(BFRP)作为一种新型加固材料,其强度稍低于CFRP,高于GFRP,延性优于CFRP,耐高温性能明显好于其他三种加固材料。BFRP在土木工程中的研究应用尚处于起步阶段,其力学性能与传统纤维存在差异,需要进行深入研究;现存的计算模型多基于CFRP加固梁和相对有限的试验数据提出,有必要验证这些计算模型对BFRP加固梁的适用性以及对本文试验数据的准确性。本文对不同种类FRP加固混凝土梁进行了试验研究及相应的理论分析,主要研究内容和结论如下:
     1.通过试验结果对比分析了粘贴BFRP布、CFRP布和GFRP布加固钢筋混凝土梁(RC梁)和未加固普通RC梁的性能差异,并从FRP种类、加载历史与U型布布置方式等方面对比了承载力、延性、应变发展及破坏特征的变化。试验结果表明,在纤维布端部布置U型箍的锚固方式优于沿全梁均布U型箍的锚固方式;碳纤维布加固梁承载力最高延性最低,玻璃纤维布加固梁延性较好但屈服荷载提高不显著,而玄武岩纤维布加固梁承载力得到提高且延性好;当钢筋混凝土梁的破坏由混凝土-胶界面剥离控制时,利用FRP对初始损伤梁进行加固,能更有效发挥FRP材料的抗拉性能,能够有效提高加固梁的延性。
     2.使用有限元软件ANSYS模拟本文中的钢筋混凝土梁的抗弯加固试验,分别在承载力、刚度和延性、破坏形态以及二次受力性能等方面对试验结果和有限元结果进行了对比分析。本文中的有限元模型可以正确模拟加固梁与未加固梁的开裂荷载,屈服荷载及其相应的挠度变化趋势;可以准确模拟初始损伤对FRP应变的影响;可以给出正确的延性指数,与试验结果吻合良好;本文有限元模型可用于实际模拟。
     3.根据三个典型的计算方法,Chen&Teng公式,中国规范和ACI指南进行计算,通过对比分析计算解与试验值发现:当钢筋混凝土梁发生剥离破坏时,三种计算方法都过高的估计了碳纤维的加固效果,尤其是ACI建议公式;由于Chen&Teng公式考虑到由中部裂缝引起的界面剥离破坏,与试验破坏模式一致,相比其他两种计算方法,Chen&Teng公式计算结果更接近实验值;当梁的破坏由界面剥离破坏所控制,初始荷载对加固梁的影响不明显,这一点三种计算方法与实验结果一致。
At present, domestic and overseas research on concrete structure strengthened with fiber reinforced polymer (FRP) focus on carbon fiber polymer (CFRP), glass fiber polymer (GFRP) and aramid fiber polymer (AFRP). Basalt fiber polymer (BFRP) is a new type of reinforcement material, which owns slightly lower strength and better ductility than CFRP, and larger strength than GFRP. Moreover, BFRP has higher high temperature resistance than other reinforcement materials. Further research is imperative since the restricting number of studies involving BFRP in the civil engineering, as well as the diversity compared with traditional fiber. Due to most of the existing calculation model based on the RC beams strengthened with CFRP and the limit test results, it is essential to verify the feasibility on RC beams bonded with BFRP and the experimental results of this dissertation. Test results and theoretical analysis of RC beams strengthened with various FRP are discussed and investigated in this dissertation. Concretely the main research work and conclusions are summarized as follow:
     1. Based on the test results, the performance diversity between RC beams strengthened with BFRP, CFRP and GFRP and unreinforced RC beams is discussed, which includes the effects of bearing capacity, ductility and failure type caused by various FRP, loading history and arrangement of U-stirrup. Research shows that strengthened RC beams anchored with U-stirrup at FRP ends offer better reinforcement than that along the beam, and the beams bonded with BFRP exhibit higher bearing capacity than beams bonded with GFRP and better ductility than beams bonded with CFRP. When the reinforcement failure is determined by delamination of epoxy-concrete interface, the strengthening effects on pre-damaged beams are more obvious than intact beam.
     2. Flexural behaviors of RC beams strengthened with various FRP are simulated via software Ansys. From the aspects of bearing capacity, stiffness and ductility, failure type and initial loading, etc. test results and numerical results are compared. The finite element model adopted in this paper can be used to determine cracking loads, yield loads, the tendency of relevant deflection, the effects of pre-damage on the FRP strain and the valid ductile factors. It is demonstrated that the finite element model proposed in this dissertation is acceptable for simulating strengthened beams.
     3. According to three typical algorithmic methods, Chen&Teng formula, China regulation and ACI guide, comparative analysis between calculation and test value indicate that:in the case of peeling failure mode, the strengthening effects of CFRP are overestimated by the three formulas. Reckoning results of Chen&Teng's formula are much closer to the test results than the other two methods. When interface delamination is considered, Chen&Teng's formula gives better solution, and both the results of the three computing methods and test indicate that the effects of pre-damage on the RC beams are not obvious.
引文
[1]姚谏.FRP复合材料加固混凝土结构新技术研究进展[J].科技通报,2004,20(3):216-22.
    [2]宋中南.我国混凝土结构加固修复业技术现状与发展对策[J].混凝土,2002,(10):10-17.
    [3]卓尚木,季直仓,卓昌志.钢筋混凝土结构事故分析与加固[M].北京:中国建筑工业出版社,1993.
    [4]飞云江大桥检查报告[R].杭州:浙江省交通规划设计研究院,2007.
    [5]梁坦.建筑物可靠性鉴定与加固改造的发展[J].四川建筑科学研究,1994(3):35-41.
    [6]李惠强.建筑结构诊断鉴定与加固修复[M].武汉:华中科技大学出版社,2002.
    [7]唐业清.建筑物改造与病害处理[M].北京:中国建筑工业出版社,2000.
    [8]张马俊,李佩勋.钢筋混凝土交叉梁的体外预应力加固[C].建筑物鉴定与加固改造一第五届全国学术讨论会论文集(中册),汕头,2000.
    [9]曹双寅,邱洪兴,王恒华.结构可靠性鉴定与加固技术[M].北京:中国水利水电出版社,2002.
    [10]Nanni A. Fiber reinforced plastic (FRP) reinforcement for concrete structures [M]. Properties and Applications Elsevier Science,1993.
    [11]陆新征.FRP-混凝土界面行为研究[D].北京:清华大学土木工程系,2004.
    [12]Hollaway L C, Leeming M B. Strengthening of reinforced concrete structures using externally-bonded FRP composites in structural and civil engineering [M]. UK:Woodhead Publishing,1999.
    [13]Malek A M. Prediction of failure load of RC beams strengthened with FRP plate due to stress concentration at the plate end [J].ACI Structural Journal,1998,94(4):363-370.
    [14]Mahmoud T, EI-Mihilmy J W, Tedesco M. Analysis of reinforced concrete beams strengthened with FRP laminates [J]. Journal of Structural Engineering,2000, (6): 684-692.
    [15]谢尔盖,李中郢.玄武岩连续纤维材料的应用前景[J].纤维复合材料,2010,17(3):17-20.
    [16]胡显奇,陈绍杰.世界复合材料现状及其连续玄武岩纤维的发展良机[J].高科技纤维与应用,2005,30(3):9-19.
    [17]顾里之.纤维增强复合材料[M].北京:机械工业出版社,1988.
    [18]吴刚,胡显奇,蒋剑彪等.玄武岩纤维及其增强混凝土力学性能研究与应用[C].纤维混凝土的技术进展与工程应用—第十一届全国纤维混凝土学术会议论文集,大连,2006:42-47.
    [19]胡显奇,罗益锋,申屠年.连续玄武岩纤维及复合材料[J].高科技纤维与应用,2002,4(2):1-5.
    [20]吴智深,吴刚,汪昕等.玄武岩纤维在土建交通基础设施领域研究与应用若干新进展[C].工业建筑(2009·增刊)——第六届全国FRP学术交流会论文集,郑州,2009:1-14.
    [21]齐风杰,李锦文,李传校.连续玄武岩纤维研究综述[J].高科技纤维与应用,2006,31(2):42-46.
    [22]ASTM.1993 Standard test method for plane-strain fracture toughness of metallic materials [S]. ASTM Standards, Philadelphia, USA,1993:509-539.
    [23]Teng J G, Chen J F, Smith S T, et al. Behaviour and strength of FRP-strengthened RC structures:a state-of-the-art review [J]. The Institution of Civil Engineers Structures and Buildings,2003,156(1):51-62.
    [24]Smith J S, Park C, Moon D Y. Characteristics of basalt fiber as a strengthening material for concrete structures [J]. Composites, Part B, Engineering,36(2005):504-512.
    [25]Ritchie P A, Thomas D A, Lu L W, et al. External reinforcement of concrete beams using fiber reinforced plastics [J]. Structural Journal,1991,88(4):490-500.
    [26]Saadatmanesh H, Ehsani M R. RC beams strengthened with GFRP plates. I:Experimental study [J]. Journal of Structural Engineering,1991,117(11):3417-3433.
    [27]王文炜.纤维复合材料加固钢筋混凝土梁抗弯性能研究[D].大连:大连理工大学土木工程学院,2003.
    [28]Ye L P, Lu X Z, Chen J F. Design proposal for debonding strengths of FRP strengthened RC beams in the Chinese design code[C]. Proceedings of International Symposium on Bond Behavior of FRP in Structure, Hong Kong,2005:45-54.
    [29]De-Lorenzis L, Teng J G. Near-surface mounted FRP reinforcement:An Emerging Technique for Strengthening Structures [J]. Composites:Part B 2007,38:119-143.
    [30]陆新征,滕锦光,叶列平等.FRP加固混凝土梁受弯剥离破坏的有限元分析[J].工程力学,2006,23(6):55-93.
    [31]杨洋,李丽娟,郭永昌等CFRP/GFRP混杂加固混凝土梁胶层界面应力有限元分析[J].混凝土,2007,8:13-17.
    [32]Yang Z J, Chen J F, Proverbs D. Finite element modeling of concrete cover separation failure in FRP plated RC beams [J]. Construction and Building Materials,2003(17):3-13.
    [33]Guido C, Enrico S, Roko Z. Experimental and nonlinear finite element studies of RC beams strengthened with FRP plates [J]. Composites:Part B,2007(38):277-288.
    [34]Saxena P, Toussam H, Noumowe A. Failure analysis of FRP-strengthened RC beams [J]. Journal of Composites for Construction ASCE,2008(2):2-14.
    [35]滕锦光,陈建飞,S.T.史密斯等.FRP加固混凝土结构[M].北京:中国建筑工业出版社,2005.
    [36]Naaman A E. Parameters Influencing the Flexural and Shear Response of RC Beams Strengthened with CFRP Laminates[C]. Proc.,2nd Int. Workshop on Structure Composites for Infrastructure Applications, Egypt,2003.
    [37]El-Mihilmy M T, Tedesco J W. Prediction of anchorage failure for reinforced concrete beams strengthened with fiber-reinforced polymer plates [J]. ACI Structural Journal, 1998(3):301-314.
    [38]叶列平,陆新征,腾锦光等.FRP片材加固混凝土梁剥离承载力计算及设计[J].建筑结构,2007,37(12):79-82.
    [39]Japan Society of Civil Engineers. Recommendations for upgrading of concrete structures with use of continuous fiber sheets [S].Tokyo, Japan:Japan Society of Civil Engineering,2000.
    [40]ISIS Canada Corporation. Strengthening reinforced concrete structures with externally-bonded fiber reinforced polymers, ISIS Design Manual4 [S]. Manitoba, Canada:ISIS Canada Corporation,2001.
    [41]American Concrete Institute. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures, ACI 440.2R-02[S]. Detroit: American Concrete Institute,2002.
    [42]中国建设标准化协会标准.碳纤维片材加固修复混凝土结构技术规程[S].北京:中国计划出版社,2003.
    [43]Teng J G., Chen J F, Smith S T, et al. FRP-strengthened RC structures, UK:John Wiley & Sons,2002.
    [44]Neubauer U, Rostasy F S, Bond failure of concrete fiber reinforced polymer plates at inclined cracks-experiments and fracture mechanics model[C]. Proc. of 4th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures ACI, Farmington Hills, Michigan,1999:369-382.
    [45]Lee Y T, Lee J H, Hwang H S, et al. Performance of concrete structures retrofitted with fiber reinforced polymers [J]. Mag. Korean Conc. Inst.,2002,14(4):89-96.
    [46]Hong G H, Shin Y S. Structural performance evaluation of reinforced concrete beams with externally bonded FRP sheets [J].Korean Cone. Inst.,2003,15(1):78-86.
    [47]Lee H S. Fire resistance property of RC structure members strengthened with fiber sheet [J]. Mag. Korean Cone. Inst.,2002,14(2):45-50.
    [48]欧阳利军,丁斌,陆洲导.玄武岩纤维及其在建筑结构加固中的应用研究进展[J].玻璃钢/复合材料,2010,27(2):1-5.
    [49]吴刚,郭正兴,张继文.碳纤维复合材料加固混凝土结构技术及施工要点[J].建筑技术,2000,31(6):387-389.
    [50]陆新征,叶列平,滕锦光等.FRP片材与混凝土粘结性能的精细有限元分析[J].工程力学,2006,23(5):74-52.
    [51]张子潇,叶列平,陆新征.U型FRP加固钢筋混凝土梁受剪剥离性能的有限元分析[J].工程力学,2005,22(4):155-163.
    [52]郝文化主编ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.
    [53]李为民等ANSYS工程结构实用案例分析[M].北京:化学工业出版社,2007.
    [54]王新敏ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [55]ANSYS Theory Manual 5.7,2001. ANSYS Inc.,2001.
    [56]司炳君,孙志国,艾庆华Solid65单元在混凝土结构有限元分析中的应用[J].工业建筑,2007,37(1):87-92.
    [57]江见鲸,陆新征,叶列平编著.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [58]Barzegar F, Maddipudi S. Three-Dimensional modeling of concrete structures [J].1: Plain Concrete. Journal of Structural Engineering,1997,123(10):1339-1346.
    [59]Isenberg J. Finite element analysis of reinforced concrete structures Ⅱ. ASCE, New York, NY,1993.
    [60]Shah S P, Swartz S E, Ouyang C. Fracture Mechanics of Concrete [M]. New York:John Wiley & Sons, Inc.,1995.
    [61]陆新征,江见鲸.用ANSYS Solid65单元分析混凝土组合构件复杂应力[J].建筑结构,2003,33(6):22-24.
    [62]祝效华,余志祥等ANSYS高级工程有限元分析范例精选[M].电子工业出版社,2004.
    [63]汪光满.钢筋混凝土梁表层嵌贴CFRP板条的抗弯加固性能有限元分析[D].杭州:浙江大学,2008.
    [64]吴刚,安琳,吕志涛.碳纤维布用于钢筋混凝土梁抗弯加固的试验研究[J].建筑结构,2000,30(7):3-10.
    [65]张普,朱虹,孟少平等.混杂FRP-混凝土T形组合梁受弯性能试验研究[J].东南大学学报(自然科学版),2010,40(3):548-553.
    [66]欧阳煜,王鹏,李翔.玄武岩纤维布加固钢筋混凝土梁受弯试验研究[J].建筑结构,2008,38(11):74-84.
    [67]BS8110 (1997) Structural Use of Concrete, Part 1. Code of practice of design and construction [S]. British Standards Institution, London, U.K.
    [68]Kong F K, Evans R H. Reinforced and pre-stressed concrete [M]. UK:Chapman & Hall, 1987.
    [69]Saadatmanesh H, Malek A M. Design guidelines for flexural strengthening of RC beams with FRP plates [J]. Journal of Composites for Construction, ASCE,1998,2(4):158-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700