玉米抗细菌性褐斑病基因的遗传分析和分子标记定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米细菌性褐斑病是由于丁香假单胞菌丁香致病变种侵染而发病。目前,对于此病的遗传机制和分子水平的研究国内外还没有报道。本文以对玉米细菌性褐斑病高度免疫的自交系F_(349)和感病自交系P_(25)的杂交后代构建的重组自交系群体为材料,利用数量遗传分析方法研究了F_(349)的抗病遗传规律;选择极端抗感系构建抗感近等基因池,以亲本作对照,采用SSR标记技术,从池间筛选表现多态性的分子标记。获得连锁标记后,用重组自交系群体进行连锁分析和抗病基因的定位,并构建了抗病基因附近的玉米SSR标记连锁图谱。研究结果为进一步对该基因的克隆和功能研究奠定了基础。主要结果总结如下:
     1.通过对玉米病叶病症、病原形态观察及鉴定分析,确定了在感病亲本P_(25)上侵染的病害类型是细菌性褐斑病,病原是丁香假单胞菌丁香致病变种。
     2.制定了对玉米细菌性褐斑病田间调查方法。对田间性状调查结果进行抗性分析,经适合性检验符合孟德尔单基因控制的遗传分离规律。在F_9家系中的表现与F_8家系一致,结合F_1代田间表现,初步证实自交系F_(349)的抗病性是受一对显性基因控制的质量性状。
     3.从覆盖染色体组的640对SSR引物中筛选出2对在抗感池中表现出差异的引物,分别为umc2409和bnlg1318,并都位于第四染色体4.01-4.02附近。由于该基因是首次定位,暂定名为Psy01-F_(349)。
     4.玉米抗细菌性褐斑病基因被定位于第4染色体短臂上,位于SSR标记umc2409和bnlg1318之间,与它们的遗传距离分别为7.6cM和12.2cM。
Maize bacterial brown spot disease is caused by the infection of Pseudomonas syringae pv.syringae Van Holl. There is no report on cell and molecular genetics of this disease up to now. A Fg recombinant inbred lines (RILs) population which was constructed by the descendent of F349 (immune inbred line) and P25 (susceptible inbred line),as materials accompanied by the method of quantitative heredity, was used to study the heredity of resistance to this disease. The resistant-susceptible pools was constructed by choose the extremely resistant and susceptible plants and the technique of SSR was applied to select the molecular markers which revealed the difference between the parents. After obtaining the linkage maker, the study of linkage analysis and gene location using RILs was made. Besides, a genetic map was constructed in the vicinity of the resistant gene. The results obtained from this study provide a basis for isolating the resistant gene and studying its function. The main results are as follows.
    1. According to the symptoms and morphology of pathogeny, determined that the disease infested on the susceptible inbred line P25 was bacterial brown spot disease, and the pathogeny was Pseudomonas syringae pv.syringae Van Holl.
    2. Worked out the methods to evaluate incidence. According to the resistant analysis of the field investigation and X examination, proved that the genetic mechanism was in accordant with Mendelian monogene segregation law. Appearances in F9 families was consistent with F8 families. Associated with F1 field behavior, proved that the resistant character is controlled by dominant monogene.
    3.2 out of 640 SSR markers which distribute on the whole genome showed polymorphic between resistant and susceptible pools.These are umc2409 and bnlg1318, respectively. Moreover, all two makers were located on 4.01-4.02 site of chromosome 4. The name of this gene temporarily nominated is Psy01-F349.
    4. One resistant gene to bacterial brown spot disease was mapped on chromosome 4, and the
    distance to umc2409 and bnlg1318 is 7.6 and 12.2cM, respectively.
引文
[1] 曹永国,王国英,王守才,谢友菊,戴景瑞,等.玉米RFLP遗传图谱的构建及矮生基因定位。科学通报,1999,44(20):2178~2181
    [2] 曹永国,向道权,黄烈健,王守才,吴敏生,戴景瑞.SSR分子标记与玉米杂种优势关系的研究.农业生物技术学报,2002,10(2):120~123
    [3] 陈翠霞,邢全华,梁春阳,于元杰,梁凤山,王洪刚,王振林,王斌.南方玉米锈病抗病基因的定位及不同遗传背景对基因标记的比较分析,遗传学报,2003,30(4):341~344
    [4] 陈捷.玉米病害诊断与防治.北京:金盾出版社,1999
    [5] 陈绍江,宋同明.玉米青枯病抗病性—对基因控制的简单遗传.中国农业大学学报,1999,4(1):56
    [6] 惠大丰,姜长鉴.莫惠栋.数量性状基因图谱构建方法的比较.作物学报,1997,23(2):129~136
    [7] 贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1~10
    [8] 姜长鉴,莫惠栋.质量-数量性状的遗传分析Ⅳ.极大似然法的应用.作物学报,1995,21(6):641~648
    [9] 李斯深,陈茂学,王洪刚.利用重组自交系(RILs)群体进行质量数量性状的遗传分析遗传模型和小麦产量性状遗传.作物学报,2001,27(6):111~118
    [10] 李新海,张世煌,傅骏骅.玉米抗病虫基因的染色体定位研究进展.玉米科学,2000,8(1):15~18
    [11] 刘章雄,王守才,等.玉米P_(25)自交系抗锈病基因的遗传分析及SSR分子标记定位.遗传学报,2003,30(8):706~710
    [12] 莫惠栋.谷类作物胚乳性状遗传控制的鉴别.遗传学报,1995,22(2):126~132
    [13] 莫惠栋,李志明.推广NC Ⅱ设计和遗传模型测验.作物学报,17(1):1~9
    [14] 莫惠栋.数量遗传学的新进展数量性状基因图谱的构建和应用.中国农业科学,1996,29(2):8~16
    [15] 莫惠栋.质量-数量性状的遗传分析Ⅰ:遗传组成和主基因基因型鉴别.作物学报 1993,19(1):1~6
    [16] 莫惠栋.质量-数量性状的遗传分析Ⅱ:世代平均数和遗传方差.作物学报,19(3):193~200
    [17] 莫惠栋,徐辰武.质量-数量性状的遗传分析Ⅲ.受三倍体控制的胚乳性状.作物学报,20(5):513~519
    [18] 倪中福,孙其信,陈希勇,等.数量性状基因定位与作物杂种优势.作物杂志,1996(3):14~16
    [19] 王建康,盖钧镒.数量性状主基因.多基因混合模型的鉴别和遗传参数估计的研究:[博士学位论文].南京:南京农业大学,1996
    
    
    [20] 王建康,盖钧镒.利用杂种F2世代鉴定数量性状主基因-多基因混合模型并估计其遗传效应.遗传学报,1997,24(5):432~440
    [21] 王建康,盖钧镒.数量性状主基因-多基因混合遗传的P_1、P_2、F_1、F_2和F_(2:3)联合分析方法.作物学报.1998,24(6):651~659
    [22] 王晓明,戴法超,等.玉米病虫害田间手册-病虫害鉴别与抗性鉴定.北京:中国农业科技出版社,2002,12
    [23] 王泽立,王鲁昕,戴景瑞,等.运用近等基因系(NIL)、AFLP、RFLP和SCAR标记对玉米S组育性恢复基因(Rf_3)的研究.遗传学报,2001,28(5):465~470
    [24] 向道权,曹海河,王守才,戴景瑞,等.玉米SSR遗传图谱的构建及产量性状基因定位.遗传学报,2001,28(8):778~784
    [25] 解超杰,倪中福,孙其信,杨作民,刘保申,魏艳玲.利用小麦微卫星标记定位一个来自野生二粒小麦的抗白粉病基因.遗传学报,2001,28(11):1034~1039,
    [26] 章元明,盖钧镒,王建康.利用回交B_1和B_2及F_2群体鉴定数量性状两对主基因+多基因混合遗传模型.生物数学学报,2000,15(3):358~366
    [27] 章元明,盖钧镒,张孟臣.利用P_1、F_1、P_2、F_2或F_(2:3)世代联合的数量性状分离分析.西南农业大学学报,2000,22(1):6~9
    [28] 赵君,王国英,胡剑,张晓红,戴景瑞.玉米弯孢菌叶斑病抗性的AD从遗传模型的分析.作物学报,2002,28(1):127~130
    [29] 朱军.遗传模型分析方法.北京:中国农业出版社,1997,56-84
    [30] 朱立煌,徐吉臣,陈英,等.用分子标记定位一个未知的抗稻瘟病基因.中国科学B辑,1994,24,1048~1052
    [31] Aarts M.G.M., Hekkert B.L., Hughes D.E., et al. Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Plant J. 1998, 11: 251~258
    [32] Ahn S., Tanksley S.D. Comparative linkage maps of the rice and maize genomes [J]. Proc. Natl. Acad. Sci., USA, 1993, 90:7980~7984
    [33] Ajmone-Marsan P., Castiglioni P., Fusari F., et al. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor.Appl.Genet., 1998, 98: 219~227
    [34] Alferez S., Richter T.E., Hulbert S.H., Bennetzen J.L. The Rp3 disease resistance gene of maize: mapping and characterization of introgressed alleles. Theor. Appl. Genet., 1995, 91:25~32
    [35] Azpiroz-Leehan R., Feldmann K.A. T-DNA insertion mutagenesis in Arabidopsis-going back and forth. Trends in Genet., 1997,13:152~156
    [36] Baulcombe D.C. Fast forward genetics based on virus-induced gene silencing. Curr.Opin Plant Biol., 1999, 2:109~113
    [37] Beavis W.D., O.S.Smith, D.Grant, et al. Identification of quantitative trait loci using a small sample of topcrossed and F_4 progeny from maize. Crop Sci., 1994, 1(34): 882~896
    [38] Bennetzen J.L., Greeling M. Grasses as a single genetic system: genome composition,
    
    collinearity and compatibility [J]. Trends Genet., 1993, 9:259~261
    [39] Bent A.F., Kunkel B.N., Dahlbeck D., Brown K.L., Schmidt R., Giraudat J., Staskawicz B. J. Rps2 of Arabidopsis thalina: Aleucine-rich repeatclass of plant disease resistant genes. Science, 1994, 265:1856~1860
    [40] Bent A.F., et al. Plant disease resistance genes: Function meets struture. Plant cell, 1996, 8: 1757~1771
    [41] Bevan M., Bancroft J., Bent E., et al. Analysis of 1.9Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 1998, 391: 485~488
    [42] Blair M.W., McCouch S.R. Microsatellite and sequence tagged site markers diagnostic for the rice bacterial leaf blight resistance gene xa.5. Theor. Appl. Genet., 1997, 95:174~184
    [43] Bonierbale M.W., Plaisted R.L., Tanksley S.D. RFLP maps based on a common set of clones reveal modes of chromosomal evolution potato and tomato. Genetics, 1988, 120:1095~1103
    [44] Botella M.A., Coleman M.J., Hughes D.E., Nishimura M.T., Jomes J.D.G., Somerville S.C. Map positions of 47 Arabidopsis sequences with sequence similarity to disease resistance genes. Plant cell, 1997, 12:1197~1211
    [45] Brazma A., Jonassen I., Vilo J., et al. Breeding gene regulatory elements in silico on a genomic scale. Genome RES., 1998, 8:1202~1215
    [46] Bubeck D.M., M.M.Goodman, W.D.Beavis, et al. Quantitative trait loci controlling resistance to gray leaf spot in maize. Crop Sci., 1993, 33:838~847
    [47] Buerstmayr H., Dold L., Stierschneider M., Lemmens M., Steiner B., Berlakovich S., Ruckenbauer P. Classical and molecular genetic analysis of Fusarium head blight resistance in wheat. In: Proceedings of the International Symposium on Wheat Improvmeny for Scab Resistance. 2000: 100~104
    [48] Burr B., Bure F.A., Thompson K.H., Albertson M.C., Stuber C.W. Gene mapping with recombinant inbreds in maize. Genetics, 1988, 118:519~526
    [49] Byrne P.F., M.D.McMullen, M.E.Snook, et al. Quantitative trait loci and metabolic pathways: Genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks. Proc. Natl. Acad. Sci., 1996, 93(7): 8820~8825
    [50] Byrne P.F., M.D.McMullen., B.R.Wiseman, et al. Maize silk maysin concentration and corn earworm antibiosis-QTLs and genetic mechanism. Crop Sci., 1998, 38:461~471
    [51] Caetano Anolles G., Bassan B.J. Gresshoff D.M. DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. BIOTECHNOLOGY, 1991, 9:553~557
    [52] Celegans, et al. Sequencing Consortium Genome sequence of the nematode C.elegans: a platform for investigating biology. Science, 1998, 282 (5396): 2012~2017
    [53] Chang R.Y., Peterson P.A. Chromosome labeling with transposable elements in maize [J]. Theor.Appl Genet., 1994, 87:650~656
    [54] Cho R.J., Mindrinos M., Richards D.R., et al. Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nature, 1999, 23:203~207
    
    
    [55] Clements M.J., Dudley J.W., White D.G. Quantitative trait loci associated with resistance to gray leaf spot of corn. Phytopathology, 2000, 90:1018~1025
    [56] Chantret N., Sourdille M., Roder M., Tavaud M., Bernard M., Doussinault G. Location and mapping of the powdery mildew resistance gene MIRE and detection of a resistance QTL by bulked segregant analysis (BSA) with microsatellites in sheat. Theor. Sppl. Genet., 2000, 100:1217~1224
    [57] Chimmaiyan A.M., Chaudhary D., Rouke K., et al. Role of CED-4 in the activation of CED-3. Nature, 1997, 338:728~729
    [58] Coe E.H., Neuffer M.G., Hoisington D.A. The genetics of corn [M] P81-258. In: Corn and Corn Improvement, G.F.Sprague, J.W.D.Dudley. Crop Science Society of America, Inc Madison, W I, 1988
    [59] Collins N.C., Webb C.A., Seah S., et al. The isolation and mapping of disease resistance gene analogues in maize. Mol Plant-Microbe Interactions, 1998, 11: 968~978
    [60] Coulture R.M., Routley D.G., Dunn G. M. Role of cyclic hydroxamic acids in monogenic resistance of maize to Helminthosporium turcicum. Physiol. Plant Pathol., 1971, 1: 515~521
    [61] Darvasi A., M.Soller. Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor. Appl. Gemet., 1992, 85:353~359
    [62] Darvasi A., M.Soller. Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics, 1994,1381:1365~1373
    [63] Davis G., M.McMullen, M.Polacco, et al. Maize genome database. Maize Genetics Cooperation Newsletter, 1998, 72:118~128
    [64] De Vicente M.C., Tanksley S. D. QTL analysis of transgressive segrageation in an interspecific tomato cross. Genetics, 1993, 134:585~596
    [65] DeVos K., Beales J., Nagamura Y., et al. Arabidopsis-rice: will colinesrity allow gene prediction across the eudicot-monocot divide? Genome Res., 1999, 9:825~829
    [66] Donis-keller H., P.Green, C.Helms, S.Cartinghour, B.Weiffendaeh, K.Stephens, T.P.Keith, D.W. Bowden, D.R. Lander, D.Botstein, G.Akots, K.S.Redikerr, T.Gravius, V.A.Brown, M.B.Rising, C.Parker, J.A.Powers, D.E. Watt, E.R. Kauffman, R.G. knowlton, Dudley, J.W. Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Sci., 1993, 33:660~668
    [67] Dudley G.K., Rufener. Comparing conventional early generation selection with molecular marker assisted selection in maize. Crop Sci., 1994, 34:1221~1225
    [68] Eathington S.R, Dudley J.W., Rufener G.K. Marker effects estimated from testcross of early and late generations of inbreeding in maize. Crop Sci., 1997, 37:1679~1685
    [69] Elkind Y., Cahaner A. A mixed model for the effects of single gene-polygenes and their interaction on quantitative traits. Thoer. Appl. Genet., 1986, 72:377~383
    [70] Elkind Y., Cahaner A. A mixed model for the effects of single gene-polygenes and their interaction on quantitative traits.2.The effects of the nor gene and polygenes on tomato fruit softness. Heredity, 1990, 64:205~213
    [71] Eloston R.C., Stewart J.The analysis of quantitative traits for simple genetic models from
    
    parental, F_1 and backcross date [J], Genetics, 1973, 73 (4): 695~711
    [72] Eloston R.C. The genetic analysis of quantitative traits difference between two homozygous lines, Genetic, 1984, 108: 733~744
    [73] E.S. Lander, J.D. Hewitt, S.Peterson, S.E.Lincoln, S.D.Tanksley. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335: 721~726
    [74] Figdore S. S. In: 2nd int. conf. on quantitative Genetic Abstr.,1987, 36
    [75] Fisher A., Baum N., Saedler H., Theiben G. Chromosomal mapping of the MADS-box muitigene family in Zea mays reveals dispersed distribution of alletic genes as well as transposed copies. Nucleic Acids Research, 1995, 23: 1901~1911
    [76] Fleischmann R., Adams M.D., White O., et al. Whole-genome random sequence and assembly of Haemophilus influence Rd. Science, 1995, 269 (5223): 496~512
    [77] Foolad M.R., Jones R.A., Models to estimate maternally controlled genetic variation in quantitative seed characters. Theor. Appl. Genet.,1992, 83: 360~366
    [78] Freymark P.J., Lee M., Martinson C.A., Woodman W.L. Quantitative and qualitative trait loci affecting host-plant response to Exserohilum tureicum in maize (ZeamaysL) [J]. Thoer. Appl. Genet., 1993, 87: 537~544
    [79] Freymark P.J., Lee M., Martinson C.A., Woodman W.L. Molecular marker fa cilitated investigation of host-plant response to Exserohilum turcicum in maize (ZeamaysL): Components of resistance [J]. Thoer.Appl.Genet., 1994, 88: 305~313.
    [80] Gardiner J., Melia-Hancock S., Hoisington D.A., Chao S., Coe E.H. Development of a core RFLP map in maize using an immortalized-F_2 population. Genetics, 1993, 134: 917~930
    [81] Gebhardt C., Ritter E., Barone A., Debener T., Walkemeier B. RFLP maps of potato and their alighment with the homologous tomato genome. Theor. Appl. Genet., 1991, 83:49~57
    [82] Gill K.S., E.L.Lubbers, B.S.GilI, W.J.Raupp, T.S.Cox. A genetic linkage map of Triticum Tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome, 1991, 34: 362~374
    [83] Gimelfarb A., Lande R. Simulation of marker-assisted selection in hybrid populations. Genet Res, 1994a, 63: 39~47
    [84] Gimelfarb A., Lande, R. Simulation of marker-assisted selection for non-additive traits. Genet Res, 1994b, 64:127~136
    [85] Gimelfarb A., Lande R. Marker-assisted selection and marker QTL associations in hybrid populations. Theor. Appl. Genet., 1995, 91: 522~528
    [86] Gupla P.K., et al. Microsatellite in plants: a new class of molecular marker. Current Science, 1996, 70:45~54
    [87] Guthrie W. D., Wilson, R.L., Coats J.R., Robbins J.C., Tseng, C.T.,Jarvis, J.L., Russell W.A. European corn borer (Lepidoptera: Pyralidae) leaf-feeding resistance and DIMBOA content in inbred lines of dent maize grown under field versus greenhouse conditions. J. Econ. Entomol., 1986, 79:
    
    1492~1496
    [88] Han F., Killian A., Chen J.P., et al. Sequence analysis of a rice BAC covering the syntenous barley Rpg1 region. Genome, 1999, 42:1071~1076
    [89] Haldane J.B.S., C.A.B.Smith. A new estimate of the linkage between the genes for color-blindness and hemophilia in man. Am. Eugen., 1947,14:10~13
    [90] Hallauer A.R., J.B.Miranda. Quantitative genetics in maize breeding. Iowa State Univ. Press, 1988 Ames, Hallauer A.R. Recurrent selection in maize. Plant Breed Rev, 1992, 9:115~179
    [91] Hayman B.I. The theory and analysis of diallel crosses Ⅱ, Genetics, 1958, 43:63~68
    [92] Helentjaris T., M.Slocum, S.Wright, A.Schaefer, J.Nienhuis. Construction of genetic linkage maps in maiae and tomato using restriction fragment length polymorphisms. Genetics, 1986, 118: 353~363
    [93] Helentjaris T., Wber D., Wright S. Identification of the genomic locations of duplicated nucleotide sequences in maize by analysis of restriction fragment length polymorphisms [J]. Genetics, 1988, 118:353~363
    [94] Heletjaris T. Implication for conserved genomic structure among plant species [J]. Proc. Natl. Acad. Sci., USA, 1993, 90:8308~8309
    [95] Helguera M., Khan I.A., Dubcovsky J. Development of PCR markers for the wheat leaf rust resistance gene Lr47. Theor. Appl. Genet., 2000, 100:1137~1143
    [96] Hieter P., Boguski M. Functional genomics: its all how you need it. Science, 1997, 278: 601~602
    [97] Hospital F., Chevalet C. Effects of population size and linkage on optimal selection intensity. Theor. Appl. Genet., 1993, 86:775~780
    [98] Hospital F., Chevalet C. Interactions of selection, linkage and drift in the dynamics of polygenic characters. Genet Res., 1997, 67:77~87
    [99] Hulbert S.H., Richter T.E., Axtell J.D., Bennetzen J.L. Genetic mapping and Characterization of sorghum and related crops by means of maize DNA probes [J]. Proc. Natl. Acad. Sci.,USA, 1990, 87: 4251~4255
    [100] Jiang C., Zeng Z-B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics, 1995, 140:1111~1127
    [101] Johal G.S., Briggs S.P. Reductase activity encoded by the HM1 disease resistance gene in maize. Science, 1992, 258:985~987
    [102] Jones D.A., Thomas C.M., Hammod-Kosack K.E., Balint-kurti P.J., Jones J.D.G. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging [J]. Science, 1994, 266:789~793
    [103] Kanazin V., Marek L.F., et al. Resistance gene analogs are conserved and clustered in soybean. Proc. Natl. Acad. Sci., USA, 1996, 93:11746~11750
    [104] Keim P., J.M.Schupp, S.E.Travis, K.Clayton, T.Zhu, L.Shi, A.Ferreria, D.M.Webb. A high-density soybean genetic map based on RFLP markers. Crop Sci., 1997, 37:537~543
    
    
    [105] Khavkin E., E. H.Coe. The major quantitative trait loci for plant stature, development and yield are general manifestations of developmental gene clusters. Maize Genetics Cooperation Newsletter, 1998, 72:60~66
    [106] Kitajima S., Sato J. Plant pathogenesis-related proteins: molecular mechanisms of gene expression and protein funtion. J Biochem (Tokyo), 1999, 125:1~8
    [107] Kleinhofs A., A.Kilian, M.A.Saghai, Maroof, R.M. Bigashev, L.Dahleen, D.Kudrana, J.D.Franckowiak, D.Hoffman, R.Skadsen. A molecular, isozyme and morphological map of the barley genome. Theor. Appl. Genet., 86:705~712
    [108] Kosambi D.D. The estimation of map distances from recombination values. Ann. Eugen., 1944, 12:172~175
    [109] Kumagai M.H., Keller Y., Bouvier E, et al. Funtional integration of non-native carotenoids into chioroplasts by viraldedved expression of capsanthin-capsorunin synthase in Nicotiana benthamiana. Plant J., 1998, 4:305~315
    [110] Kunkel B.N., et al. A useful weed put to work-genetic analysis of disease resistance in Arabidopsis thaliana. Trends Genet 1996, 12:63~69
    [111] Kyetere D.T., Ming P., McMullen M., Brewbaker J., Musket T., Pixley K.V., Moon H.G. Monogenitic resistance to maize streak virus maps to the short ann of chromosome 1. Maize Genet. Coop. Newl., 1995, 69:136~137
    [112] Lander E. S., D.Botstein. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 124:185~199
    [113] Leister D., Ballvora A., et al. A PCR-based approach for isolating pathogen resistance genes from potato from potato with potential for wide application in plants. Nat Genetics, 1996, 14:421~429
    [114] Lemieux B., Aharoni A., Schena M. Overview of DNA chip technology. Mol Breeding, 1998, 4:277~289
    [115] Mackill D.J., Zhang Z., Redona E.D., Colowit D.M. Level of polymorphism and genetic mapping of AFLP markers in rice. Theor. Appl. Genet., 89:969~977
    [116] Liang C.Z., Gu M.H., Pan X.B., et al. RFLP tagging of a new semiwarfing gene in rice. Theor. Appl. Genet., 1994, 88:898~900
    [117] Loisel Practice, Goffinet Rruno, Monod Herve, et al. Detecting a major gene in an F_2 population. Biomitrics, 1994, 50:512~516
    [118] Mareinssen R.A., Functional genomics: probing gene funtion and expression with trasposons. Proc. Natl. Acad. Sci., USA, 1998, 95:2021~2026
    [119] Martin G.B., Williams J.G.K., Tanksley S.D. Rapid identification of markers linded to a Pseudomonas resistance gene in tomato by using random palmers and near-isogenie lines. Proc. Natl. Acad. Sci., USA, 1991, 88:2336~2340
    [120] Martin G.B., Frary A., Wu T., Brommonschenkel S., Chunwongse J., Earle E.D., Tanksley S.D. A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell, 1994, 6:1543~1552
    
    
    [121] Mather K., Jinks J. L. Biometrical Genetics (3rded). ChapmanandHallLtd, 1982 McCouth S.R., G.Kochert, Z.H.Yu, Z.Y.Wang, G.S.Khush, W.R.Coffman, S.D.Tanksley. Molecular Mapping of rice Chromosomes, 1988, Theor. Appl. Genet., 76:148~149
    [122] McCouth S.R., et al. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Molecular Biology, 1997, 35:89~97
    [123] Mead D., C.Bredenkamp, M.Kiefer, A.Majerus, H.Sandeland. C.Wangen. RFLP mapping of chromosome 6th in a backeross population. Maize Genetics Cooperation Newletters, 1990, 64:109
    [124] Melchinger A.E., kuntze L., Gumber R.K., Lubberste D.T., Fuchs E. Genetic basis of resistance to sugarcane mosaic virus in European maize germplasm [J]. Theor. Appl. Genet., 1998, 96: 1151~1161
    [125] Michael D.M., K.D.Simcox. Genomie organization of disease and insect resistance genes in maize. Molecular plant-microbe interactions, 1995, 8(6): 811~815
    [126] Michelmore R.W., Paranand I., Kessali R.V., Identification of markers linked to disease resistance gene by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc. Natl. Acad. Sci., 1991, 88:9829~9832
    [127] Mohan M., Nair S., Bentur J.S., et al. RFLP and RAPD mapping of the rice Gm2 gene that confers resistance to biotype 1 of a gll midge. Theor. Appl. Genet., 1994, 87:782~788
    [128] Moreau L., Charcosset A., Hospital F., Gallais A. Marker-assisted selection efficiency in populations of finite size. Genetics, 1997, 148:1353~1365
    [129] Mozo Y., Dewar K., Dunn P., et al. A complete BAC-based physical map of the Arabidopsis thaliana genome. Nat Genet., 1999, 22:271~275
    [130] Muehlbauer G.J., Specht J.E., Thomas-Compton M.A., et al. Near-isogenic lines - A potential resource in the integration of conventional and molecular marker linkage maps. Crop Sci., 1988, 28:729~735
    [131] Nelson N. Microarrays pave the way to 21st centuary medicine. Journal of the National cancer Institute, 1996, 88 (22): 1803~1805
    [132] Nelson N. Getting hip to the chip. Nature Genetics, 1996, 18 (3): 195-197
    [133] Noel L., Moores T.L., Vander Biezen E.A., et al. Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis thaliana. Plant Cell, 1999, 11: 2099~2112
    [134] Nowark R.,et al. Genetics: entering the postgenome era. Science, 1995, 270 (5235): 368-369
    [135] Ohmori T., M.Murata, F.Motogoshi. Molecular characterization of RAPD and SCAR markers linked to the Tm-1 locus in tomato. Theor. Appl. Genet., 1996, 92:151~156
    [136] Olson M., L.Hood, C.Cantor, D.Botstain. A common language for physical mapping of the huaman genome. Science, 1989, 245:1434~1435
    [137] Ori No, Eshed Y., Paran I., et al. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, Leucine-rich repeat super family of plant resistance genes. Plant Cell, 1997, 9:521~532
    
    
    [138] Pamiske M., Hammond-Konsac K.E., et al. Noval disease resistance specificities result from sequence exchange between tandemly repeats genes at the Cf-4/9 locus of tomato. Cell, 1997, 91: 821~832
    [139] Paterson A.H., Lander E.S., Hewitt J.D., et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335:721~726
    [140] Pejic I., Ajmone-Marsan P., Morgante M., et al. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor. Appl. Genet., 1998, 97:1248~1255
    [141] Piffanelli P., Devoto A., Schultz-Liefert P Defense signaling pathways in cereals. Curr Opin Plant Biol., 1999, 2:295~300
    [142] Polacco M., Maize genome database. Maize Genetics Cooperation Newsletter, 1997, 71: 120~121
    [143] Pooniet H.S., Ish Kumar, Khush G.S. Genetical control of amylose content in selected crosses of indica rice. Heredity, 1993, 70:269~280
    [144] Queller D.C., J.E.Strassmann, Hughes C.E. Microsatellite and kinship. Trends Evol., 1993, 8:285~288
    [145] Ragot M., P.H.Sisco, D.A.Hoisington, et al. Molecular marker mediated characterization of favorable exotic alleles at quantitative trait loci in maize. Crop Sci., 1993, 35:1306~1315
    [146] Ramsay G. DNA chip: state of the art. Nature Biotechnology, 1998, 16:40~44
    [147] Reiter R.S., J.G.Coors, M.R.Sussan, W..H.Gableman. Genetic analysis of tolerance to. low-phosphorus stress in maize using restriction fragment length polymorphisms. Theor. Appl. Genet., 1991, 82:561~568
    [148] Reymond P., Farmer E.E., Jasmonate and salicylate as global signal for defense gene expression. Curt Opin Plant Biol., 1998 1:404~411
    [149] Ribaut J.M., C.Jiang, D.Gonzalez-de-leon, et al. Identification of quantitative trait loci under drought conditions in tropical maize. Yield components and marker-assisted selection strategies. Theor. Appl. Genet., 1997, 94:887~896
    [150] Rickin MI., Vallejos C.E., et al. Disease-resistant related sequences in commom bean. Genome, 1999, 42:41~47
    [151] Rowen L., Mahairas G., Hood L. Sequencing the human genomes. Science, 1997, 278(5338): 605~607
    [152] Rushton P.J., Somssich I.E. Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol., 1998, 1: 311~315
    [153] Salmeron J.M., Oldroyd G.E., Rommens C.M., et al. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell, 1996, 86:123~133
    [154] Schon C.C., Lee M., Melchinger A.E., Guthrie W.D., Woodman W.L. Mapping and
    
    characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Heredity, 1993, 70:648~659
    [155] Scofield S.R., Tobias C.M., Rathjen J.P., Chang J.H., Lavelle D.T., Michelmore R.W., Staskawicz B.J. Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science, 1996, 274:2063~2065
    [156] Senior M.L., Murphy J. P., Goodman M. M., et al. Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci., 1998, 38:1088~1098
    [157] Simchen G., Jinks J.L. The determination of diikaryotic growth rate in the basidiomycete Schizophyllum Commune: a bilmetrical analysis. Heredity, 1964:627~649
    [158] Simcox K.D., Bennetzen J.L. The use of molecular markers to study Setosphaeria turcica resistance in maize. Phytopathology, 1995, 83:1326~1330
    [159] Simcox K.D., Weber D.F. Location of the benzoxazinless (bx) locus in maize by monosomic and B-A translocational analyses. Crop Sci., 1985, 25:827~830
    [160] Simcox, K.D., McMullen M.D., Louie R. Co-segregation of the maize dwarf mosaic virus resistance gene, mdm1, with the nucleolus organizer region in maize. Theor. Appl. Genet., 1995, 90: 341~346
    [161] Smith J.S C., et al. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): Comparison with data from RFLPs and pedigree. Theor. Appl. Genet., 1997, 95: 163~173
    [162] Smith J.S.C., et al. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigrees. UPOV working group on. biochemical and molecular technique and DNA profiling in particular fourth session. Cam bridge UK, March 1997, 11~13
    [163] Smith O.S., Smith J.S.C., Bowen S.L., Tentorg R.A., et al. Similarities among a group of elite maize inbreds as measured by heterosis and RFLPs. Theor. Appl. Genet., 1990, 80:833~840
    [164] Soller M., Brody T., Genizi A. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses betweeen inbred lines. Theor. Appl. Genet., 1976, 47:35~39
    [165] Speulman E., Bouchez D., Holub E.B., et al. Disease resistance gene homologs correlate with disease resistance loci of Arabidopsis thaliana. Plant J., 1998, 14:467~474
    [166] Stahl E.A., Dwyer G., Mauricio R., et al. Dynamics of disease resistance polymorphism at the Rpml locus of Arabidopsis. Nature, 1999, 400:667~671
    [167] Staskawicz B.J., Ausubel F.M., Baker B.J., Ellis J.G., Jones J.D.G. Molecular genetics of plant disease resistance. Science, 1995, 268:661~667
    [168] Stuber C.W. Biochemical and molecular markers in plant breeding. Plant Breeding Rev., 1992, 9:37~61
    [169] Stuber C.W., M.D.Edwards, J.F.Wendel. Molecular marker-facilitated investigations of quantitative trait loci in maize: Factors influencing yield and its component traits. Crop Sci. 1987, 27:
    
    639~648
    [170] Stuber C.W., Sisco P.H. Marker-facilitated transfer of QTL alleles between elite inbred lines and responses in hybrids. Proc.46th Annual Corn znd Sorghum Industry Research Conf., Americon Seed Trade Assoc., 1991,46:104~113
    [171] Stuber C.W., S.E.Lincoln, D.W.Wolff, T.Helentjaris, E.S.Lande. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132:823~839
    [172] Tanksley S.D., Ganal M.W., Prince P., et al. High density molecular linkage maps of the tomato and potato genomes. Genetics, 1992, 132:1141~1160
    [173] Tanksley S.D., R.b ernatzky, N.L.Lapitan, J.P.Prince. Conservation of gene repertoire but not gene order in pepper and tomato. Pro. Natl. Acad. Sci., 1988, 85:6419~6423
    [174] Tang X., Xie M., Kin Y.J., et al. Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell, 1999, 11:15~30
    [175] Tautz D., M.Rens. Simple sequences are ubiquitous repetive components of eukaryotic genome. Nucleic Acid Res., 1984, 12:4127~4138
    [176] Temnykh S., W.D.Park, N.Ayres, S.Cartinhour, N.Hauck, L.Lipovieh, Y.G.Cho, T.Ishii, S.R. McCouch. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor. Appl. Genet., 2000, 100:697~712
    [177] Thoday J.M. Location of polygenes. Nature, 1961, 191:368~370
    [178] Thomas M.R., N.S.Scott. Microsatellite repeats in grapevine reveal DNA polymorphism when analyzed as sequence tagged sites (STS). Theor. Appl. Genet., 1993, 86:985~990
    [179] Van der Biezen E.A., Jone J.D.G. The NB-ARC domain: a noval signaling motif shared by plant disease resistance gene products and regulators of cell death in animals. Curr Biol., 1998, 8: R266~R227
    [180] Veldboom L.R., M.Lee, W.L.Woodman. Molecular marker-facilitated studies in an elite maize population: linkage analysis and determination of QTL for morphological traits. Theor. Appl. Genet., 1994, 88:7~16
    [181] Walsh J.B., M.Lynch. Mapping and characterizing QTL. In: Fundament of Quantitative Genetics. Sinauer Associates, Inc, 1996, 14 Wang Z., et al. Survey of plant short tandem DNA. Theor Appl Genet, 1994, 88:1~6
    [182] Weller J.I., et al. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics, 1986, 42A: 627~641
    [183] Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary palmers. Nucleic Acids Res., 1990, 18:7213~7218
    [184] Welz H.G., Schecher A.Wt., Geiger H.H. Dynamic gene action at QTLs for resistance to Setosphaeria turcica in maize.Theor Appl.Genet. 1999, 98:1036~1045
    [185] Welz H.g., Geiger H.H. Genes for resistance to northern corn leaf blight in diverse maize populations. Plant Breeding, 2000, 119:1~14
    
    
    [186] Whitman S., Dinesh-Kumar S.P., Choi D., Hehl R., Corr C., Baker B. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-Ⅰ receptor. Cell, 1994, 78: 1101~1115
    [187] Williams J.G.K., Kubelik A.R., livak K. J., Rafalski J.A., Tingey S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990, 18:6531~6535
    [188] WU Jian-Yu, TANG Ji-Hua, XIA Zong-Liang, CHEN Wei-Cheng, Molecular Tagging of a New Resistance Gene to Maize Dwarf Mosaic Virus Using Microsatellite Markers. Acta Botanica Sinica, 2002, 44 (2): 177~180
    [189] Xia x., Melchinger A.E., KuntzeL., Lbberstedt T.Quantitative trait loci mapping of resistance to sugarcane mosaic virus in maize. Phytopathology, 1999, 89:660~667
    [190] Xu Li-Chen, Zhu LI-Huang, Ying Chen, Yun-Be Xu, Zhong-Zhuan Liang. Construction of a rice molecular linkage map using double haploid population. Chinese J.Genet., 21:127~126
    [191] Young N.D, Zamir D., Ganal M.W. Use of isogenic lines and simultaneous probing to identify DNA markers tightly inked to the Tm-2a gene in tomato. Genetics, 1988, 120:579~585
    [192] Zabeau M., Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent, Application 95402629. 7-1993, (Publ. No. 0534858 AL).
    [193] Zaitlin D., DeMars S., Gupta M. Linkage of a second gene for NCLB resistance to molecular markers in maize. Maize Genet. Coop. Newsl, 1992, 66:69~70
    [194] Zaitlin D., DeMars S., Ma Y. Linkage of rhm, a recessive gene for resistance to southern corn leaf blight, to RFLP marker loci in maize (Zea mays) seedllings. Genome, 1993, 36:555~564
    [195] Zeitkewicz E., Rafalski A., Labuda D. Genome fingerprinting by simple sequenece repeat (SSR) - anchored polymerase chain reaction amplification. Genomics, 1994, 20:176~183
    [196] Zeng, Z.B. Precision mapping of quantitative trait loci. Genetics, 1994, 136:1457~1468
    [197] Zhang W., Smith C. Computer simulation of marker-assisted selection utilizing linkage disequilibrium. Theor. Appl. Genet., 1992, 83:813~820
    [198] Zhang, W., Smith C. Simulation of marker-assisted selection utilizing linkage disequilibrium: the effects of several additional factors. Theor. Appl. Genet., 1993, 86:492~496
    [199] Zhou J.M., Tang X.Y., Martin G.B. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteims that bind a cis-element of pathogenesis-related genes. EMBO J, 1997, 16:3207~3218
    [200] Zhu J. H., et al. Abstract of plant Genome. San Diego, USA, 1995:282
    [201] Zhu LI-Huang, Ying chen, Yun-Be Xu, Ji-Chen Xu, Hong-Wei Cai, Zhong-Zhuan Liang. Construction of a molecular map of rice and gene mapping using a haploid population of a cross between Indica and Japonica Varieties. Rice Genet.Newsl., 1993, 10:132~135

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700