玉米果穗产量实时监测方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能测产(产量实时监测)在精确农业技术作业体系中既是实施精确农业作业的起点,也是其终点。获取作业区域准确的产量信息可以检验当年精确农业的实施效果。即使当年未进行变量作业,产量信息也可以在空间上反映不同区域地块的产量差异、间接反映耕作土地的肥力差异。因此,农田产量信息是指导来年精准变量作业的重要依据,是当前国内外精确农业研究和实践中的一个重要环节。
     目前国内外现有产量监测的设备和方法的监测对象主要是农作物的籽粒,应用于玉米果穗产量监测的产品和方法未见报道。由于受玉米品种、土地复种指数、作业方式等因素限制,我国大部分玉米种植地区收获玉米果穗,然后晾晒、脱粒。该收获方式决定国内外现有产量监测方法的应用受到限制,亟需开展适应我国国情的玉米果穗产量监测方法和技术研究。
     本文以玉米果穗作为产量监测对象,以冲量式传感器作为产量传感器,结合电子技术、信息技术、农业机械化工程、农学和数学等多学科知识,开展玉米果穗产量监测方法及其应用研究。研究适应我国玉米收获方式的产量监测方法,根据该方法研制出玉米果穗产量实时监测系统,并对该方法进行试验研究。
     本文结合导师主持的国家“863”高新技术研究发展计划资助项目(2006AA10A309)和作者主持的吉林大学研究生创新研究计划项目(20091017、20101018)开展果穗产量实时监测方法与应用研究。论文的主要研究工作与研究成果如下:
     (1)玉米果穗产量监测方法和技术研究。本文以冲量式传感器作为产量传感器,分析玉米果穗产量监测方法的工作原理。根据系统方案选购玉米收获机并对其进行改装,使其适应玉米果穗产量实时监测的要求。果穗间接冲击方案中,设计玉米果穗导向装置并进行试验,得出果穗导向槽的最佳安装角度为45°,导向装置与传感器的最佳间距为300mm,导向装置的开口宽度为400mm、开口应当高于升运器出口200mm。直接冲击方案中,产量传感器的最佳安装位置应在升运器出口前方684.4mm处。
     (2)根据所提出的玉米果穗产量监测方法,以S3C2410微处理器为核心,在WinCE操作系统上利用EVC开发工具进行开发了果穗产量实时监测系统:
     ①基于S3C2410微处理器进行产量监测系统硬件开发。玉米果穗产量监测系统硬件电路共有七个模块组成:果穗产量信号采集模块、对地速度信号采集模块、基于GPS定位的位置信号采集模块、基于推算定位的位置信号采集模块、升运器转速采集模块、掉电保护模块、数据交换接口。
     ②在Win CE操作系统和EVC平台上开发产量监测系统软件。系统软件分为以下5个子程序:产量信号采集与处理程序、升运器转速信号采集与处理程序、收获机定位程序、系统数据实时存储程序和人机交互程序。
     (3)本文进行了产量监测方法中产量影响因素的研究工作。将玉米果穗产量的影响因素分为三方面:果穗冲击传感器的冲量、升运器转速和收获机对地速度。分别对速度采集技术、升运器转速采集技术和产量信号采集技术进行试验研究。速度采集技术研究试验中,GPS速度采集的最大误差为3.26%,接近开关作为速度传感器时测速成本最低,且测速稳定性和测速精度较高,为2.33%。升运器转速采集技术研究试验中,当升运器转速为200rpm时,测速误差较大,其最大测速误差为10.00%;当升运器转速为在500rpm~600rpm之间时,速度测量值最稳定。不同果穗喂入量情况下,果穗收获量y的变异系数CV为5.86%;当果穗喂入量大于2.5穗/秒时收获量测量值较稳定,果穗喂入量越大测产数据越稳定。果穗以纵向冲击与横向冲击两种姿态冲击传感器时,玉米果穗冲击传感器的姿态对产量的影响较小。
     (4)本文分别基于数据拟合模型和BP神经网络模型建立产量模型。将两种产量模型分别应用于直接冲击测产和间接冲击测产方案中进行田间试验,得到如下结论:
     ①应用数据拟合方式建立直接测产方案和间接测产方案的产量模型,分别为yi=471.11 (Ii)/(ωi)和yi=0.7506Ii+20.074。以果穗冲量、升运器转速、对地速度为输入量建立三层BP网络,传输函数选择logsig与purelin函数,对BP网络进行训练,得出直接冲击方案中的权值矩阵分别为W1、B1、V1、C1;间接冲击方案中的权值矩阵分别为W2、B2、V2、C2。
     ②以单产平均误差和总产误差作为精度评价指标,对比数据拟合模型和BP网络模型在直接冲击方案和间接冲击方案中的测产效果。直接冲击方案中,数据拟合模型和BP网络模型的平均单产误差分别为13.85%和7.17%。在间接冲击方案中,数据拟合模型和BP网络模型的平均单产误差分别为13.64%和9.28%。在直接冲击和间接冲击两种方案中,两种测产模型的总产误差均小于5%,对掌握玉米的总产量提供试验依据。
     ③进行产量等级划分研究,提出以产量等级划分误差作为测产精度评价指标。将小区产量划分为5个不同的产量等级,对比各小区实际产量等级与测得产量等级的符合程度,以等级划分的误差率来验证两种预测模型的应用效果。直接冲击方案中,数据拟合产量模型和BP网络产量模型的产量等级划分误差分别为17.14%和10.00%。间接冲击测产方案中,数据拟合产量模型和BP网络产量模型的产量等级划分误差分别为28.57%和17.13%。
     ④应用本系统在吉林农业大学试验田进行玉米果穗产量监测试验,田间试验总面积累计1.1hm2。通过对比直接冲击和间接冲击两种方案中的两种测产模型,建议选择直接冲击方案,并以BP神经网络建立产量模型。产量监测系统可以准确的描述小区之间的产量差异,反映小区之间的产量变化趋势,可以为来年的变量施肥作业提供目标产量依据。
     本文创新点在于:针对我国玉米收获作业中收获玉米果穗的收获作业方式,提出玉米果穗产量监测方法,并对产量监测的影响因素展开研究;设计了果穗直接冲击测产和间接冲击测产两种方案,以及玉米果穗导向装置;进行产量等级划分研究,提出以产量等级划分误差作为产量监测系统的测产精度评价指标。
     本文所提出的玉米果穗产量监测方法可以适应我国收获玉米果穗的收获方式,为精确农业的推广应用提供参考依据。
The yield monitoring acts as the beginning of the precise agriculture, and also the end. The accurate yield monitor information can examine the implementation effect of the precise agriculture in the current year. Even if there was not precise agriculture operation this year, the yields information could also reflect the differences of the soil fertility for each grid by looking into the different yields of it. Therefore, the yield information is an important tool for guiding the agriculture's working of the next year, and the yield monitoring plays an active role in researches and experiments for precision agriculture at present.
     The yield monitoring method is mainly a research for corn grain in the world-wide. There isn't any yield monitoring method for corn ear. Limited by factors like corn varieties, multiple cropping index and practices, farmers harvest corn ear instead of the corn grain. This leads to the fact that the yield monitoring method that widely used in the world couldn't apply in most parts of China. So the yield monitoring method for corn ear should be researched as soon as possible.
     The yield monitoring method for corn ear based on impact-based sensor is studied in this paper, which includes the application of electronic technology, information technology, agricultural mechanization engineering, agriculture and mathematics. The corn ear yield real-time monitoring system was developed in this way, and applied in the harvesting of corn.
     The paper did research on the yield real-time monitoring system for corn ear by the support of the National "863" High Technology Research and Development Program of Funded Projects (2006AA10A309) and the Project supported by Graduate Innovation Fund of Jilin University (20091017,20101018). The thesis's main research work and conclusions are as follows:
     1) The research on the yield real-time monitoring method for corn ear had been done. The impact-sensor was used as the yield sensor in this method. The 4YW-2 corn harvester was selected for the test in this paper. This paper analyzed the working principle of the method, and designed both direct impact and indirect impact programs. The paper designed the corn ear's guiding device for the program of indirect impact. The bench testing was done for the corn ear's guiding device in the laboratory. The best installation angle of the guiding device and the optimum space between the sensor and the guiding device was worked out by the bench tests, which were 45°and 300 mm. In the indirect program, the sensor should be installed in front of the elevator with the space of 684.4mm.
     2) The monitoring system was developed, according to the monitoring method for corn ear. The development of the yield monitoring system was based on S3C2410 microprocessor. The software of this system was developed on Win CE operating system and EVC platform.
     ①The hardware development of the yield monitoring system was based on S3C2410 microprocessor. The yield monitoring system for corn ear was made up by seven modules, listed as the signal acquisition module of corn yield, the signal acquisition module of ground speed, the signal acquisition module of GPS, the signal acquisition module of the elevator's revolving speed, the trip protector, and data exchange interface.
     ②The software of this system was developed on EVC platform and Win CE operating system. System software was divided into 5 subroutine as followed:the acquisition and processing program of the yield, the acquisition and processing program of the digital signal, the processing program of the position, the program of data real-time restoring, and the program of human-computer interaction.
     3) The influence factors of the yield in this yield monitoring system had been studied. The influence factors of the corn ear yield models were divided into three aspects:impulse of the corn ear, the elevator's revolution speed, and the ground speed. The bench tests of speed acquisition technology, the elevator's revolution acquisition technology and yield signal acquisition technology were all tested in the laboratory. The maximum errors of the speed acquisition in GPS and dead reckoning system were 3.26%and 2.33%. The proximity switches had the highest cost performance in speed acquisition test. In the test of elevator's revolving speed acquisition, the maximum error rate of speed sensor is 10.00% when the speed had reached 200rpm. The measured value of the revolving speed was steady when the speed between 500-600rpm. The measurement of accumulating impulse was less effected by the feed quantity of the corn ear. The accumulating impulse of corn ear was steady when the feed quantity of the corn ear was greater than 2.5. The influence of the posture could be ignored, when the corn ear impacted the sensor with lateral posture and longitudinal posture.
     4) The model was built by the method of data fitting and Back Propagation Neural Network (BPNN, for short). These models were applied in the field, and the conclusions were as followed:
     ①The yield models of direct impact and indirect impact programs were established by the method of data-fitting, which was yi;=471.11 (Ii)/(ωi) and yi=0.7506Ii+20.074. The logsig and purelin function was chose for transfer function. The weight matrix was achieved by the training of the BPNN, and then the test of it was done. The yield of the corn ear was predicted by these models.
     ②The average error of yield was used for the accuracy evaluation index of yield monitoring. In the program of direct impact sensor, the average errors of data-fitting model and BPNN model were 13.85% and 7.17%. In the program of indirect impact sensor, the average errors of data-fitting model and BPNN model were 13.64% and 9.28%. The error of total yield was lass than 5% in both models.
     ③The research of yield level's division was done in the paper. The error rate of yield level's division was used for the accuracy evaluation index of yield monitoring. In the program of direct impact sensor, the average errors of data-fitting model and BPNN model were 17.14% and 10.00%. In the program of indirect impact sensor, the average errors of data-fitting model and BPNN model were 28.57% and 17.13%.
     ④The tests of the yield monitoring system for corn ear were done in the farm of Jilin Agricultural University. The size of the areas for these tests was 1.1 hm2. By comparing the direct-impact and indirect-impact programs with two different yield models, the paper suggested choosing direct-impact program and BPNN model. The differences of the yields between grids were described objectively as same as the variation trend of the yield. It could provide experimental basis for variable fertilization precise agriculture.
     The innovations of this paper were as followed:according to the harvesting way of corn in China, this paper researched on the method and the yield's influence factors of yield monitoring for corn ear. Two different programs were designed, which were the indirectly and directly corn ear impacting sensors. In addition, the research of yield level's division was done in the paper, and the paper suggested using the precision of yield level's division as the accuracy evaluation index of monitoring.
     This method of yield monitoring system for corn ear fits well with China's harvesting of corn ear and provides a theory basis for the promotion of Precision agriculture.
引文
[1]中华人民共和国国家统计局.主要农作物收获面积. [EB/OL]. (2010-04-03) [2011-4-20]. http://www.stats.gov.cn/tjsj/qtsj/gjsj/2009/t20100413_402634120.htm.
    [2]中华人民共和国农业部.历年全球农产品生产情况. [EB/OL]. [2011-4-20]. http://www.moa.gov.cn/fwllm/sjfw/tjsj_1/ncpsc/,2011-11-18.
    [3]中国农业科学院作物科学研究所.种植区域划分和种植制度[R/L].[2011-4-20].http://www.chinamaize.com.cn/mtymk/039.htm.
    [4]Lester R. Brown. Short Term Prospects for World Agriculture and Fertilizer Demand 2002/03-2003/04 [R/OL]. (2008-05) [2011-4-20]. http://www.earth-policy.org/Books /Out/ch4data index, htm.
    [5]汪懋华.“精细农业”发展与工程技术创新[J].农业工程学报,1999,15(1):1-8.
    [6]何东健,何勇,李明赞,洪添胜,王成红,宋苏,刘允刚.精准农业中信息相关科学问题研究进展[J].中国科学基金,2011,1:10-16.
    [7]王秀珍.冬小麦产量农学预报模式[J].新疆气象,1997,20(6):19-23.
    [8]濮绍京,金文林,白琼岩,张连平,陈立军,赵波,钟连全.基于玉米区试的籽粒产量抽样方法研究[J].作物学报,2008,34(6):991-998.
    [9]孔繁玲,张群远,杨付新,郭恒敏.棉花品种区域试验的精确度探讨[J].作物学报,1998,24(5):601-607.
    [10]明道绪.田间试验与统计分析[M].北京:科学出版社,2005.
    [11]刘光启.农业速查速算手册(中)[M].北京:化学工业出版社,2008.
    [12]王新勤,姚宏亮,杨锦忠,陆强,陈兰卿,李志翔.玉米田间试验取样方法的研究[J].玉米科学,2003,11(增刊):96-97.
    [13]郭伟,张志岗,侯云霞.平均穗重取样法与单收单打测产结果比较[J].种子科技,2006(3):45-46.
    [14]王汉宁.玉米果穗轴截面在籽粒产量预测中的应用[J].甘肃农业大学学报,2001,36(3):273-277.
    [15]张建平,赵艳霞,王春乙,杨晓光,何勇.气候变化情景下东北地区玉米产量变化模拟[J].中国生态农业学报,2008,16(6):1448-1452.
    [16]高永刚,顾红,姬菊枝,王育光.近43年来黑龙江气候变化对农作物产量影响的模拟研究[J].应用气象学报,2007,18(4):532-538.
    [17]Gene R. Safir, Stuart H. Gage, Manuel Colunga-Garcia, Peter Grace, Shapoor Rowshan. Simulation of corn yields in the Upper Great Lakes Region of the US using a modeling framework[J]. Computers and Electronics in Agriculture,2008,60(2): 301-305.
    [18]J.M. McKinion, J.L. Willers, J.N. Jenkins.Spatial analyses to evaluate multi-crop yield stability for a field[J]. Computers and Electronics in Agriculture,2010,70(1):187-198.
    [19]姬菊枝,陶国辉,范玉波,魏松林,韩基良,王艳秋.利用气象卫星遥感进行哈尔滨地区作物生长状况监测及产量预报[J].东北农业大学学报,2008,39(6):59-62.
    [20]D. Zhong, J. Novais, T.E. Grift, M. Bohn, J. Han.Maize root complexity analysis using a Support Vector Machine method[J].Computers and Electronics in Agriculture, 2009,69(1):46-50.
    [21]焦险峰,杨邦杰,裴志远,等.基于植被指数的作物产量监测方法研究[J].农业工程学报,2005,21(4):104-108.
    [22]冯伟,朱艳,田永超,姚霞,郭天财,曹卫星.基于高光谱遥感的小麦籽粒产量预测模型研究[J].麦类作物学报,2007,27(6):1076-1084.
    [23]侯英雨,王建林,毛留喜,宋迎波.美国玉米和小麦产量动态预测遥感模型[J].生态学杂志.2009,28(10):2142-2146.
    [24]Sotomayor M, Weiss A. Improvements in the simulation of kernel number and grain yield in CERES-Wheat[J]. Field Crops Research,2004,88(2-3):157-169.
    [25]蒙继华,吴炳方,李强子,等.农田农情参数遥感监测进展及应用展望[J].遥感信息,2010,(3):134-140.
    [26]吴炳方,蒙继华,李强子.国外农情遥感监测系统现状与启示[J].地球科学进展,2010,25(10):1003-1012.
    [27]吴炳方,蒙继华,李强子,张飞飞,杜鑫,闫娜娜.“全球农情遥感速报系统(CropWatch)"新进展[J].地球科学进展,2010,25(10):1013-1022.
    [28]U.S. Department of Agriculture. AgRISTARS Preliminary Technical Program Plan[R].1979.
    [29]Yates H W, Tarpley J D, Schneider S R, et al. The role of meteorological satellites in agricultural remote sensing [J]. Remote Sensing of Environment,1984,14:219-233.
    [30]Kleweno D D, Miller C E.1980 AgRISTARS DC/LC Project Summary:Crop Area Estimates for Kansasand Iowa [R].ESS staff report-U.S. Dept. of Agriculture, Economics and Statistics Service.1981. (AGESS810414),18.
    [31]Genovese G. Methodology of the MARS Crop Yield Forecasting System [R].2004, 114, EUR-report 21291 EN.
    [32]Baruth B, Royer A, Genovese G, et al.The use of remote sensing within the MARS crop yield monitoring system of the Europe an commission [C]//ISPRS Archives 'Remote Sensing Applications for a Sustainable Future',2006, Vol. ⅩⅩⅩⅥ, Part8.
    [33]USDA FAS. GLAM-Global Agricultural Monitoring [EB/OL]. [2011-4-20]. http:// www.pecad.fas.usda.gov/glam.cfm,2005.
    [34]EC JRC. The monitoring agricultural resources [EB/OL].2010[2011-4-20]. http:// mars.jrc.ec.europa.eu.
    [35]EC JRC. MARS unit-about us [EB/OL].2010[2011-4-20]. http://mars.jrc.it/ mars/Aboutus.
    [36]Statistics Canda. Overview of the crop condition assessment program [EB/OL]. 2010[2011-4-20]. http://www26.statcan.ca/ccap/overviewaper cueng.jsp.
    [37]CONAB, GEOSAFRAS [EB/OL].2010[2011-4-20]. http://www.conab.gov.br/cona bweb/index.php? PAG=81.
    [38]李德仁.摄影测量与遥感的现状及发展趋势[J].武汉测绘科技大学学报,2000,25(1):1-5.
    [39]Shen S H, Yang S B, Li B B, et al. A scheme for regional rice yield estimation using ENVISAT ASAR data[J]. Sci China Ser D-Earth Sci,2009,39(6):763-773.
    [40]黎锐,李存军,徐新刚等.基于支持向量回归(SVR)和多时相遥感数据的冬小麦估产[J].农业工程学报,2009,25(7):114-117.
    [41]顾晓鹤,何馨,郭伟等.基于MODIS与TM时序插补的省域尺度玉米遥感估产[J].农业工程学报,2010,26(S2):53-58.
    [42]苏涛,王鹏新,刘翔舸,杨博.基于熵值组合预测和多时相遥感的春玉米估产[J].农业机械学报,2011,42(1):186-192.
    [43]李卫国,李正金.基于CBERS卫星遥感的冬小麦产量估测研究[J].麦类作物学报,2010,30(5):915-919.
    [44]Anup K P, Chai L, Singh R P, et al. Crop yield estimation model for Iowa using remote sensing and surface parameters [J]. International Journal of Applied Earth Observation and Geoinformation,2006,8(1):26-33.
    [45]Bastiaanssen W G M, Ali S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan[J]. Agriculture, Ecosystems and Environment,2003,94:321-340.
    [46]M.S. Mkhabelaa, P. Bullocka, S. Rajb, S. Wangc and Y. Yangc.Crop yield forecasting on the Canadian Prairies using MODIS NDVI data[J].Agricultural and Forest Meteorology.2011,151(3):385-393.
    [47]罗毅,郭伟.作物模型研究与应用中存在的问题[J].农业工程学报,2008,24(5):307-312.
    [48]Steven M. Quiring, David R. Legates. Application of CERES-Maize for within-season prediction of rainfed corn yields in Delaware, USA [J]. Agricultural and Forest Meteorology,2008,148(6-7):964-975.
    [49]Frantisek Kumhala, Vaclav Prosek, Milan Kroulik. Capacitive sensor for chopped maize throughput measurement [J]. Computers and Electronics in Agriculture,2010, 70(1):234-238.
    [50]张小超,胡小安,张爱国,张银桥,苑严伟.基于称重法的联合收获机测产方法[J].农业工程学报,2010,26(3):125-129.
    [51]陈巡洲.冲量式谷物流量传感器研究[D].上海:上海交通大学,2009.
    [52]Joseph N.Gray, Feyzi Inanc, Selcuk Arslan. X-ray flow rate measurement system for materials, including agricultural materials and food products:US, US6526120 B1[P]. 2003-02-25.
    [53]田国政,汪懋华,黄季平.核子式谷物产量自动测量方法[J].中国农业大学学报,2000,5(4):35-38
    [54]张惠莉,王刚,辛立国,黄季平,王立新.γ射线谷物流量在线测量试验系统的研究[J].莱阳农学院学报,2005,22(3):216-218.
    [55]中国农业机械化科学研究院编.农业机械设计手册(下册)[M].北京:中国农业科学技术出版社,2007.
    [56]BURKS T F, SHEARER S A, FULTON J P, et al. Effects of time-varying inflow rates on combine yield monitor accuracy[J]. Applied Engineering in Agriculture,2004, 20(3):269-275.
    [57]THOMASSON J A, SUI R. Mississippi cotton yield monitor:Three years of field-test results[J]. Applied Engineering in Agriculture,2003,19(6):631-636.
    [58]张彦娥,张漫,张文革,李鹏.采棉机测产系统数据采集与处理的试验研究[J].农业机械学报.2005,36(4):95-98.
    [59]Ruixiu Sui, J. Alex Thomasson, S. D. Filip To. Cotton-harvester-flow simulator for testing cotton yield monitors[J]. Int J Agric & Biol Eng,2010; 3(1):44-49.
    [60]中国农业机械化科学研究院.一种联合收割机粮食产量流量监视方法及装置:中国,ZL200310117204.5[P].2004-11-17.
    [61]张小超,胡小安,张银桥,苑严伟.联合收获机粮食产量分布信息获取技术[J].农业机械学报,2009,40(S):173-176.
    [62]P.S.G. Magalhaes, D.G.P. Cerri. Yield Monitoring of Sugar Cane[J]. Biosystems Engineering,2007,96(1):1-6.
    [63]BURKS T F, SHEARER S A, FULTON J P, et al. Combine yield monitor test facility development and initial monitoring test [J]. Applied Engineering in Agriculture,2003, 19(1):5-12.
    [64]M. Loghavi, R. Ehsani, R. Reeder.Development of a portable grain mass flow sensor test rig[J]. Computers and Electronics in Agriculture,2008,61(2):160-168.
    [65]Frantisek Kumhala, Vaclav Prosek, Milan Kroulik.Capacitive sensor for chopped maize throughput measurement[J]. Computers and Electronics in Agriculture,2010, 70(1):234-238.
    [66]Ag Leader Technology. Precision Farming System Operators Manual [M]. Ames, Iowa: Ag Leader Technology,2002.
    [67]张漫,汪懋华.联合收获机测产系统数据采集与处理的误差分析[J].农业机械学报,2004,35(2):171-174.
    [68]胡均万,罗锡文,阮欢,陈树人,李耀明.双板差分冲量式谷物流量传感器设计[J].农业机械学报,2009,40(4):69-72.
    [69]周俊,苗玉彬,张凤传,等.平行梁冲量式谷物质量流量传感器田间实验[J].农业机械学报,2006,37(6):102-105.
    [70]高建民,郝磊斌,张刚,李扬波,喻露.谷粒冲击压电力敏元件数值模拟与试验[J].农业机械学报,2009,40(6):63-66+93.
    [71]周俊,刘成良.平行梁冲量式谷物质量流量传感器信号处理方法[J].农业工程学报,2008,24(1):183-187.
    [72]苑严伟,张小超,张银桥,等.农田粮食产量分布信息数字化研究[J].农业工程学报,2006,22(9):133-137.
    [73]刘成良,周俊,苑进,黄丹枫,.新型冲量式谷物联合收割机智能测产系统[J].中国科学:信息科学,2010,(S1):226-231.
    [74]陈树人,张漫,汪懋华.谷物联合收获机智能测产系统设计和应用[J].农业机械学报,2005,36(1):97-99.
    [75]张书慧,马成林,于春玲.应用于精确农业变量施肥地理信息系统的开发研究[J].农业工程学报,2002,18(2):153-155.
    [76]张书慧,马成林,吴才聪.一种精确农业自动变量施肥技术及其实现[J].农业工程学报,2003,19(1):129-131.
    [77]陈立平,黄文倩,孟志军等.基于CAN总线的变量施肥控制器设计[J].农业机械学报,2008,39(08):101-105.
    [78]李红岩,王秀,侯媛彬等.基于ARM微处理器的田间变量施肥控制系统研究[J].微计算机信息,2006,22(4-2):104-107.
    [79]王新忠,王熙,汪春等.黑龙江垦区大豆变量施肥播种应用试验[J].农业工程学报,2008,24(05):143-146.
    [80]陈云坪,赵春江,王秀,马金锋,田振坤.基于知识模型与WebGIS的精准农业处方智能生成系统研究[J].中国农业科学,2007,40(6):1190-1197.
    [81]孟志军,赵春江,刘卉,黄文倩,付卫强,王秀.基于处方图的变量施肥作业系统设计与实现[J].江苏大学学报(自然科学版)2009,30(4):338-342.
    [82]张书慧,齐江涛,廖宗建等.基于CPLD的变量施肥控制系统开发与应用[J].农业工程学报,2010,26(8):200-204.
    [83]王利霞,张书慧,马成林,徐岩,齐江涛,王薇.基于ARM的变量喷药控制系统设计[J].农业工程学报,2010,26(4):113-118.
    [84]于英杰,张书慧,齐江涛,李述孟.基于ARM的变量施肥控制系统的研究[J].农机化研究,2008.11:47-50.
    [85]张林焕,张书慧,王薇,齐江涛,王利霞,贾洪雷,黄东岩.基于PLC的液压无级调速变量施肥控制系统[J].农业网络信息,2010,7:9-11.
    [86]赵利军.利用PFA进行穗状玉米产量监测的可行性研究[D].长春:吉林大学.2008.
    [87]田泽.ARM9嵌入式开发实验与实践[M].北京:北京航空航天大学出版社,2006.
    [88]周杏鹏.传感器与检测技术[M].北京:清华大学出版社,2010.
    [89]刘爱华等.传感器原理与应用技术[M].北京:人民邮电出版社,2010.
    [90]赛尔吉欧·佛朗哥著.基于运算放大器和模拟集成电路的电路设计[M].刘树棠等译.西安:西安交通大学出版社,2009.
    [91]Trimble Navigation Ltd. AgGPS 124/132 Operation Manual[M]. Sunnyvale, CA: Trimble Navigation Ltd.2000:153-163.
    [92]袁志勇等.嵌入式系统原理与应用技术[M].北京:北京航空航天大学出版社,2009.
    [93]汪兵.EVC高级编程及其应用开发[M].北京:中国水利水电出版社,2005.
    [94]傅曦.嵌入式系统Windows CE开发技巧与实例[M].北京:化学工业出版社,2004.
    [95]于英杰,张书慧,齐江涛等.基于传感器的变量施肥机定位方法[J].农业机械学报,2009,40(10):173-176.
    [96]于英杰,张书慧,齐江涛等.变量施肥机在不规则田块的定位方法[J].农业机械学报,2011,42(2):158-161.
    [97]吉林大学.虚拟GPS精确农业变量深施肥系统:中国,ZL200510016900.6[P].2006-02-01.
    [98]齐江涛,张书慧,于英杰,徐岩.基于蓝牙技术的变量施肥机速度采集系统设计[J].农业机械学报,2009,40(12):200-204.(EI检索)
    [99]齐江涛,张书慧,牛序堂,王薇,徐岩.穗状玉米测产系统设计与应用[J].农业机械学报,2011,42(3).181-185.
    [100]Jiangtao Qi, Shuhui Zhang, Yingjie Yu, Ye Li, Yan Xu. Experimental Analysis of Ground Speed Measuring Systems for the Intelligent Agricultural Machinery. FSKD'10 IEEE.10th August 2010, Yantai, China.V2:668-671.
    [101]Qi Jiangtao, Zhang Shuhui, Sun Yujing, Wang Wei, Wang Lixia. Experiment Research of Impact-Based Sensor to Monitor Corn Ear Yield. ICCASM 2010 IEEE.10th Oct 2010, Taiyuan, China. V6:514-517.
    [102]王利霞.基于处方图的变量喷药系统研究[D].长春:吉林大学,2010.
    [103]李虹.基于机器视觉路面状态识别关键技术研究[D].长春:吉林大学,2009.
    [104]张敏,钟志友,杨乐等.基于BP神经网络的果蔬热导率预测模型[J].农业机械学报,2010:41(10):117-121+116.
    [105]鞠金艳,王金武,王金峰.基于BP神经网络的农机总动力组合预测方法[J].农业机械学报,2010,41(6):87-92
    [106]夏文超.基于ARM9的手写体数字识别技术研究与实现[D].长沙:湖南大学,2008.
    [107]胡亚伟.基于BP神经网络的张力控制系统[D].长沙:中南大学,2008.
    [108]卢长龙.基于ARM9的折弯机控制器的研究与开发[D].无锡:江南大学,2009.
    [109]倪天龙.人工神经网络在ARM平台上的应用[J].单片机与嵌入式应用.2005,5:15-17+21.
    [110]白福铭,黄品文,郑丽敏等.基于ARM9的电子鼻系统设计与应用[J].农业机械学 报,2009,40(S).138-142.
    [111]王秀芬,马志宏,穆志民等.基于BP神经网络的多因素城市生活垃圾产量预测模型研究[J].安徽农业科学.2010,38(10):5475-5477.
    [112]周佳荣,易发成,侯莉.多因素作用下边坡稳定影响因素敏感性分析[J].西南科技大学学报.2008,23(2):31-36.
    [113]杜巧玲,吴秀芹,张淼.北京:清华大学出版社,2005:213-215.
    [114]吉林大学.一种穗状玉米产量实时监测系统:中国,200910067566.5[P].2010-03-10.
    [115]Martin T.Hagan等著.神经网络设计.戴葵等译[M].北京.机械工业出版社.2002:227-255.
    [116]鞠金艳,王金武.黑龙江省农业机械化作业水平预测方法[J].农业工程学报,2009,25(5):83-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700