基于支持向量机的植物病害识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
支持向量机(support vector machine,简称SVM)是一种新的模式识别方法,它采用结构风险最小化(SRM)原理,兼顾训练误差和泛化能力,在解决小样本、高维非线性、局部极小值等模式识别问题中表现出特有的优势。本文以温室植物病害为主要研究对象,以支持向量机技术为重要技术手段,并将地面环境信息引入,进行温室植物病害的诊断研究。本文提出了一种新的核函数——线形组合高斯核函数核,并将该核函数应用于支持向量机方法中,并使用该方法对北京地区黄瓜病害图像进行了识别分类,达到更好的分类效果。在病害图像特征提取中,采用基于启发式搜索策略的支持向量机的Wrapper方法—回归特征消去方法(SVM-RFE)对原始特征进行选择。在分类器设计方面,提出采用模糊多类别分类器,该方法很好的解决了“一对一”和“一对多”分类器中出现的不可识别区域问题。在设计病害识别系统方面,将植物生长环境信息对植物病害发生的影响引入病害诊断中,并将这种影响量化为影响因子,作为支持向量机分类器的加权系数,来修正最后的识别分类结果。本项研究为进一步开发具有使用价值的植物病害诊断系统提供了重要的理论基础和应用技术,对缩小我国在农作物自动化管理方面与发达国家之间的差距,促进现代技术在我国农业工程领域的应用具有重要意义。
It is a effective diagnosis method for plant disease detection that using computer image processing and pattern recognition technology to identify plant diseases. During actual disease diagnosis, for a particular disease, here is not usually a lot of disease samples. many pattern recognition methods (including artificial neural networks) can not be good for plants identification, which affect the accuracy of the diseases diagnosis. SVM (support vector machine) is a new method for pattern recognition, which is the structural risk minimization (SRM) principle, balance training error and generalization ability, have solved small sample, nonlinear, High Dimension local minimum value of pattern recognition problem, which demonstrated the unique advantage.
     In theory, SVM is a stable classifier, has good generalization ability. However, In the specific application process, which need to overcome some difficulties: choicing the kernel function and classification parameters; promoting two-types problems into a wide range problems. which impacts stability and generalization ability of SVM method. This paper is based on the foregoing, regarding greenhouse plant diseases as the mam study. using SVM technology for the important technical means, and introducing environment information to explore specific issues of potential, capabilities and prospects for support vector machines on greenhouse plant disease diagnosis. Main contents is including:
     (1) reasonably choice and design kernel function if an important part of Support Vector Machine, the different kernels function represent different nonlinear mapping that Using Support Vector Machine to solve nonlinear Classification problems. So kernel function Support Vector Machine which is easy to achieve nonlinear algorithm.This paper presents a new kernel function------linear combination Gaussian kernelfunction support vector machines. Firstly, have studyed Gaussian kernel algorithm, to improve the Gaussian kernel performance by Transforming the classical Gaussian kernel.Combining Gaussian kernel with several other classic nuclear linear of function into a new combination of kernel, which will improve it's ability. the kernel is Applicated in Support Vector Machine, and use this method to recognize cucumber diseases Image in Beijing, and the results Satisfied. It is proved that the linear combination of Gaussian kernel is better than a single kernel in classification results. the artificial neural networks and other classic SVM Kernel classification results were compared, The results also show that the kernel is effective.
     (2) In extraction of the diseases image feature, extractiing plant disease image original characteristics with plant diseases image of shape, texture and color information. The author raised a new method that apply support vector machine theoryto recognize plant disease------Recursive Feature Elimination (SVM-RFE) to getcharacteristics of the original. The results that Experimental data was analysised show: A-SVM-RFE algorithm efficiency is the highest. H-SVM-RFE is the fastest among three SVM-RFE methods, but it lost a variables. O-SVM-RFE recognition rate is relatively low. The method is superior to other identification methods, in feature extraction, A-SVM-RFE is the best performance. Meanwhile with the traditional method, the test results show that of the new feature selection method Based on the Support Vector Machine theory is better than the traditional method
     (3) Plant Disease Diagnose is a multi-classification problem. it may be many diseases For a plants, it be considered to design the categorized classifier in the plant diseases identification. SVM theory is raised against two issues, so the first thing using support vector machines mathod should be completed design of multi-category classifier. There is inseparable subregion for raditional SVM multi-category classification method. Author combined the "one-on-one" method with Fuzzy Support Vector Machine to make up for the flaws. Auhtor use multi-category classification to identify greenhouse cucumber three diseases, and compared it with the "one-to-one" and "one-to-many" classifier, the results showed: the recognition rate of FSVM method is 98%. the recognition rate of "one-on-one" method is 95%. the recognition rate of "One-to-many" method is 93%, from above, FSVM method soluted the inseparable subregion issues of "one-to-one" and "one-to-many" methods, its performance is the best.
     (4) plant environmental information is a important factor that impact the incidence probability of plant disease, Author geted the curve of nvironmental factors affect the incidence of the disease, and the environmental information disease forecasting model by analysizing plants of environmental factor effect the probability of disease incidence. It have been introduced that plant environmental information affect plant disease incidence, and quantify the impact of factors, as weighted coefficient of support vector machine classifier, Finally amended the identification classificater,Which can greatly improve the classifier performance and eliminate diagnostic errors of image acquisition, pre-processing. The recognition rate is 96.7%, 99.6% and 97.3% after intraducing environmental information. greatly improved the classification performance, and eliminated the error that introduced in image preprocessing , to a large extent, avoid appearance of the wrong, environmental information to a large extent ensure correctness of the results of the identification. When result for SVM is closed.
     It is useful to further develop plant disease diagnosis system, which has provided an important theoretical basis and the application of technology. It is great significance to reduce gap between developed country and our country and to promote modern technology in the field of agricultural engineering applications.
引文
[1] Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer Vedag, 1995.
    [2] Muller K R, Ratsch G, Ratsch G. An Introduction to Kernel Based Learning Algorithms[J]. IEEE Transactions on Neural Networks, 2001, 12(2): 181-201.
    [3] Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Knowledge Discovery and Data Mining, 1998, 2(2): 121-167.
    [4] Scholkopf B, Burges C, Burges C. Input space versus feature space in kernel based methods[J]. IEEE Transactions on Neural Networks, 1999, 10(5): 1000-1017.
    [5] B Scholkopf, A J Smola. Learning with Kernels[M]. MA: MIT Press, 2001.
    [6] Smits G F, Jordon E M. Improved SVM regression using mixtures of kemels[A]. IEEE Proceeding of the 2002 Int Joint Conf on Neural Networks[C]. 2002(3): 2785-2790.
    [7] Chen C T. Linear System Theoryand Design[M]. NewYork: Hol Rine hartand Winston. 1984.
    [8] Brauer F, Nohel J A. The Qualitative Theory of Ordina Differential EquationsAn Introduction[M]. Dover: Dover Publication. 1989.
    [9] Pontil M, Verd A. Support vector machines for 3D object recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1998, 20(6): 637~646.
    [10] D Reisfeld, H Yeshunm. Robust detection of facial features by generalized symmetry, in Proc of 11th Int. Con on Pattern Recognition, The Hague, The Netherlands, August 1992: 117-120.
    [11] H A Rowley, S Baluja, T Kaasade. Neural network based face detection, IEEE Trans. Pattern Anal. Math. 20, January 1998: 23-38.
    [12] H. A. Rowley, S. Baluja and T. Kaasade, Rotation in variant neural network based face detection, in Proc. IEEE Intl. Conf. on Computer Vision and Pattern Recognition, 1998, 38-44.
    [13] T. Sakai, M. Nagao and T. Kaasade, Computer analysis and classification of photographs of human faces, in Proc. First USA-Japan Computer Conference, 1972, p. 2. 7.
    [14] A. Samal and P. A. Iyengar, Human face detection using sil houttes, Int. J. Pattern Recog. Artificial Intell. 9(6), 1995.
    [15] M. U. Ramos, Sanchez, J. Matas, and J. Kittler, Statistical chromaticity models for lip tracking with b-splines, in Int. Conf. on Audio and Video Based Biometric Person Authentication, Crans Montana, Switzerland, 1997.
    [16] B. Scasselatti. Eye finding via face detection for a foveated, active vision system, in Proceedings AAAI Conference, 1998.
    [17] H. Schneiderman and T. Kanade, Probabilistic modeling of local appearance and spatial relationships for object recognition, in IEEE Conference on Computer Vision and Pattern Recognition, 6, 1998.
    [18] H. Schneiderman and T. Kanade, A statistical model for 3D object detection applied to faces and cars, in IEEE Conference on Computer Vision and Pattern Recognition, 2000.
    [19] A. W. Senior, Face and feature finding for a face recognition system, in Proceedings Second International Conference on Audio and Video based Biometric Person Authentication(AVBPA), 1999.
    [20] A. Shackleton and W. J. Welsh, Classification of facial features for recognition, in IEEE Proc. of Int. Conf. on Computer Vision and Pattern Recognition, Hawaii, 1991, 573-579.
    [21] L. C. De Silva, K. Aizawa, and M. Hatori, Detection and tracking of facial features by using a facial feature model and deformable circular template, IEICE Trans. Inform. Systems E78-D(9), 1995, 1195-1207.
    [22] L. Sirovich and M. Kirby, Low dimensional procedure for the characterization of human faces, J. Opt. Soc. Amer. 4, 1987, 519-524.
    [23] M. Turk and A. Pentland, Eigenfaces for recognition, J. Cog. Neurosci. 3, 1991, 71-86.
    [24] C. Wong, D. Kortenkamp, M. Speich, A mobile robot that recognises people, in IEEE Int. Conf. On Tools with Artificial Intelligence, 1995.
    [25] 林升梁,刘志.基于RBF核函数的支持向量机参数选择[J].浙江工业大学学报,2007,(02):58-62.
    [26] 刘华富.支持向量机Mercer核的若干性质[J].北京联合大学学报,2005,(01):19-23.
    [27] 文益民,廖洪元,周立华.一种可减少训练时间的分层并行支持向量机方法[J]. 南京师范大学学报(工程技术版),2005,(01):64-67.
    [28] 杨强,吴中福,余平,钟将.基于正反馈的支持向量机[J].重庆大学学报(自然科学版),2004,(05):34-38.
    [29] P. L. Bartlett, J. Shawe, Taylor. Generalization performance on support vector machines and other pattern classifiers[C].
    [30] 张燕昆,杜平,刘重庆.基于主元分析与支持向量机的人脸识别方法[J].上海交通大学学报,2002,(06):36-40
    [31] 宋晓宁,束鑫.一种改进的模糊支持向量机的人脸识别方法[J].微机发展,2005,(03):42-45.
    [32] 马金娜,田大钢.基于支持向量机的中文文本自动分类研究[J].系统工程与电子技术,2007,(03):328-33.
    [33] 马金娜,田大钢.基于SVM的中文文本自动分类研究[J].计算机与现代化,2006,(08):14-19.
    [34] 李文,王炜立,洪胜华.基于互信息的特征提取方法在中文法律案情文本分类中的改进及应用[J].科技广场,2006,(11):68-70.
    [35] 钱晓东,王正欧.基于改进KNN的文本分类方法[J].情报科学,2005,(04):81-84.
    [36] 吴志峰,田学东.基于概念的文本分类中的人名、地名处理研究[J].微机发展,2005,(03):46-50.
    [37] 庄东,陈英.基于加权近似支持向量机的文本分类[J].清华大学学报(自然科学版),2005,(S1):29-33.
    [38] 尚磊,刘风进.基于支持向量机的手写体数字识别[J].兵工自动化,2007,(03):27-31.
    [39] 曾水玲,徐蔚鸿.基于支持向量机的手写体数字识别[J].计算机与数字工程,2006,(10)73:76.
    [40] 蒙庚祥,方景龙.基于支持向量机的手写体数字识别系统设计[J].计算机工程与设计,2005,(06):67-70.
    [41] 刘崇林.人口时间序列的支持向量机预测模型.宁夏大学学报(自然科学版),2006(04):42-45.
    [42] Hearst M A, Dumais S T, Osman E, Platt J, Scholkopf B. Support Vector Machines. IEEE Intelligent Systems. 1998, 13(4): 18~28
    [43] 邹斌,李落清.支持向量机回归与v-支持向量机分类解的关系[J].湖北大学学报(自然科学版),2004,(01)
    [44] V. A. Anisimov, N. Gotsky. Fast hierachical match-ing of an arbirarily oriented template. Pattern Recognition Letters. 1993, 14(2): 95-101.
    [45] T. Zhao, R. Nevatia. Car detection in low resolution aerial image. Computer Vision. 2001, (1): 710-717.
    [46] H. Schneiderman, T. Kanadel. Object Detection Using the Statistics of Parts. International Journal of Computer Vision. 2002, (55): 73-81.
    [47] ChunFu Lin, ShengDe Wang. Fuzzy Support Vector Ma-chines. IEEE Trans. On Neural Networks. 2002, 13(2): 464-471.
    [48] B Sholkopf, A Smola, K R Muller. Nonlinear componentan alysis asa kernel eigen value problem[J]. NeumlComput., 1998, 10: 1229-1319.
    [49] B. Sholkopf, K. Sung, C. J. C. Burges, etal. Comparing support vector machine with Gaussian kernels toradial basis function classifiers[J]. IEEE Trans. Signal Processing, 1997, 45: 2758-2765.
    [50] Suykens J. A. K. and Vandewale J. Multiclass least squares support vector machines Neural Processing Letters, 1999, 9(3): 293-300.
    [51] Lee Y. J. and Mangasarian O. L. RSVM: Reudel support vector machine Technical Report 00-07, Data Mining Institute, University of Wisconsin, Madison, 1999.
    [52] L. Niklasson, M. Boden, and T. Ziemke. Eds. BedinGermany: SpringeVerlag, 1998: 147-152.
    [53] 边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000.
    [54] 许建华,张学工.统计学习理论[M].2004
    [55] 李国正,王猛.支持向量机导论(译).北京:电子工业出版社,2004.
    [56] 董春曦,杨绍全,饶鲜,汤建龙.支持向量机推广能力估计方法比较[J].电路与系统学报,2004,(04)
    [57] 董春曦,饶鲜,杨绍全,徐松涛.支持向量机参数选择方法研究[J].系统工程与电子技术,2004,(08)
    [58] 琚旭,王浩,姚宏亮.支持向量机的一个边界样本修剪方法[J].合肥工业大学学报(自然科学版),2006,(07)
    [59] 杨路明,李丽.一种加速大规模SVM训练的新思路[J].微机发展,2004,(12)
    [60] 周伟达,张莉,焦李成.一种改进的推广能力衡量准则[J].计算机学报,2003,(05)
    [61] 文益民,廖洪元,周立华.一种可减少训练时间的分层并行支持向量机方法 [J].南京师范大学学报(工程技术版),2005,(01)
    [62] 周水生,容晓锋,周利华.训练支持向量机的极大熵方法[J].信号处理,2003,(06):59-63.
    [63] 宋杰,唐焕文.基于线性规划的v-支持向量机分类器[J].大连理工大学学报,2005,(02)
    [64] 邹斌,李落清.支持向量机回归与v-支持向量机分类解的关系[J].湖北大学学报(自然科学版),2004,(01)
    [65] 邓乃扬、田英杰.数据挖掘中的新方法一支持向量机[M],2004.
    [66] 张学工.关于统计学习理论与支持向量机.自动化学报,2000,26(1):32~42
    [67] A. Smola, B. Scholkopf. Atutorial on support vector regression[R]. Neuro COLT, Rep. 19, 1998.
    [68] V. N. Vapnik. The nature of statistical learning theory[M]. New York: Springer Verlag, 1995.
    [69] Statistical learning theory[M]. NewYork: Wiley, 1998.
    [70] V. N. Vapnik, S. Golowieh, A. J. Smola. Support vector method for function approximation, regression, and signal processing[C]. in: NIPS 9, San, 1997.
    [71] J. Y Deng and F. Lai, Recognition-based template deformation and masking foreye-feature extraction and description, Pattern Reeog. 30, 1997, 403-419.
    [72] T. F. Cootes and C. J. Taylor, Active shape models-smart snakes, in Proc. Of British Machine Vision Conference, 1992, 266-275.
    [73] I. Craw, H. Elks, and J. R. Lishman, Automatic extraction of face-feature, PattemReeog. Lett. Feb. 1987, 183-187.
    [74] J. L. Crowley and F. Berard, Multi-model tracking of faces for video communications, in IEEE Proc. of Int, Conf. on Computer Vision and PatternRecognition, Puerto Rico, Jun. 1997.
    [75] T. Darrell, G.. Gordon, M. Harville, and J. Woodfill, Integrated person tracking using stereo, color, and pattern detection, in IEEE Proc. of Int. Conf. On Computer Vision and Pattern Recognition, 1998.
    [76] 田有文,李成华.支持向量机在植物病斑形状识别中的应用研究.沈阳农业大学,2004 Vol.20 No.3 P.134-136.
    [77] Yutaka Sasakoi,Tsuguo Okamoto,etal.Generating of Distinction Parameterfor Automatic Diagnosis of Plant Diseaseby[J].农业机械学会志,1999,61(6):78-80.
    [78] 陈佳娟.基于图像处理和人工智能的植物病害自动诊断技术的研究[D].吉林 工业大学,2001:94-110.
    [79] 王克如.基于图像识别的作物病虫草害诊断研究.中国农业科学院.博士学位论文.2005.
    [80] 穗波信雄.图像处理在植物生长信息提取中的应用[R].农业机械学会关西支部研究会资料(日),1992.
    [81] Yutaka Sasakoi,Tsuguo Okamoto.Automatic Diagnosis of Plant Disease recognition Between Healthy and Healthy and Diseased Leaf.农业机械学会志.1999 61(2)119-126.
    [82] 徐贵力.基于计算机视觉技术的无土栽培番茄缺素智能识别研究[D].镇江:江苏大学,2001.
    [83] 毛罕平,徐贵力,李萍萍.番茄缺素叶片的图像特征提取和优化选择研究[J].农业工程学报,2003,19(2):133-136.
    [84] 毛罕平,徐贵力,李萍萍.基于计算机视觉的番茄营养元素亏缺的识别[J].农业机械学报,2003,34(2):73-75.
    [85] 徐贵力,毛罕平,李萍萍.差分百分率直方图法提取缺素叶片纹理特征[J].农业机械学报,2003,34(2):76-79.
    [86] 吴雪梅.计算机视觉描述缺素番茄叶片颜色变化的研究.农机化研究2004(5):7-90
    [87] 胡春华.计算机图像处理在缺素叶片颜色特征识别方面的应用.计算机测量与控制.2004(09):56-60.
    [88] 田有文;基于纹理特征和支持向量机的玉米病害的识别.沈阳农业大学学报.2005,(06):63-69.
    [89] 田有文,李成华基于支持向量机和色度矩的植物病害识别研究农业机械学报.2004,(03):37-41.
    [90] 宋凯,孙晓艳,纪建伟.基于支持向量机的玉米叶部病害识别[J].农业工程学报,2007,(01):97-101.
    [91] 何东健,张海亮,宁纪锋,等.农业自动化领域中计算机视觉技术的应用[J].农业工程学报,2002,18(2):171-175.
    [92] 李介谷.计算机视觉的理论和实践[M].上海:上海交通大学出版社,1999.
    [93] 方如明,蔡健荣.计算机图像处理技术及其在农业工程中的应用[M].北京:清华大学出版社,1999.
    [94] 连兆惶.无土栽培[M].北京:中国农业出版社,1986.
    [95] 王新成.高级图像处理技术[M].中国科学技术出版社,2000:176-183.
    [96] Giles D K, Slaughter D C. Precision band praying with mschine vision guidance and adjustable yaw nozzles[J]. Trars of the ASAE, 1997, 40(1): 29-36.
    [97] 冯斌,汪懋华.基于颜色分形的水果计算机视觉分级技术[J].农业工程学报,2002,18(2):141-144.
    [98] S R Gunn, M S Nixon. A dual active contour for head and boundary extraction, in IEEE Colloquium on Image Processing for Biometric Measurement, London, Apr. 1994.
    [99] R Herpers, H Kattner, H Rodax and G. Sommer. Gaze: An attentive processing strategy to detect and analyze the prominent facial regions, in IEEE Proc. of Int. Workshop on Automatic Face and Gesture Recognition, Zurich, Switzedand, Jun. 1995, 214-220.
    [100] C. L. Huang and C. W. Chen, Human facial feature extraction for face in terpretation and recognition, Pattern Recognition. 1992(25), 1435-1444.
    [101] W Huang, M. Robert. Face detection and precise eyes location, in Proc. 15th Int. Conf. Pattern Recognition, Barcelona, Spain, Sep. 3-7, 2000, vol. 4, pp. 722-727.
    [102] M Hunke and A Waibel. Face locating and tracking for human computer interaction, in 28th Asilomar Conference on Signals, Systems and Computers, Monterey, CA, 1994.
    [103] X Jiang, M Binkert, B Achermann and H Bunke. Towards detection of glasses in facial images, Pattern Anal. Appl. 3, 2000, 9-18.
    [104] Z. Jing and R. Mariani, Glasses detection and extraction by deformable contour, in Proceedings of the 15th International Conference on Pattern Recognition, 2000, Vol. Ⅱ, p. 4B.
    [105] P. Juell and R. Marsh, A hierarchical neural network for human face detection, Pattern Recog. 29, 1996, 781-87.
    [106] M. Kass, A. Witkin, D. Terzopoulos. Snakes: active contour models, in Proc. of 1 st Int Conf. On Computer Vision, London, 1987.
    [107] Y H. Kwon and N. da Vitoda Lobo, Face detection using templates, in Proceedings of the 12th International Conference on Pattern Recognition 1994, pp. A, 764-767.
    [108] A. L. Yuille, P. W. Hallinan, and D. S. Cohen, Feature extraction from faces using deformable templates, Int. J. Comput. Vision 8, 1992, 99
    [109] Wnebbecke D. M, Meyer G. E, Vn Bargen K, et al. Shape features for identifying young weeds using image analysis[J]. Trans of the ASAE, 1995b, 38(1): 271-28.
    [110] Wcebbecke D. M, Meyer G. E, Von Bargen K, et al. Color indices for weed identification under various soil, residue and lighting conditions[J] Tram of the ASAE, 1995a, 38(1): 259-269.
    [111] 周水生.竞争学习向量量化和支持向量机的关键技术研究.西安电子科技大学博士学位论文,2007.
    [112] Zhang N, Chaisttapagon C. Elective criteriafor weed identification in wheat fields using machine Vision[J] TraPs of the ASAE, 1995, 38(3): 965-974.
    [113] H. P. Graf, T. Chen, E. Petajan, and E. Cosatto, Locating faces and facial parts, in IEEE Proc. of Int. Workshop on Automatic Face and Gesture Recognition, Zurich, Switzerland, Jun. 1995, 41-51.
    [114] Casady W. W, Singh N, Costello T. A. Machine vision for measurement Office canopy dimensions[J]. Trans of the ASAE, 1996, 39(5): 1891-1898.
    [115] Singh N, Casady W. W, Costello T. A. Machine vision based nitrogen management models for rice[J]. Trans of the ASAE, 1996, 39(5): 1899-1904.
    [116] C. Wurtz, R. P., Konen. Distortion invariant object recognition in the dynamic link architecture, IEEE Trans. Computer, 1993, 42, 300-311.
    [117] Jun Zhang, Yong Yan, Lades, M. Face recognition: eigenface, elastic matching, and neural nets, Proc. IEEE, 1997, 85, 1423-1435.
    [118] Krebel U. H. G. Pairwise classification and support vector machines Advances in Kernel Methods: Support Vector Learning, Cambridge, MA: MIT Press, 1999, 15: 255-268.
    [119] Platt J., Cristianini N. and Shawe Taylor J. Large Margin DAGs for Multiclass Classification Advances in Neural Information Processing Systems 12, MIT Press, 2000: 547-553.
    [120] Zavs I. Y, Hinn P. W. Detection of insects in bulk wheat samples with machine visio[J]. TraosoftheASAE, 1998, 41(3): 883-888.
    [121] Hsu chih-Wei and Lin Chih-Jen A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks 2002, 13(2): 415-425
    [122] Sistler F. E. Grading agriculture products with machine visio[R]. IEEE International Workshop on Intelligent Robots and Sytem, 1990, 255-261.
    [123] Liu Chun Fu and Wang Sheng De. Fuzzy support vector machines IEEE Transactions on Neural Networks, 2002, 13(2): 464-471.
    [124] Chen Di Rong,Xiang Dao Hong The consistency of multicategory support vector machines Advances in Computational Mathematics 24, No.1-4 (2006): 155-169
    [125]Duan K., Sathiya, Keerthi S.and Aun Neow Poo. Evaluation of Simple Performance Measures for Tuning SVM Hyper parameters Control Division Technical Report CD-01-11, Singapore, 2001
    [126] Baesens B.,Viaene S.,Van Gestel T.et al. an empirical Assessment of Kernel Type Performance for Least Squares Support Vector Machine Classification Proceedings of Fourth Ingernational conference on Knowledge-Based Intelligent Engineer system and Allied Technologies, 2000:49-54
    [127] Wahba G,Lin Y. and Ahang H. GACV for Support vector machine Advance in Latgr Margin Classifiers,MIT Press, 1999
    [128] Kowk J.T., The Evidence Framework Applied to Suppprt Vector Machines IEEE Transactin on Neural network,2000,11 (5): 1162-1173
    [129] Reyna R.A.Hernandez N.,Esteve D.et al. Segmenting images with support vector machines Proceedings 2000 International Conference on Image Processing,2000,1(1)820-823.
    [130]B.Scholkopf,S.Mika,C.J.C.Burges,etal.Input space versus feature spacein kernel based methods [J]. IEEE. Trans.Neural Networks, 1999,10(5).
    [131] Keren D.,Osadchy M. and Gotsman C.Antifaces:A novel fast method for image detection IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(7):747-761.
    [132] Vailaya A.,Zhang H. and Zhang Hong Jiang et al., Automatic image orientation detection. IEEE Transactions on Image Processing, 2002,11(7):746-755.
    [133] Guo Guo Dong,Jain A.K.,et al. Learning similarity measure for natural image retrieval with relevance feedback IEEE Transactions on Neural Networks,2002,13(4):811-820
    [134] M.Turk and A.Pentland.Eigenfaces for recognition.Journal of Cognitive Neuroscience, 1991.
    [135] Pal,M.,Mather,P.M.Support vector machines for classification in remote sensing International Journal of Remote Sensing 26,no.5 (2005): 1007-1011
    [136]Xi Dihua and Lee Seong Whan. Face detection and facial feature extraction using support vector machines Proceedings of 16~(th) International conference on Pattern Recognition 2002,4(4)209-212
    [137] Schwenker F., Kestler H.A. and Simon S. 3D object recognition for autonomous mobile robots utilizing support vector classifiers. Proceedings 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation,2001:344:349
    [138] Peter M.,Kasson,Johames B.Huppa, Mark M. Davis,Axel T.Brunger A hybrid machine-learning approach for segmentation of protein localization data Bioinformatics.Oxford:Oct1,2005,Vol.21,iss.19,pg:37-78
    [139]Yabuki Y.,Muramatsu T.,Hirokawa T.,GRIFFIN:a system for predicting GPCR-G-protein coupling selectivity using a support vector machine and a hidden Markov model Nucleic Acids Research [NLM-MEDLINE].July 1 2005.Vol.33 pg:W148
    [140] Aik Choon Tan,Daniel,Q.Naiman, Lei Xu. Simple decision rules for classifying human cancers from gene expression profiles Bioinformatics. Oxford:Oct 15,2005.Vol.21,Iss,20,pg:3896.
    [141] Jianxin Wu and Zhi-Hua Zhou. Face Recognition with One Training Image per Person.Pattern Recognition Letters,2002,vol.23, No.14,2002,1711-1719.
    [142]Aleix M. Martinez and Avinash C. Kak. PCA versus LDA. IEEE Trans.PAMI,VOL.23, 2001,228-233.
    [143] Adini Y; Moses Y,Ullman S,. Face Recognition: The Problem of Compensating for Changes in Illumination Direction, IEEE Trans. PAMI.vol.19, No.7, 1997,721-732.
    [144]M.LaCascia,S.Sclaroff,V Athitsos, Fast, reliable head tracking under varying illumination: An approach based on registration of textured-mapped 3D models,IEEE Trans. Pattern Anal. Mach. Intell. 22,2000,322-336.
    [145] K. M. Lam and H. Yan, Facial feature location and extraction for computerized human face recognition, in Int. Symposium on information Theory and Its Applications, Sydney, Australia, Nov. 1994.
    [146] A. Lanitis, A. Hill, T. Cootes, and C. Taylor, Locating facial features using genetics algorithms, in Proc. Of Int. Conf, on Digital Signal Processing,Limassol,Cyrus, 1995,520-525.
    [147] A. Lanitis,C. J. Taylor, and T. F. Cootes, Automatic tracking, coding and reconstruction of human faces, using flexible appearance models, IEEE Electron.Lett. 30, 1994, 1578-1579.
    [148] C.C.Lin and W.C.Lin, Extracting facial features by an inhibitory mechanism based on gradient distributions,Pattern Recog.29,1996, 2079-2101.
    [149] B.K.Low, Computer Extraction of Human Faces, PhD thesis, Dept. of Electronic and Electrical Engineering, De Montfort University, 1998.
    [150] F. Luthon and M. Lievin, Lip motion automatic detection, in Scandinavian Conference on Image Analysis, Lappeenranta, Finland, 1997.
    [151] S. M. Kenna, S. Gong and H. Liddell, Real-time tracking for an integrated face recognition system, in 2thd Workshop on Parallel Modelling of Neural Operators, Faro, Portugal, Nov. 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700