玉米大斑病生防放线菌的筛选鉴定及液体发酵的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米大斑病(Northern corn leaf blight)是由大斑刚毛座腔菌[Setosphaeriaturcica (Luttrell) Leonard and Suggs]引起的一种严重的叶枯性病害,是世界玉米产区分布较广、危害较重的主要病害之一。目前,玉米大斑病菌的防治以抗病品种的培育为主,辅以一定的栽培管理和化学防治,但是化学药剂防效不稳定,且易污染环境。因此,利用安全高效的生防菌防治玉米大斑病具有重要的现实意义。
     本研究从吉林省洮南、人参地和长白山自然保护区采集土样,采用稀释涂布法分离放线菌,共获得527株。以玉米纹枯病菌、玉米大斑病菌、玉米灰斑病菌、稻瘟病菌、大豆核盘菌、尖孢镰刀菌、人参锈腐病菌、柑橘炭疽病菌为靶标菌,采用平板对峙法进行初筛,获得108株拮抗放线菌,选择抑菌效果最好的一株放线菌BZ45,采用抑制菌丝生长速率法、牛津杯法、抑制孢子萌发法对其发酵滤液的活性进行测定。结果发现,菌株BZ45对玉米纹枯病菌、玉米大斑病菌、玉米灰斑病菌、稻瘟病菌、大豆核盘菌、尖孢镰刀菌、人参锈腐病菌、柑橘炭疽病菌均有拮抗作用,抑菌圈直径大小为31.00~46.60mm;菌株BZ45的发酵滤液对8种病原真菌菌丝均有抑制作用,抑菌率为10.48%~75.51%,其对玉米大斑病菌的抑菌圈直径为23.80mm,对玉米大斑病菌孢子萌发有较强抑制作用。
     经过培养特征、形态特征、生理生化特性、16SrDNA序列测定及系统发育的分析,将菌株BZ45鉴定为壮观链霉菌(Streptomyces spectabilis)。
     通过单因素试验和正交设计试验,确定其最佳发酵配方和培养条件为:果糖1.5%、蛋白胨3.0%、KH_2PO_40.1%、NaCl0.04%、CaCO_30.1%,起始pH为7.2,种子液接种量为10%,250mL装瓶量50mL,培养温度为28℃,200r/min,摇瓶培养4d。
     利用特异性引物扩增的方法,检测到放线菌BZ45基因组中存在聚酮合酶I型(PKS I)基因、非核糖体多肽合成酶(NRPS)基因,不含有聚酮合酶II型(PKS II)基因。产生的次生代谢产物有挥发性和扩散性,产生的酶有蛋白酶,还产生铁载体,不产生IAA和纤维素酶。
The northern corn leaf blight (NCLB) is a serious foliar wilt disease of maize inmany corn belts. It is incited by the ascomycete fungus Setosphaeria turcica (Luttrell)Leonard and Suggs, with its Asexual phase Exserohilum turcicum (Passerini) Leonardand Suggs. NCLB is mainly controlled by resistant cultivars, while cultivationmanagement and chemicals are the complement. But Chemicals control effect is notstable, and easy to pollute the environment. So use of safety and efficient antagonisticmicrobe is one of the most important.
     In this study, actinomycetes were isolated by Pour Plate method from soil collectedfrom Taonan, Panax ginseng C. A. Mey. planting area and Changbai Mountain NaturalReserve in Jilin, and gain527strains.108antagonistic actinomycetes againstRhizoctonia solani, Setosphaeria turcica, Cercospora zeaemaydis, Pyricularia oryzae,Sclerotinia sclerotiorum, Fusarium oxysporum, Cylindrocarpon destructans,Colletotrichum gloeosporioides were selected by using confrontation culture method.From them strain BZ45possessed prominent bioactivity and were further studied. Thefermentation filtrates of BZ45were determined by suppression of mycelial growthmethod, cylinder plate method and inhibition on the spore germination in vitro. It wasdemonstrated to be antagonistic against Rhizoctonia solani, Setosphaeria turcica,Cercospora zeaemaydis, Pyricularia oryzae,Sclerotinia sclerotiorum, Fusariumoxysporum, Cylindrocarpon destructans, Colletotrichum gloeosporioides withdiameters of inhibition zones of31.00~46.60mm. The fermentation filtrates of strainsBZ45had antagonistic activity to the mycelial growth of8plant pathogens,too.Inhibition rate of fermentation filtrates was10.48%~75.51%. The fermentationfiltrates have higher inhibition on the mycelial growth of Setosphaeria turcica withzones of inhibition of23.80mm. The fermentation filtrates have higher inhibition onthe spore germination of Setosphaeria turcica.
     Strain BZ45were identified as Streptomyces spectabilis by morphological andcultural traits, physio-biochemical characteristics and16S rDNA sequence andphylogenetic analysis.
     By using single-factor test and orthogonal test,the optimum fermentation mediumcomponent and condition of strain BZ45were cultured in1.5%fructose,3%peptone,0.1%KH_2PO_4,0.04%NaCl,0.1%CaCO_3, the initial pH of7.2, liquidvolume50ml in250ml,at28℃,200r/min, inoculation volume10%and shaked for4d.
     Strain BZ45have genes of type I polyketide synthases (PKSI), nonribosomalpeptide synthase (NRPS) by PCR, don’t have type II polyketide synthases (PKSII).Itproduce volatile and diffusible metabolite. It produces protease, also producessiderophore, does not produce the IAA and cellulose enzyme.
引文
[1]百度百科.玉米的种类及来源[EB/OL],[2011-04-05].http://baike.baidu.com/view/122059.htm
    [2]高卫东,戴法超.玉米大斑病研究的新进展[J],1993,(03):3-5.
    [3]董金皋.农业植物病理学(北方本)[M].北京:中国农业出版社,2001.
    [4]左建英,李育才.山西省玉米大斑病的发生特点和综合防治技术[J],2011,(03):123+128.
    [5]晋齐鸣.东北地区玉米、大豆重要病虫害识别与防治,吉林科学技术出版社,长春,2011.
    [6]百度百科.玉米大斑病的形态特征[EB/OL],[2011-04-05].http://baike.baidu.com/view/122059.htm
    [7]郭子敬,王士伟.玉米大斑病的发生与防治[J],2010,(19):21.
    [8]百度百科.玉米大斑病发病条件[EB/OL],[2011-04-05].http://baike.baidu.com/view/122059.htm
    [9]高金欣,吕淑霞,高增贵等.东北地区2009年玉米大斑病菌生理小种鉴定与动态分析[J],2011,19(3):138-140.
    [10]范永山,曹志艳,谷守芹等.不同诱导因素对玉米大斑病菌附着胞产生的影响[J],2004,(05):769-772.
    [11]曹志艳.玉米大斑病菌黑色素合成途径相关基因的克隆及功能分析[D],河北:河北农业大学,2009.
    [12]王朝华,刘云惠,董金皋.玉米大斑病菌致病毒素特异性毒性组分的分离与纯化,中国植物病理学会第七届代表大会暨学术研讨会,中国北京,2002, p.41.
    [13]董金皋,李正平,赵光耀等.玉米大斑病菌毒素的结构鉴定和钝化反应[J],1999,(04):88-93.
    [14]J.D. Nosanchuk, A. Casadevall. The contribution of melanin to microbialathogenesis[J],2003,5:203-223.
    [15]M.J. Butler, A.W. Day, J.M.e.a. Henson. Pathogenic properties of fungalmelanins[J],2001,93:1-8.
    [16]M.J. Rachael, L. Beatriz, Gomez. Synthesis of melanin pigment by Candidaalbicans in vitro and during infection[J],2005,73(9):6147-6150.
    [17]王洪凯,林福呈,王政逸.植物病原真菌附着胞的机械穿透力[J],2004,23(1):151-157.
    [18]V.H. Lagunas, N. Cabrera, F. Bolivar, et al.. Optimum melanin productionusing recombinant Escherichia coli[J],2006,101(5):1002-1008.
    [19]R.J. Howard, M.A. Ferrari. Role of melanin in appressorium function[J],1989,13:403-418.
    [20]赵书文,杨秀林,郭东.玉米大斑病的流行原因与综合治理措施[J],2005,(03):6-8.
    [21]方羽生,杨卫华,张洪玲等.放线菌对4种病原真菌的拮抗作用初探[J],2001,(05):39-41.
    [22]田小卫,龙建友,白红进等.一株放线菌次生代谢产物抗菌活性的初步研究[J],2004,(02):51-54.
    [23]焦少娟,安德荣,刘欢等.土壤拮抗放线菌JSJ-129-08的筛选及活性产物的初步研究[J],2008,(05):116-120.
    [24]鹿秀云,李社增,栗秋生等.玉米叶斑病拮抗细菌的筛选及其发酵培养基优化[J],2006,(S1):47-53.
    [25]王靖,黄云,姚佳,等.两株根肿病生防放线菌的鉴定及其防病效果[J],2011,(13):2692-2700.
    [26]K.A. El-Tarabily, K. Sivasithamparam. Non-streptomycete actinomycetes asbiocontrol agents of soil-bornefungal plant pathogens and as plant growthpromoters[J],1981,38(2006):1505-1520.
    [27]M. Goodfellow, S.T. Williams. Ecology of actinomycetes [J],1983,37:189-216.
    [28]S.T. Williams, E.M.H. Wellington. Actinomycetes. In: Page,A.L., Miller,R.H., Keency, O.R.(Eds.), Methods of Soil Analysis,part2, Chemical andMicrobiological Properties, second ed. American Society of Agronomy/Soil ScienceSociety of America, Madison[M].1982a,969-987.
    [29]A.J. McCarthy, S.T. Williams. Methods for studying the ecology ofactinomycetes[J],1990,22:533-563.
    [30]H.H. Zahran, A.M. Moharram, H.A. Mohammad. Some ecological andphysiological studies on bacteria isolated from saltaffected soils of Egypt[J],1992,32:405-413.
    [31]徐丽华,姜成林.云南若干地区土壤放线菌区系及资源考察X.滇东南地区[J],1996,(01):48-52.
    [32]徐丽华,杨宇容,姜成林.云南土壤放线菌生态分布的研究[J],1996,(03):220-226.
    [33]司美茹,薛泉宏,陈占全等.青海高原土壤拮抗性放线菌的生态分布[J],2005,(01):104-111.
    [34]罗素群.黄土区几种主要土类放线菌的分布、组成和拮抗性能的研究[J],1981,(06):27-30.
    [35]R. H, S. C, R. FA, S. E. Molecular biological evidence for the occurrenceofuncultured members of the actinomycete line of descentin different environmentsand geographical locations[J],1996,142:2863-2870.
    [36]Zengler, T. G, R. M, E. et al. Cultivating the uncultured[J],2002,99(24):15681-15686.
    [37]B. AT, S. JEM. Marine actinobacteria: new opportunities for natural producesearch and discovery[J],2007,15:491-499.
    [38]王宏梅,赵心清.可培养海洋放线菌生物多样性的研究进展[J],2007,(05):996-1000.
    [39]L. Cao, Z. Qiu, J. You, et al. Isolation and characterization of endophyticstreptomycete antagonists of Fusarium wilt pathogen from surface-sterilized bananaroots[J],2005,247:147-152.
    [40]J.T. Coombs, M.M. Franco. Isolation and identification of actinobacteriafrom surface sterilized wheat roots[J],2003,69:5603-5608.
    [41]P. Nimnoi, N. Pongsilp, S. Lumyong. Endophytic actinomycetes isolatedfrom Aquilaria crassna Pierre ex Lec and screening of plant growth promotersproduction[J],2009,26(2):193-203.
    [42]M. Alexander. Introduction to Soil Microbiology[M].1977,480.
    [43]石功名,陈向东,顾觉奋.土壤中稀有放线菌分离培养方法的研究进展[J],2010,(06):248-252.
    [44]H. Nonomura, Y. Ohara. Distribution of actinomycetes in soil.(VI). A culturemethod effective for both preferential isolation and enumeration of Microbispora andStreptosporangium strains in soil(part1)[J],1969,47:463-469.
    [45]彭云霞,姜怡,段淑蓉等.稀有放线菌的选择性分离方法[J],2007,(01):86-89.
    [46]F. McKenna, K.A. El-Tarabily, S. Petrie, et al. Application of actinomycetesto soil to ameliorate water repellency[J],2002,35:107-112.
    [47]K.M. You, Y.K. Park. A new method for the selective isolation ofactinomycetes from soil[J],1996,10:541-546.
    [48]T.I. Bulina, I.V. Alferova, L.P. Terekhova. A novel approach to isolation ofactinomycetes involving irradiation of soil samples with microwaves[J],66:231-234.
    [49]T.I. Bulina, L.P. Terekhova, M.V. Tyurin. Use of electric pulses for selectiveisolation of actinomycetes from soil[J],1998,67:459-462.
    [50]M. Hayakawa, M. Otoguro, T. Takeuchi, et al. Application of a methodincorporating differential centrifugation for selective isolation of motileactinomycetes in soil and plant litter[J],2000,78(171-185).
    [51]Y.V. Li, L.P. Terekhova, M.G. Gapochka. Isolation of actinomycetes fromsoil using extremely high frequency radiation[J],2002,71:105-108.
    [52]徐丽华,李文均,刘志恒等.放线菌系统学-原理、方法及实践[M].北京:科学出版社,2007,16-19.
    [53]B.L. Maidak, J.R. Cole, P. Jr., et al. A new version of the RDP (ribosomaldatabase project)[J],1999,27:171-173.
    [54]F.A. Rainey, N. Ward-Rainey, R.M. Kroppenstedt, et al. The genusNocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycetelineage; proposal of Nocardiopsaceae fam.Nov[J],1996,46:1088-1092.
    [55]J.M. Whipps. Developments in the biological control of soil-borne plantpathogens[J],1997,26:1-134.
    [56]J.M. Whipps. Microbial interactions and biocontrol in the rhizosphere[J],2001,52:487-511.
    [57]C.L. Doumbou, M.K.C. Salove, D.L., et al. Actinomycetes, promising toolsto control plant diseases and to promote plant growth[J],2001,82:85-102.
    [58]W.E. Cooper, S.J.P. Chilton. Studies on antibiotic soil organisms.I.Actinomycetes antibiotic to Pythium arrhenomanes in sugar-cane soils ofLouisiana[J],1950,40:544-552.
    [59]S.L. Rose, C.-Y. Li, A.S. Hutchins. A streptomycete antagonist to Phellinusweirii, Fomes annosus, and Phytophthora cinnamomi[J],1980,26:583-587.
    [60]W.M. Yuan, D.L. Crawford. Characterization of Streptomyces lydicusWYEC108as a potential biocontrol agent against fungal root and seed rots[J],61:3119-3128.
    [61]K. Getha, S. Vikineswary, W.H. Wong, et al. Evaluation of Streptomyces sp.strain g10for suppression of Fusarium wilt and rhizosphere colonization in pot-grownbanana plantlets[J],2005,32:24-32.
    [62]M. Arifuzzaman, M.R. Khatun, H. Rahman. Isolation and screening ofactinomycetes from Sundarbans soil for antibacterial activity[J],2010,9(29):4615-4619.
    [63]W.E. Cooper, S.J.P. Chilton. Studies on antibiotic soil organisms.I.Actinomycetes antibiotic to Pythium arrhenomanes in sugar-cane soils ofLouisiana[J],1950,40:544-552.
    [64]L.J. Herr. A method of assaying soils for numbers of actinomycetesantagonistic to fungal pathogens[J],1959,49:270-273.
    [65]L.E. Williams, Willis, G.M.,. Agar ring method for in vitro studies offungistatic activity[J],1962,52:368-369.
    [66]M.A. Alvarez, S. Gagne`, H. Antoun. Effect of compost on rhizospheremicroflora of the tomato and on the incidence of plant growth-promotingrhizobacteria[J],1995,61:194-199.
    [67]W.M. Yuan, D.L. Crawford. Characterization of Streptomyces lydicusWYEC108as a potential biocontrol agent against fungal root and seed rots[J],1995,61:3119-3128.
    [68]姜钰,董怀玉,徐秀德等.放线菌在植病生防中的研究进展[J],2005,(05):329-331.
    [69]K.A. El-Tarabily. An endophytic chitinase-producing isolate of Actinoplanesmissouriensis, with potential for biological control of root rot of lupine caused byPlectosporium tabacinum[J],2003,51:257-266.
    [70]M. Gacto, J. Vicente-Soler, J. Cansado, et al. Characterization of anextracellular enzyme system produced by Micromonospora chalcea with lytic activityon yeast cells[J],2000,88:961-967.
    [71]R.S. Upadhyay, B. Rai. Studies on antagonism between Fusarium udumButler and root region microflora of pigeon-pea[J],1987,101:79-93.
    [72]D. Macagnan, R.d.S. Romeiro, A.W.V. Pomella, et al. Production of lyticenzymes and siderophores, and inhibition of germination of basidiospores ofMoniliophthora (ex Crinipellis) perniciosa by phylloplane actinomycetes[J],2008,47(3):309-314.
    [73]J. Postma, E.H. Nijhuis, E. Someus. Selection of phosphorus solubilizingbacteria with biocontrol potential for growth in phosphorus rich animal bonecharcoal[J],2010,46(3):464-469.
    [74]B.R. Glick. The enhancement of plant growth by free-living bacteria[J],1995,41:109-117.
    [75]K.A. El-Tarabily, A.H. Nassar, G.E.S.J. Hardy, et al. Fish emulsion as a foodbase for rhizobacteria promoting growth of radish (Raphanus sativus L. var. sativus)in a sandy soil[J],2003,252:397-411.
    [76]A.H. Nassar, K.A. El-Tarabily. Growth promotion of bean (Phaseolusvulgaris L.) by a polyamine-producing isolate of Streptomyces griseoluteus[J],2003,40:97-106.
    [77]R.K. Tokala, J.L. Strap, C.M. Jung, et al. Novel plant-microbe rhizosphereinteraction involving Streptomyces lydicus WYEC108and the pea plant (Pisumsativum)[J],2002,68:2161-2171.
    [78]N. Benhamou, C. Garand, A. Goulet. Ability of non-pathogenic Fusariumoxysporum strain Fo47to induce resistance against Pythium ultimum infection incucumber[J],2002,68:4044-4060.
    [79]张宁波.农用抗生素研究进展[J],2006,(06):830-833.
    [80]J. Selvin, S. Shanmughapriya, R. Gandhimathi, et al. Optimization andproduction of novel antimicrobial agents from sponge associated marineactinomycetes Nocardiopsis dassonvillei MAD08[J],2009,83(3):435-445.
    [81]范瑛阁,曹远银.微生物源农药的研究进展[J],2005,(07):1266-1268.
    [82]尹莘耘.“抗生菌肥料”的研究[J],1957,(07):219-220.
    [83]陶天申,岳莹玉,梁绍芬等.5406抗生菌——泾阳链霉菌新种[J],1979,(03):249-254.
    [84]R. Errakhi, A. Lebrihi, M. Barakate. In vitro and in vivo antagonismofactinomycetes isolated from Moroccan rhizospherical soils against Sclerotiumrolfsii[J],2009,107(2009):10.
    [85]姜云,黄丽丽,陈长卿等.一株拮抗番茄叶霉病菌的放线菌筛选、鉴定及发酵条件研究[J],2007,(04):622-627.
    [86]曹艳茹,姜怡,陈义光等.武陵山放线菌多样性[J],2008,(07):952-958.
    [87]姜怡,曹艳茹,王茜等.波罗的海放线菌的多样性[J],2011,(11):1461-1467.
    [88]K.A. El-Tarabily, A.H. Nassar, G.E.S.J. Hardy, et al. Plant growth promotionand biological control of Pythium aphanidermatum, a pathogen of cucumber, byendophytic actinomycetes[J],2009,106(1):13-26.
    [89]关丽杰,杨迪,谭国梁.黄瓜灰霉病拮抗放线菌的筛选[J],2010,(03):219-221.
    [90]R. Errakhi, A. Lebrihi, M. Barakate. In vitro and in vivo antagonism ofactinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii:a causal agent of root rot on sugar beet (Beta vulgarisL.)[J],2009,107(2):672-681.
    [91]Q. Li, Y. Jiang, P. Ning et al. Suppression of Magnaporthe oryzae by culturefiltrates of Streptomyces globisporus JK-1[J],2011,58(2):139-148.
    [92]E.B. Shirling, D. Gottlieb. Methods for characterization of Streptomyces[J],1966,16(3):313-340.
    [93]黄大林,徐雅娟,袁桂峰,陈森洲.放线菌扫描电镜样品简便快速的制备方法[J],2010,(17):8849-8850.
    [94]By S. T. WILLIAMS, F.L. DAVIES. Use of a Scanning Electron Microscopefor the Examination of Actinomycetes[J],1967,1967(48):171-177.
    [95]姜淑梅,张龙,戴世鲲等.一种简单、有效的适于PCR操作的放线菌DNA提取方法[J],2007,(01):39-41.
    [96]于其伟,范翠敏.大观霉素产生菌1043菌株的分类鉴定[J],1994,(02):160-163.
    [97]暴增海,马桂珍,吴少杰等.海洋放线菌BM-2菌株产生抑菌物质的发酵条件[J],2010,(11):812-814+833.
    [98]张红丹,杜茜,张正坤等.放线菌769抑菌谱及液体培养生长曲线的测定[J],2010,(07):5-9.
    [99]王浩,刘宁,黄英.放线菌模块型聚酮合酶的系统发育组学分析及其在聚酮类化合物筛选中的应用[J],2010,(10):1293-1304.
    [100]M. Metsa-Ketela, V. Salo, L. Halo, et al. An efficient approach forscreening minimal PKS genes from Streptomyces[J],1999,180:1-6.
    [101]A. Ayuso-Sacido, O. Genilloud. New PCR Primers for the Screening ofNRPS and PKS-I Systems in Actinomycetes:Detection and Distribution of TheseBiosynthetic Gene Sequences in Major Taxonomic Groups[J],2004,49:10-24.
    [102]冯健飞,周日成,郭兴庭等.聚酮类化合物及其应用[J],2011,(03):24-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700