我国过渡带草坪禾草的根病研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草坪的根病是指危害草坪禾草根系以及匍匐茎、根状茎、根颈等器官的病害。我国中部地区处于暖季型草坪与冷季型草坪建植的过渡带,既有冷季型草坪禾草,也有暖季型草坪禾草,草坪根病发生严重,已成为制约当地草坪发展的重要因素。为了明确我国过渡带草坪根病的种类及病原菌区系,本文选取上海市、山东省、陕西省、河南省和浙江省5省市共计23个地市(区)作为代表性区域进行了系统研究,并对疑难病害和重要根病按照柯赫氏法则进行了病原学研究,主要取得了下列研究结果:
     1、过渡带草坪禾草根病有全蚀病(Gaeumannomyces graminis var. graminis)、褐斑病(Rhizoctonia spp.)、腐霉病(Pythium spp.)、镰刀菌综合症(Fusarium spp.)、弯孢霉根腐与基腐病(Curvularia spp.)、德氏霉根腐与基腐病(Drechslera spp.)、离蠕孢根腐与基腐病(Bipolaria spp.)、突脐蠕孢根腐与基腐病(Exserohilum turcicum)、黑孢霉根腐与基腐病(Nigrospora sphaerica)、茎点霉根腐与基腐病(Phoma spp.)、高尔夫果岭灰斑病(Curvularia spp.)、炭疽病(Colletotrichum graminicola)、狗牙根春季死斑病(Leptosphaeria spp.)、结缕草环斑病(Leptosphaeria spp.)、蘑菇圈等15种病害,其中褐斑病发生普遍而且严重,全蚀病在局部地区发生,属于危险性病害,狗牙根春季死斑病和炭疽病在局部地区严重发生,还有一些病害发生普遍发生但危害较轻,主要为弯孢霉根腐与基腐病、离蠕孢根腐与基腐病和镰刀菌病害等。
     2、在国内首次发现了禾顶囊壳禾谷变种(Gaeumannomyces graminis var. graminis)侵染引起的草坪全蚀病,发现地点为上海市徐汇区、浦东新区和静安区,寄主禾草为多年生黑麦草和高羊茅,4个调查地块平均发病率为16.3%,平均严重度为2.0。全蚀病是危险性病害,建议列为检疫对象,严防传播并尽快铲除。
     3、采用Person菌饼法测定了禾顶囊壳禾谷变种对6种主要草坪禾草的致病性。供试分离菌系对狗牙根和匐翦股颍的致病性最强,严重度在48.7%以上,高于对照作物水稻(38.7%)。对结缕草、多年生黑麦草、草地早熟禾和高羊茅具有中等致病性,但供试的多年生黑麦草、草地早熟禾和高羊茅中有抗病品种。禾谷变种对主要草坪禾草具有较强的致病性,今后应进一步深入研究,为草坪全蚀病的检疫、监测和防治提供依据。
     4、为了解侵染作物的全蚀病菌对主要草坪禾草的致病性,用Person菌饼法测定了禾顶囊壳燕麦变种(Gaeumannomyces graminis var. avenae)、小麦变种(Gaeumannomyces graminis var. tritici)和玉米变种(Gaeumannomyces graminis var. maydis)对9种禾草48个品种的致病性。结果玉米变种致病性最弱,症状不典型,发病率和严重度都较低。小麦变种和燕麦变种对狗牙根属和翦股颍属禾草具有高度致病性,对草地早熟禾和多年生黑麦草的部分品种也具有高度的致病性,对高羊茅、硬羊茅、加拿大早熟禾和一年生黑麦草具有中度致病性。鉴于小麦变种中国菌系的高度致病性,对草坪具有潜在威胁,需防止小麦全蚀病菌从发病麦田传入草坪。国内尚无燕麦变种发生,要严防传入。
     5、草坪褐斑病在过渡带发生非常普遍,遍及5省(市)23市(区),病草地的发病率在5%~80%之间,严重度2.0~5.0之间。鉴于草坪褐斑病在我国发生非常普遍,已经不再具有检疫的必要性。
     6、从过渡带6种禾草97份褐斑病病株标本中,分离得到了73个丝核菌分离物,用DAPI染色法进行了菌丝核相观察。供试菌株可区分为单核丝核菌Uninucleate Rhizoctonia(3株)、双核丝核菌Binucleate Rhizoctonia(20株)和多核丝核菌Multinucleate Rhizoctonia(50株)三大类,我国草坪褐斑病菌的核相类型非常丰富。单核丝核菌在我国为首次发现,也是迄今为止侵染草坪禾草的唯一报告。
     7、测定了单核丝核菌对主要草坪禾草和作物的致病性。单核丝核菌可正常侵染草坪禾草,对翦股颍属禾草的致病性最强,病情指数60.0,对结缕草、高羊茅、早熟禾、狗牙根、多年生黑麦草的致病性中等,病情指数在35.0~40.8之间。对萝卜、棉花、玉米、小麦、水稻等作物也具有致病性,对萝卜和棉花的致病性最强,病情指数分别为58.3和55.8,对小麦、水稻和玉米的致病性其次,病情指数分别为48.3、48.3和44.2。我国首次发现的单核类丝核菌对主要草坪禾草和作物都具有致病性,今后应做进一步的深入研究。
     8、按照Sneh等人对丝核菌属种的划分,根据细胞学和菌体形态学特征,对双核和多核类丝核菌进行了物种鉴定。双核丝核菌为禾谷丝核菌Rhizoctonia cerealis(20株),多核类丝核菌包括立枯丝核菌Rhizoctonia solani(43株)、水稻丝核菌Rhizoctonia oryzae(3株)和玉蜀黍丝核菌Rhizoctonia zeae(4株)三个物种。立枯丝核菌占多核类丝核菌分离物比例的86.0%,占所有褐斑病菌分离物比例的58.9%,为我国草坪褐斑病的优势病原菌。我国草坪褐斑病的病原菌物种非常复杂,水稻丝核菌和玉蜀黍丝核菌是我国草坪褐斑病菌的首次正式报道。
     9、测定了过渡带草坪褐斑病菌中的立枯丝核菌菌丝融合群。38株可明确融合群类型,分别属于AG-1(包括AG1-1A、AG1-1B)、AG-2(包括AG2-1、AG2-2IIIB、AG2-2IV)、AG-4和AG-5四个融合群类型。主要融合群类型为AG-1(14株)和AG-2(17株),占所有立枯丝核菌分离物的32.6%和39.5%,在所有调查的省份和禾草上均有发现。AG-4仅在山东烟台、威海的草地早熟禾和结缕草上发现。我国草坪禾草立枯丝核菌菌丝融合群非常丰富,国外已经报道的融合群类型在我国都有发现,并且AG1-1B和AG2-1为草坪禾草立枯丝核菌菌丝融合(亚)群的首次报道。
     10、本项研究测定了草坪褐斑病菌(包括立枯丝核菌、水稻丝核菌、玉蜀黍丝核菌、禾谷丝核菌和单核类丝核菌)对主要草坪禾草的致病性。供试菌株可正常侵染多年生黑麦草、草地早熟禾、高羊茅、结缕草、匍匐翦股颍、狗牙根等,其中所有供试菌株对匍匐翦股颍的致病性最强,病情指数在57.5以上。总体来看,各丝核菌菌株之间的致病性有差异,立枯丝核菌的致病力较强,其他丝核菌物种间的致病力差异较小。同时还测定了对主要作物(小麦、水稻、玉米、棉花、萝卜)的致病性,发现褐斑病菌对萝卜和棉花的致病性最强,病情指数分别在58.3和51.7以上,立枯丝核菌对水稻也具有非常强的致病性,病情指数为71.7。不同褐斑病菌物种对主要草坪禾草和作物都具有较强的致病性,草坪褐斑病作为检疫性病害,病原菌的检疫名单上只有立枯丝核菌一个物种,通过调查研究结果和致病性测定结果可知,这已经不能反应我国草坪褐斑病病原菌的事实,因此建议对检疫名单进行修订补充。
     11、根据丝核菌的物种鉴定结果和立枯丝核菌融合群的测定结果,选取不同地区和寄主的草坪褐斑病菌菌株,进行了ITS序列聚类分析。供试菌株的ITS序列聚类与无性态的形态鉴定结果一致,与立枯丝核菌菌丝融合群的测定结果在AG-2和AG-4菌株间有差异。这是我国草坪褐斑病菌ITS序列的首次测定,测定结果与形态鉴定和菌丝融合群测定结果具有相关性。
     12、弯孢菌(新月弯孢Curvularia lunata和不等弯孢Curvularia inaequalis等)侵染匍匐翦股颍果岭后,造成明显的病草地斑症状,影响果岭景观,降低球场使用寿命。高尔夫果岭灰斑病为高尔夫球场果岭上的新症状类型病害,应加强防治和监测。
     13、草坪炭疽病在陕西杨凌地区严重发生危害,狗牙根春季死斑病为上海地区狗牙根草坪的主要病害。这2种病害在局部地区发生严重,建议对当地病草坪加强管理,防止其向其他地区传播危害。
     本文揭示了我国过渡地区草坪禾草根病害的发生情况,对危害严重的全蚀病和褐斑病进行了详细的研究。研究结果填补了我国草坪根病系统研究的空白,为草坪根病的进一步深入研究提供了基本的资料,为包括草坪全蚀病在内的重要病害提供了检疫、监测和防治的基本依据。
The root diseases of turf is that which pathogen infects root , stolon, rhizome, crown and base of shoot. The serious root diseases, occurred in transitional zone of warm-season turf and cool-season turf, had became an important factor restricting the development of turf. The occurrence of root diseases in transitional zone, included 23 counties from 5 provinces (Shanghai, Shandong, Shaanxi, Zhejiang and Henan), were surveyed , and pathogens were identified. Etiological study were conducted for new diseases and important diseases followed Koch’s rule. the following main results were obtained.
     1. The root diseases occurred in transitional zone included take-all disease, brown patch, Pythium blight, Fusarium disease, Curvularia disease, Drechslera disease, Bipolaris disease, Exserohilum disease, Nigrospora disease, Phoma disease, Golf Green gray patch, anthracnose, spring dead spot, Zoysia ring spot and fairy ring. The brown patch occurred widely and seriously, take-all disease occurred locally and dangerously, spring dead spot and anthracnose occurred locally and seriously, Curvularia disease, Bipolaris disease and Fusarium disease occurred widely but not seriously.
     2. The take-all patch disease was first found on the turf-grasses of Lolium perenne and Festuca arundinacea in Xuhui, Pudong and Jing’an region, Shanghai, which caused by the pathogen of Gaeumannomyces graminis var. graminis. The average incidence and severity were 16.3% and 2.0 respectively. The take-all disease was dangerous, and it was advised to quarantine and eradicate.
     3. The pathogenicity of Ggg to main turf-grasses was evaluated by Person procedures, The tested pathogen had the high pathogenicity to Cynodon dactylom and Agrostis palastris, which severity was more than 48.7%, higher than 38.7% of rice(CK), and moderate pathogenicity to Zoysia japonica, Lolium perenne, Festuca arundinacea and Poa pratensis, but there were resistant cultivars in Lolium perenne, Festuca arundinacea and Poa pratensis. Further research on the take-all disease should be conducted to obtain a basis for quarantine, monitoring and control in future because Ggg had high pathogenicity to main turf-grasses.
     4. Pathogenicity of Gaeumannomyces graminis, including Gga, Ggt and Ggm, to 9 turf-grasses ( 48 cultivars ), were evaluated by Person procedures. The results showed that Ggm had the low pathogenicity with the untypical symptoms and low incidence and severity. Ggt and Gga had the high pathogenicity to Cynodon dactylom and Agrostis palastris, as well as several cultivars of Lolium perenne and Poa pratensis, moderate pathogenicity to other tested turf-grasses. Chinese isolates of Ggt should be controlled to prevent their dispersal from wheat field to turf because of its high potential of pathogenicity, Gga had not occurred in China and quarantine should be conducted.
     5. The brown patch occurred widely in transitional zone, distributed 23 counties of 5 provinces, the average incidence and severity were 5% ~ 80% and 2.0 ~5.0 respectively. The brown patch was not necessary to be quarantined in China because of its widely occurring range.
     6. 73 isolates of Rhizoctonia were obtained from 97 specimen, 6 species of infected turf-grasses, The nuclei were stained to determine the number in vegetative hyphal cells by DAPI staining nuclear technique. Uninucleate Rhizoctonia(3), binucleate Rhizoctonia(20) and multinucleate Rhizoctonia(50) were distinguished among the tested Rhizoctonia isolates. The uninucleate Rhizoctonia was first recorded in China, and the turf-grasses were its new hosts.
     7. The pathogenicity of uninucleate Rhizoctonia to main turf-grasses and crops was evaluated. The pathogen could infect all the tested turf-grasses, and had the most strong pathogenicity to Agrostis palastris with the disease index of 60.0, the moderate pathogenicity to Lolium perenne, Zoysia japonica, Festuca arundinacea, Poa pratensis, Cynodon dactylom with the disease index between 35.0 ~ 40.8. It also had pathogenicity to Triticum aestivum, Zea mays, Oryza sativa, Gossypium hirsutum, Raphanus sativus, the pathogenicity to Gossypium herbaceum and Raphanus sativus was high with disease index 58.3 and 55.8, and that was middle to Oryza latifolia, tritici and maydis with disease index 48.3, 48.3 and 44.2. The uninucleate Rhizoctonia, found first in China, had pathogenicity to turf-grasses and crops, which should be researched more in future.
     8. The binucleate Rhizoctonia and multinucleate Rhizoctonia were identified based on the cyto-morphology of hyphae and the morphology of cultures followed Sneh procedures. All the binucleate Rhizoctonia isolates were Rhizoctonia cerealis(20). Rhizoctonia solani(43)、Rhizoctonia oryzae(3)and Rhizoctonia zeae(4)were distinguished among the multinucleate Rhizoctonia. Rhizoctonia solani were the preponderant pathogen which were the multinucleate Rhizoctonia proportion of 86%, and all brown patch isolates proportion of 58.9%. The pathogens of brown patch disease were complex greatly, Rhizoctonia oryzae and Rhizoctonia zeae were first report to be the pathogen of brown patch formally in China.
     9. Anastomosis group testing of Rhizoctonia solani from the transition zone turf-grasses were conducted by Parmeter’s methods. 4 anastomosis groups, AG-1(AG1-1A and AG1-1B),AG-2(AG2-1, AG2-2IIIB and AG2-2IV), AG-4 and AG-5, were confirmed among the 38 Rhizoctonia solani isolates of turf-grasses. AG-1 and AG-2, Rhizoctonia solani isolates proportion of 32.6% and 39.5% respectively, were the dominant anastomosis group and isolated from all the turf-grasses and provinces. AG-4 was isolated from Zoysia japonica and Poa pratensis, only in Yantai city and Weihai city, Shandong province. The anastomosis group types of brown patch pathogen in China were complex, the anastomosis group reported in foreign country also occurred in China. AG1-1B and AG2-1 is the first reported anastomosis sub-group of Rhizoctonia solani infecting turf-grasses.
     10. The pathogenicity of uninucleate Rhizoctonia, binucleate Rhizoctonia, Rhizoctonia solani、Rhizoctonia oryzae and Rhizoctonia zeae, to main turf-grasses were tested. All the tested isolates could infest Lolium perenne, Zoysia japonica, Festuca arundinacea, Poa pratensis, Agrostis palastris, Cynodon dactylom, and had the high pathogenicity to Agrostis palastris with above disease index of 57.5. The difference of pathogenicity among all the tested pathogen was slight except that Rhizoctonia solani had higher pathogenicity than others. The pathogenicity of all the pathogens to crops, Triticum aestivum, Zea maydis, Oryza sativa, Gossypium hirsutum, Raphanus sativus, was also tested. The pathogenicity to Gossypium hirsutum and Raphanus sativus was high with disease index of 58.3 and 51.7, Rhizoctonia solani had high pathogenicity to Oryza sativa with disease index of 71.7, All the pathogens of brown patch disease had high pathogenicity to main turf-grasses and crops, therefore the list of pathogen needed to be quarantined should be modified because only one pathogen of Rhizoctonia solani on the quarantine list had not illuminated the fact of brown patch pathogens based on the survey results and pathogenicity results.
     11. The brown patch pathogens were selected to analyz the ITS sequence according to the identification and anastomosis group. the ITS cluster was consistent with asexual state morphology, and had the different anastomosis group with AG-2 and AG-4. This was the first mensuration of brown patch pathogen ITS in China, and the results were relative with morphology and anastomosis groups.
     12. The Curvularia pathogen, including Curvularia lunata and Curvularia inaequalis etal., infected the Green of Golf(Agrostis palastris), caused serious symptom which could destroy the landscape of Green, lower the course life, and control and monitoring should be strengthened.
     13. The anthracnose occurred seriously in Yangling, Shaanxi province, spring dead spot was the major disease in Shanghai bermudagrass turf. These two diseases were of importance locally, management and monitoring measure should bedone to prevent their dispersal.
     The occurrence and importance of turf-grass root diseases in transitional zone, were revealed by this project, and two serious diseases, take-all and brown patch, were studied in detail. The results filled a gap of understanding turf root disease in China, and provides the basic information for further in-depth study on turf diseases, as well as the fundamental for quarantine, monitoring and control of root diseases.
引文
[1] Nick Christians. Fundamentals of Turf-grass Management [M]. oxford; John Wiley & Sons Inc; 2Rev Ed edition, 2003,1~368.
    [2] 韩烈保主编. 草坪全景系列丛书[M]. 北京: 中国林业出版社, 1999.
    [3] 孙吉雄. 草坪技术指南[M]. 北京: 科学技术文献出版社, 2002..
    [4] http://www.golf.org.cn/.
    [5] 戴芳澜. 中国真菌总汇[M]. 北京: 科学出版社,1979.
    [6] 姜广正. 中国禾本科植物上的蠕形菌(Helminthosporium). 植物病理学报, 1959, 5(1): 23~34.
    [7] 王云章. 中国黑粉菌[M]. 北京: 科学出版社, 1964.
    [8] 俞大绂. 中国镰刀菌属(Fusarium)菌种的初步名录. 植物病理学报, 1955, 1(1): 1~17.
    [9] 郑儒泳, 余永年.中国真菌志 第一卷(白粉菌目)[M]. 北京: 科学出版社, 1987.
    [10] 殷恭毅, 杨志胜. 中国霜霉属的研究 真菌地衣学会讨论会交流资料, 1986.
    [11] 赵震宇. 新疆白粉菌志[M]. 乌鲁木齐: 新疆人民出版社, 1979.
    [12] 戚佩坤, 白金铠, 朱桂香. 吉林省栽培植物真菌病害志[M]. 北京: 科学出版社, 1966.
    [13] 侯天爵. 内蒙甘肃宁夏禾本科牧草病害的调查报告[J]. 中国草原, 1980, 2: 45~47.
    [14] 贾菊生, 胡守智. 新疆经济植物真菌病害志[M]. 乌鲁木齐: 新疆科技卫生出版社, 1994.
    [15] 刘若, 侯天爵. 我国北方豆科牧草真菌病害初步名录[J]. 中国草原, 1984, 1: 56~60.
    [16] 陶家凤. 类霜霉属的承认及中国的类霜霉属[J]. 云南农业大学学报, 1991, 6(3): 129~135.
    [17] 陶家凤, 余永年. 中国盘霜霉属在菊科植物上的分类单元[J]. 真菌学报, 1992, 11(2): 89~95.
    [18] 商鸿生. 白三叶草壳多孢叶斑病的研究简报[J]. 草业学报, 1994, 3(2): 81.
    [19] 商鸿生, 吕学农. 草坪早熟禾叶枯病病原真菌鉴定[J]. 中国草地, 1996, (4): 36~39.
    [20] 商鸿生, 魏惠军, 赵小明. 沙打旺黄萎病的病原学研究, I 病原菌的分类地位和致病性[J]. 草业学报, 1996, 5(2): 18~23.
    [21] 商鸿生, 杨家荣, 赵小明. 苜蓿黄萎病菌与轮枝孢属近似种的比较研究[J]. 草业学报, 1998, 7(4): 32~37.
    [22] 商鸿生, 王美南, 禾顶囊壳小麦变种对草坪禾草的致病性[J], 草业学报, 2000, Vol. 9, No. 4 : 40~43.
    [23] 商鸿生. 三叶草种传匐柄霉的吸水纸培养检验法[J]. 草业学报, 1993, 2(4): 44~46.
    [24] 商鸿生. 鸭茅直喙孢云纹斑病的发现与病原菌鉴定[J]. 草业科学, 1992, 9(5): 5~6.
    [25] 石仁才, 商鸿生, 王美南. 禾顶囊壳两个变种对草坪禾草的致病性比较[J]. 草业学报, 2002, 11(4): 52~56.
    [26] 魏惠军, 商鸿生. 沙打旺黄萎病的病原学研究, III 不同寄主来源的大丽轮枝孢对沙打旺和苜蓿的致病性[J]. 草业学报, 1996, 7(3): 41~45.
    [27] 魏惠军, 商鸿生 沙打旺黄萎病的病原学研究, II 病原菌生长与温度、酸碱度和营养的关系[J]. 草业学报, 1998, 5(3): 18~21.
    [28] 杨家荣, 商鸿生, 李月仁. 苜蓿黄萎病病原菌研究[J]. 草业学报, 1997, 6(3): 42~45.
    [29] 杨家荣, 商鸿生, 李月仁. 苜蓿品种对黄萎病的抗病性鉴定[J]. 西北农业大学学报, 1997, 25(5): 100~102.
    [30] 南志标. 沙打旺种带真菌--环境、致病力及防治[J]. 草业学报, 1998, 7(1): 12~18.
    [31] 王英祥, 张中义, 刘云龙. 云南霜霉菌研究初报[J]. 云南植保, 1985, 4: 12~19.
    [32] 王英祥, 张中义, 刘云龙等. 中国白锈菌科分类研究Ⅳ, 藜科上一新记录种及菊科上的已知种[J]. 云南农业大学学报, 1989, 4(3): 222~229.
    [33] 张中义, 王英祥. 中国白锈菌科分类研究初报[J]. 西南农学院学报, 1981, 4: 32~43.
    [34] 张中义, 王英祥, 刘云龙. 中国白锈菌科分类研究Ⅲ. 茄科上一新种及苋科上的已知种[J]. 真菌学报, 1986, 5(2): 65~69.
    [35] 吴文平. 几种具纤毛分生孢子的腔孢菌[J]. 真菌学报, 1993, 12(1): 34~40.
    [36] 吕国忠, 于莉, 白金铠等. Phoma 和 Phyllostieta 两属的新种及国内新记录种, 中国菌物学会成立大会学术研讨会论文及论文摘要, 1993, P115~116.
    [37] Lanklow R K, Grothous G D ,Miler S A. Immunassays for crop management systems and agricultural chemistry. Biotechnology in Agricultural Chemistry[J]. Acs. Symposium Series ,1987 ,334 :229~252.
    [38] Rittenberg J R , Petersen F P , Grothaus G D, et al . Development of a rapid, field usable immunoassay format for detection and quantitation of Pythium , Rhizoctonia and Sclerotinia spp. in plant tissue[J ] . Phytopathology , 1988 , 78 : 1516.
    [39] Baldwin N A. Evaluation of turf-grass disease diagnostic test kits in Europe [ A ] . International Turf-grass Society Research Journal 7. Overland Park, Kansas[C]. Intertec Publishing Crop., 1993. 342~348.
    [40] Annamalai P., Ishii H., Lalithakumari D., Revathi R. Ploymerase chain reaction and its applications in fungal disease diagnosis[J]. Z. Pflanzenkr. Pflanzenschutz, 1995, 102: 91~104.
    [41] Dewey F. M.Detection of plant-invading fungi by monoclonal antibodies. See Ref, 1992, 43: pp. 47~62.
    [42] Dong L. C., Sun CW., Thies K. L., Luthe D. S. & Graves C. H. jr. Use of polymerase chain reaction to detect pathogenic strains of Agrobacterium[J]. Phytopathology ,1992,82: 434~439.
    [43] Rowhani A., Chay C., Golini D. A. & Falk B. W.. Development of a Polymerase Chain Reaction technique for the detection of Grapevine Fanleaf Virus in grapevine tissue[J]. Phytopathology, 1993, 83: 749~753.
    [44] Schesser K., Luder A., and Henson J. M.. Use of polymerase chain reaction to detect the take-all funguns, Gaeumannomyces graminis, in infected wheat plants[J]. Appl. Environ. Microbiol, 1991, 57: 553~556.
    [45] Schubert R., Bahnweg G., Nechwatal J., Jung T., Cooke D. E. L., et al.. Detection and quantification of Phytophthora species in European deciduous forests by species-specific polymerase chain reaction[J]. Eur. J. For. Pathlo, 1999, 29: 169~188.
    [46] Volossiouk T., Robb E. J., Nazar R. N.. Direct DNA extraction for PCR-mediated assays of soil organisms[J]. Appl. Environ. Microbiol. 1995, 61: 3972~3976.
    [47] Driver,felice,Milner,richard J.and Trueman,John W.H.A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data[J]. Mycol. Res, 2000, 104(2):134~150.
    [48] Baayen R. P., O’Donnell K., Breeuwsma S., Geiser D. M., and Waalwijk C. Molecular relationships of fungi within the Fusarium redolens-F. hostae clade[J]. Phytopathology, 2001,91: 1037~1044.
    [49] Bruns, TD, Vilgalys, R, Bruns, SM, et al Evolutionary relationships within the fungi: analysis of nuclear small subunit rRNA sequence. Molecular Phylogenetics Evolution, 1992, 1: 231-241.
    [50] Muirl, Graham, Christian Schlotterer, 1999 at Http://webdoc.gwdg.de/ebook/y1999/whichmarker /mll/Chap11.htm.
    [51] Winter PC, Hickey GI, Fletcher HL. 主编. 遗传学. 北京: 科学出版社, 1999, P27.
    [52] Elder JR, Turner BJ. Concerted evolution of repetitive DNA sequence in eukaryotes. Quart. Rev. Biol., 1995, 70: 297~31.
    [53] Hsiao C, Chatterton NJ, Asay KH, Jensen KB, Phylogenetic relationships of the mono species of wheat tribe, Triticeae ( Poaceae ) based on nuclear rDNA ( ITS ) sequence. Theor. Appl. Genet., 1995, 90: 389~398.
    [54] Ainouche ML, Bayer R.. On the origins of the tetraploid Bromus species ( section Bromus, Poaceae ): insights from internal transcribed spacer sequences of nuclear ribosomal DNA. Genome, 1997, 730~743.
    [55] Beck Ligon J M. Polymerase chain reaction assays for the detection of the detection of Stagonospora nodorum and Septoria t ritici in wheat [J ] . Phytopathology , 1995 , 85 : 319~324.
    [56] Fraaije B A , Lovell D J , Coelho J M ,et al . PCR based assays to assess wheat varietal resistance to blotch ( S eptoria t ri tici and S tagonos pora nodorum) and rust ( Puccinia st ri i f ormis and Puccinia recondi ta) diseases [J ] . European Journal of Plant Pathology ,2001 ,107 :9052917.
    [57] Takamat su S , Nakano M , Yokota H ,et al . Detection of Rhizoctonia. solani AG2222IV , the causal agent of large patch of zoysiagrass , using plasmid DNA as a probe[J ] . Annals of the Phytopathological Society of J apan , 1998 , 64 (5) : 4512457.
    [58] Bailey AM, Mitchell DJ, Manjunath KL, et al. Identification to the species level of the plant pathogens Phytophthora and pythium by using unique sequence of the ITS1 region of ribosomal DNA as capture probes for PCR ELISA. FEMS Microbiology Letters, 2002, 207: 153~158.
    [59] Grimm C, Geisen R. A PCR-ELISA for the detection of potential fumonisim producing Fusarium species. Lett. Appl. Microbiol. 1998, 26: 456~462.
    [60] Fabirtius A. L., Shattock R. C., and Judelson H. S. Genetic analysis of metalaxyl insensitivity loci in Phytophthora infestans using linked DNA markers. Phytopathology ,1997,87: 1034~1040.
    [61] Schots A., Dewey F. M., Oliver R. P., ed.. Modern Assays for Plant Pathogenic Fungi: Identification, Detection and Quantification. Wallingford, UK: CAB Int. 1994,267 pp.
    [62] Tisserat N. A., Hulbert S. H., and Sauer K. M.. Selective amplification of rDNA internal transcribed spacer regions to detect Ophiosphaerella korrae and O. herpotricha. Phytopathology, 1994,84: 478~482.
    [63] Le Cam B., Devaux M., and Parisi L. Specific polymerase chain reaction identification of Venturia nashicola using internally transcribed spacer region in the ribosomal DNA. Phytopathology ,2001,91: 900~904.
    [64] Mazzaglia,angelo,Anselmi,naldo,Gasbarri,andrea and Vannini, andrea. Development of a Polymerase Chain Reaction (PCR) assay for the specific detection of Biscogniauxia mediterranea living as an endophyte in oak tissue.Mycol.Res,2001,105(8):952~956.
    [65] Cooke DEL, Drenth A, Dumcan JM, et al. A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet. Biol. 2000, 30:17~32.
    [66] Briard M., Dutertre M., Rouxel F, et al. Ribosomal RNA sequence divergence within the Pythiaceae. Mycological Research, 1995, 99:1119~1127.
    [67] Paul B, Masih I. ITS1 region of the nuclear ribosomal DNA of the mycoparasite Pythium periplocum, its taxonomy and its comparison with related species. FEMS Microbiol Letters, 2000, 189:61~65.
    [68] Kageyama K, Ohyama A, Hyakumachi M. Detection of Pythium ultimum using PCR with species-specific primers. Plant Disease, 1997, 81:1155~1160.
    [69] Chan SP, Makoto K, Hideomi A. Detection of the red rot disease fungi Pythium spp. by PCR. Fisheries Science, 2001, 67: 197~199.
    [70] Wang PH, Wang YT, White JG. Species-specific PCR primers for Pythium developed from ribosomal ITS1 region. Letters in Applied Microbiology, 2003, 37:127~132.
    [71] 商鸿生, 王凤葵 草坪病虫害及防治[M] 北京: 中国农业出版社, 1996.
    [72] Catherine AY. Turf-grass Diseases and Associated Disorders [M]. Yorkshire. The Sports Turf Research Institute Press. 1998, 1~59.
    [73] Clarke BB and Gould AB. Turfgrass Patch Diseases Caused by Ectotrophic Root Infecting Fungi[M]. St. Paul Minnesota. American Phytopathological Society Press. 1993, 1~70.
    [74] Couch HB,. Disease of Turf-grasses. 2nd . Huntington, Krieger Publishing Com.. 1973, 1~348.
    [75] Couch, HB.. Diseases of turfgrasses, 3rd [M]. Huntington, Krieger Publishing Com.. 1995, 1~434.
    [76] Richard WS, Peter HD and Bruce BC, . Compendium of Turf-grass Disease. 2nd. St. Paul Minnesota. American Phytopathological Society Press. 1992, 1~102.
    [77] Toshikazu T, James B, Beard. Color Atlas of Turfgrass Diseases on Golf Courses[M]. Hardcover. Ann Arbor Press. 1997, 1~140.
    [78] Zhang M and Dernoeden PH.. Rhizoctonia solani anastomosis groups and other fungi associated with brown patch-affected turf-grasses in Maryland. International Turf-grass Society Research Journal, 1997, 8: 959~969.
    [79] 董爱香, 胡林, 赵美琦等. 草地早熟禾不同品种对褐斑病抗性的差异[J]. 草地学报, 2003, 11 (1): :39~41.
    [80] 韩烈保, 牟新待. 兰州地区草坪病害及防治[J ]. 北京林业大学学报, 2000, 22 (2): 1~5.
    [81] 袁秀英, 韩艳洁, 宁瑞些等. 呼和浩特市草坪草的主要病害[J]. 中国草地, 2000, (6): 70~71.
    [82] Nick Christians. Fundamentals of Turfgrass Management[M]. Hardcover. John Wiley & Sons Inc. 2003, 1~140.
    [83] Stewart Brown. Sports Turf and Amenity Grassland Management[M]. Crowood: The Crowood Press Ltd. 2005, 1~140.
    [84] Alfred J. Turgeon. Turfgrass Management[M]. Prentice Hall; 7Rev Ed edition, 2004.
    [85] Robert DE., Turfgrass Science and Management[M]. Delmar; 3Rev Ed edition. 2000, 1~576.
    [86] 马忠华, 徐传祥, 陈文峻等. 上海地区冷季型草坪草主要病害鉴定及防治策略[J]. 复旦学报, 1999, 38(5): :553~556.
    [87] Nair MG,Vargas Joseph M , Powell Jon F, et al . Method for cont rolling fungal diseases in turf-grasses [J]. Journal of Cleaner Production, 1998, (6) :73.
    [88] 晁龙军, 单学敏, 车少臣等. 草坪褐斑病病原菌鉴定、流行规律及其综合控制技术的研究[J]. 中国草地, 2000, (4): 42~47.
    [89] 张敬泽, 商鸿生. 草地早熟禾和高羊茅病原丝核菌的物种鉴定[J]. 草业学报, 2003, 12(4): 31~34.
    [90] 钱振官, 沈国辉, 张繁琴, 杨烈, 罗勤辉. 上海地区高羊茅草坪褐斑病的发生及防治研究[J]. 草原与草坪, 2003, 3(102):39~41.
    [91] 严巍, 徐颖, 李跃忠, 池杏珍. 高羊茅褐斑病的初步研究[J]. 上海交通大学学报(农业科学版), 2003, 21(增刊): 71~74.
    [92] 习平根,李梅辉等. 狗牙根草坪草真菌病害的病原菌鉴定[J]. 华南农业大学学报, 2005, 26(2): 31~34.
    [93] York-K. Take-all patch in cereals and amenity turf. Inteernational Turf grass Bulletin. 1996, No. 193, 29-30
    [94] Doling JW, Lewis SJ. Occurrence of take-all in cooksfoot and other grasses. Plant Pathology. 1955,8, 167-172
    [95] Wilkinson-HT; Pedersen-D. Gaeumannomyces graminis var. graminis infecting St. Augustinegrass in selection in southern California. Plant-Disease. 1993, 77 : 5, 536; 2 ref.
    [96] Brooks, D.H. Wild and cultivated grasses as carriers of the take-all fungus ( Ophiobolus graminis ). Ann. Appl. Biol, 1965, 55: 307~316.
    [97] Deacon. J.W. . Factors affecting occurrence of the Ophiobolus patch disease of turf and its control by Phialophora radicicola Pl. Path.1973a, 22. 149~155.
    [98] Deacon. J.W. . Phialophora radicicola and Gaeumannomyces graminis on roots of grasses and cereals. And cereals. Trans. Br. Mycol. Soc. 1973b, 61, 471~485.
    [99] Gould, C.J. Goss, R.L. Eglitis, M. Ophiobolus patch disease of turf in Western Washington. Pl. Dis. Reptr. 1961, 45: 296~297.
    [100] Datnoff-LE; Elliott-ML; Krausz-JP. Cross pathogenicity of Gaeumannomyces graminis var. graminis from Bermudagrass, St. Augustinegrass and rice in Florida and Texas. Plant-disease. 1997, 81 : 10, 1127~1131; 18 ref.
    [101] Elliott,-M.L. Determination of an etiological agent of bermudagrass decline. Phytopathology. St. Paul, Minn.: American Phytopathological Society. Nov 1991. v. 81 ( 11 ) p. 1380~1384.
    [102] Elliott,-M.L. Effect of systemic fungicides on a bermudagrass putting green infested with Gaeumannomyces graminis var. graminis. : Plant-dis. [St. Paul, Minn., American Phytopathological Society]. 1995, Sept . v. 79 ( 9 ) p. 945~949.
    [103] McCarty,-L.B.; Lucas,-L.T.; Dipaola,-J.M. Spring dead spot occurrence in bermudagrass following fungicide and nutrient applications. HortScience. Alexandria, Va,: The American Society for Horticultual Science. 1992, Oct . v. 27 ( 10 ) p. 1092~1093.
    [104] Wilkinson-HT; Kane-RT. Gaeumannomyces graminis var. graminis infecting Zoysiagrass in Illinois.: Plant-Disease. 1993, 77 : 1, 100; 1 ref.
    [105] 陈厚德, 王崇明, 于平, 王彰明 江苏小麦全蚀病生物学特性的初步研究. 江苏农学院学报, 1997, 18(1): 65~68.
    [106] 高示仁, 吴洵耻, 时星奎 小麦全蚀病发病条件调查研究. 山东农业大学学报, 1995, 26(1): 93~88.
    [107] 郝祥之, 段剑勇, 李林等. 小麦全蚀病及其防治[M]. 上海: 上海科学技术出版社, 1982.
    [108] 贾廷祥, 吴桂本, 叶学昌等. 我国小麦全蚀病菌的变种类型及其分布的初步研究[J]. 浙江农业大学学报, 1986, 12(4): 66~175.
    [109] 贾廷祥, 吴桂本, 叶学昌等. 我国小麦全蚀病病菌的初步研究[J]. 中国农业科学, 1982, 15(4): 65~73.
    [110] 师存恩. 小麦全蚀病病害流行及预测研究[J]. 内蒙古农业科技, 1995(5).
    [111] 盛秀兰, 全秀琳, 郑果, 杨风琪 甘肃小麦全蚀病变种类型的鉴定及其生物学特性[J]. 甘肃农业科学, 1996, (1): 37~39.
    [112] 姚健民, 王永成, 牛有缸 全蚀病菌玉米上的新变种[J] 真菌学报, 1992, 11(2): 99~104.
    [113] Augustin C, Jacob H-J, Werner A. Effects on growth of wheat plants on isolates of Gaeumonnomyces-Phialophora complex fungi in different conditions of soil, moisture, temperature, and photoperiod. European Journal of Plant Pathology. 1997, 103: 417~426.
    [114] Smith JD. Fungi and turf disease. 6. Ophiobolus Patch Disease. Journal of Sports Turf Research Institute. 1956, 9. 180.
    [115] Speakman J.B. A simple reliable method of producing perithecia of Gaeumannomyces graminis var. tritici and application to isolates of Phialophora. Trans. Br. Mycol. Soc, 1982, 79: 350-353.
    [116] Weste. G. Factors affecting vegetative growth and the production of perithecia in culture by Ophiobolus graminis I. Variations in media and age of mycelium. Aust. J.BOT. 1970a, 18, 1~10.
    [117] Weste. G. Factors affecting vegetative growth and the production of perithecia in culture by Ophiobolus graminis II. Variations in light and temperature. Aust. J.BOT. 1970b, 18, 11~28.
    [118] Walker. J.. Take-all disease of Gramineae: a review of recent work. Rev. PLPath. 1975, 54. 113~144.
    [119] Asher MJC, Shipton PJ. Biology and control of take-all [M]. London: Academic Press, 1981, 433~448.
    [120] Turner, E.M Ophiobolus graminis Sacc. Var. avenae var. n., as the cause of take-all or white-heads of oats in Wales. Trans. Br. Mycol. Soc.1940, 24, 269~281.
    [121] Arx. J. A von and Oliver. D.L. The taxonomy of Ophioboius graminis Sacc. Trans. Br. Mycol. Soc. , 1952, 35. 29~33.
    [122] Dennis, R.W.G.. Occurrence of Ophiobolus graminis var. avenae on wheat crops in the field. Ann. Appl. Biol. 1944, 31, 100~101.
    [123] Tullis, E.C. . Ophiobolus oryzinus, the cause of a rice disease in Arkansas. J. agric. Res. 1933, 46. 799~806.
    [124] Veerarghvavn, J . Occurrence of “black sheath rot” disease of rice caused by Ophiobolus oryziums Sacc. In India . Indian Phytopath. 1962, 15. 14~17.
    [125] Walker, J. Take-all diseases of Gramineae: a review of recent work. Rev. Pl. Path. 1975, 54: 113~144.
    [126] Walker. J. . Type studies on Gaeumannomyces graminis and related fungi. Trans. Br. Mycol. Soc. 1972, 58. 427~457.
    [127] Walker. J.. Take-all disease of Gramineae: a review of recent work. Rev. PLPath. 1975, 54. 113~144.
    [128] Turner, E.M Ophiobolus graminis Sacc. Var. avenae var. n., as the cause of take-all or white-heads of oats in Wales. Trans. Br. Mycol. Soc.1940, 24, 269~281.
    [129] Wilkinson-HT; Kane-RT. Gaeumannomyces graminis var. graminis infecting Zoysiagrass inIllinois.: Plant-Disease. 1993, 77 : 1, 100; 1 ref.
    [130] Fellows H. Some chemical and morphological phenomena attending infection of the wheat plant by Ophioboluls graminis. Journal of Agricultural Research. 1928, 37:647~661.
    [131] Garrett. S.D. And Dennis. R.W.G. Note on the occurrence of Ophiobolus graminis Sacc. Var. avenae E.M. Turner in Scotland in 1942. Trans. Br. Mycol. Soc. 1934, 26, 146~147.
    [132] Deacon. J.W. . Phialophora radicicola and Gaeumannomyces graminis on roots of grasses and cereals. And cereals. Trans. Br. Mycol. Soc. 1973b, 61, 471~485.
    [133] Landschoot, P.J. and Jackson, N, Gaeumannomyces crustans sp. Nov. a root-infecting hyphopodiate fungus from grass roots in the United States. Mycological Research 93 1989, ( 1 ) 55~58.
    [134] Walker. J.. Gaeumannomyces. Linocarpon. Ophiobolus and several other genera of scolecospored Ascomycetes and Phialophora conidial states. With a note on hyphopodia. Mycotaxon. 1980, 11. 1~129.
    [135] Fellows H. Some chemical and morphological phenomena attending infection of the wheat plant by Ophioboluls graminis. Journal of Agricultural Research. 1928, 37:647-661
    [136] Wong, P.T.W and Walker, J. Germinating phialidic conidia of Gaeumannomyces graminis and Phialophora-like fungi from Graminese. Trrans. Br. Mycol. Soc. 1975, 65, 41~47.
    [137] Ward E. and Bateman.G.L. Comparison of Gaeumannomyces and Phialophora-like fungal pathogens from maize and other plants using DNA methods. New Phytol. 1999, 141, 323~331
    [138] Chambers, S.C. Nuclear distribution in vegetative cells of Ophiobolus graminis and other cereal root pathogens. Aust. J. boil. Sci.1970b, 23, 1105~1107.
    [139] Turner, E.M. Inhibition of growth and respiration of Ophiobolus graminis var. avenae and Aspergillus niger by cystion. Nature, lond. 183, 1959, 1130~1131.
    [140] Willetts, H.J. A comparison between Ophiobolus graminis and Ophiobolus graminis var. avenae. Trans. Br. Mycol. Soc. 1961, 44, 504~510.
    [141] Walker. J. . Type studies on Gaeumannomyces graminis and related fungi. Trans. Br. Mycol. Soc. 1972, 58. 427~457.
    [142] 姚健民, 李秀琴 我国北方玉米全蚀病菌变种类型研究 植物病理学报, 1994, 25(2): 127~132.
    [143] Brooks, D.H.. Wild and cultivated grasses as carriers of the take-all fungus ( Ophiobolus graminis ). Ann. Appl. Biol.1965, 55, 307~316.
    [144] Doling JW, Lewis SJ. Occurrence of take-all in cooksfoot and other grasses. Plant Pathology. 1955, 8, 167~172.
    [145] Du Plessis SJ, Nortje JH. Susceptibility of wheat and rye varieties and grass species to Ophiobolus graminis Sacc. Scietific Bullitin. Union of South Africa Department of Agriculture. 1951, 328, 19pp.
    [146] Garrett SD. Soil condition and the take-all disease of wheat. VII. Survival of Ophiobolus graminis on the roots of different grasses. Annals of Applied Biology. 1921, 28, 325~332.
    [147] Nilsson HE. Studies of root and root rot disease of cereals and grasses, on resistance to Ophiobolus graminis Sace. Ianbruks – Hogskolans Annaler. 1969, 35, 225~280.
    [148] Juhnke MD, Mathre DE, Sanda DC. A selective medium for Gaeumannomyces graminis var. tritici.Plant Disease,1984 ,68: 233~236.
    [149] Duffy,B.K.,and Weller,D.M.A semiselective and diagnostic medium for Gaeumannomyces graminis var.tritici.Phytopathology,1994,84:1407~1415.
    [150] Maas,erna M.C.,Elritha van zyl,Steyn,P.L. and Kotze,J.M..Comparision of soluble proteins of Gaeumannomyces graminis var. tritici and Phialophora spp. by polyacrylamide gel.Mycol.Res,1990,94(1):78~82.
    [151] Abbott,L.K.and Holland,A.A. Electrophorerns patterns of soluble proteins and isoenzymes of Gaeumannomyces graminis. Aust.J.Bot,1975, 23:1~12.
    [152] Elliott M. L., Des Jardin E. A., Henson J. M. Use of a polymerase chain reaction assay to aid in identification of Gaeumannomyces graminis from different grass hosts. Phytopathology ,1993,83: 414~418.
    [153] White,Nia A. Drhal, Prabhjyot K.Duncan,James M.et al. Molecular analysis of intraspecific variation between building and ‘wild’ isolates of Serpula lacrymans and their relatedness to S. himantioides. Mycol Res, 2001,105 (4) : 447~452.
    [154] Gardes M, White TJ, Fortin JA, Bruns TD, Taylor JW. Identification of indigenous and induced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Canadian Journal of Botany ,1991,69: 180~189.
    [155] Bryan GT, Labourdette E, Melton RE, Nicholson P, Daniels MJ, Osbourn AE. DNA polymorphism and host range in the take-all fungus, Gaeumannomyces grminis. Mycological Research, 1999, 103: 319~327.
    [156] Henson J. M.DNA probe for identification of the take-all fungus, Gaeumannomyces graminis. Appl. Environ. Microbiol ,1989,55: 284~288.
    [157] Henson J. M. DNA hybridization and polymerase chain reaction (PCR) tests for identification of Gaeumannomyces, Phialophora and Magnaporthe isolates. Mycol. Res,1992,96: 629~636.
    [158] Henson J. M., Goins T., Grey W., Mathre D. E., and Elliott M. L.. Use of polymerase chain reaction to detect Gaeumannomyces graminis DNA in plants grown in artificially and naturally infested soil. Phytopathology,1993,83: 283~287.
    [159] Ward E.. Improved polymerase chain reaction (PCR) detection of Gaeumannomyces graminis including a safeguard against false negatives. European Journal of Plant Pathology ,1995,101: 561~566.
    [160] Fouly H. M., and Willkinson H. T. Detection of Gaeumannomyces graminis varieties using polymerase chain reaction with variety-specific primers. Plant Dis. 2000,84: 947~951.
    [161] Tan MK, Wong PTW.. Group I introns in 26S rRNA genes of Gaeumannomyces graminis as possible indicators of host specificity of G. graminis varieties. Mycological Research ,1996,100: 337~342.
    [162] Bateman GL, Ward E, Antoniw JF. Identification of Gaeumannomyces graminis var. tritici and G. graminis var. avenae using a DNA probe and non-molegular methods. Mycological Research,1992,96: 737~742.
    [163] Henson J. M.DNA probe for identification of the take-all fungus, Gaeumannomyces graminis. Appl. Environ. Microbiol ,1989,55: 284~288.
    [164] Herdina,Harvey,P.and Ophel-Keller,K.Quantification of Gaeumannomyces graminis var. tritici ininfected roots and soil using slot-blot hybridization.Mycol.Res,1996,100(8):926~970.
    [165] Ward E, Gray RM.. Generation of ribosomal DNA probe by PCR and its use in identification of fungi within the Gaeumannomyces-Phialophora complex. Plant Pathology ,1992,41: 730~736.
    [166] Tan MK.. Origin and inheritance of group I introns in 26S rRNA genes of Gaeumannomyces graminis. Journal of Molecular Evolution ,1997,44: 637~645.
    [167] Bryan GT, Labourdette E, Melton RE, Nicholson P, Daniels MJ, Osbourn AE. DNA polymorphism and host range in the take-all fungus, Gaeumannomyces grminis. Mycological Research, 1999, 103: 319~327.
    [168] Bateman G. L., Ward E., Hornby D., Gutteridge R. J. Comparisons of isolates of the take-all fungus, Gaeumannomyces graminis var. tritici, from different cereal sequences using probes and non-molecular methods. Soil Biology and Biochemistry,1997,29:1225~1232.
    [169] Fouly HM, Wilkinson HT, Chen W. Restriction analysis of internal transcribed spacers and the small subunit gene of ribosomeal DNA among four Gaeumannomyces species. Mycologia ,1997,89: 590~597.
    [170] Ward E, Akrofi AY.. Identification of fungi in the Gaeumannomyces-Phialophora complex by RFLPs of PCR amplified ribosomal DNAs. Mycological Research ,1994,98: 219~224.
    [171] Ulrich,Kristina,Augustin,Claudia and Werner,armin. Identification and characterization of a new group of root-colonizing fungi within the Gaeumannomyces-Phialophora complex. New Phytol,2000,145:127-135.
    [172] Barbara Bellows. Sustainable Turf Care. ATTRA, 2003.
    [173] Gordon Witteveen, Michael Bavier Practical Golf Course Maintenance[M], Jhon Wilkey & Sons, Inc. Hoboken, New Jersey, 1998.
    [174] Penrose L. Evidence for resistance in wheat grown in sand culture to the take-all pathogen, Gaeumannomyces graminis var.tritici [J]. Annals of Applied Biology, 1985, 107: 105~108.
    [175] Sivanesana. Graminicolous species of Bioplolaris, Curvularia, Drechslera, Exserohilum and their teleomorphs[J]. Mycological Paper,1987,158:1~216.
    [176] Ellis M B. Dematiaccous Hyphomycetes.VII: Curvularia, Brachysporium etc.Mycologica1 Papers. 1966.106: 1~ 57.
    [177] Ellis M B.Dematiaceous Hyphomycetes.Commonwealth Mycological Institute, Kew, UK. 197l, 452~ 495.
    [178] Ellis M B.More Dematiaceous Hyphomycetes. Commonwealth Mycological Instigate.Kew, UK, 1976, 404~ 406.
    [179] Alcom JL, 1990. Additions to Bipolaris, Cochliobolus and Curvularia. Mycotaxon, 39: 361~392
    [180] Hodges, CF, Campbell, DA. Growth of Agrostis palustris in response to adventitious root infection by Curvularia lunata. Journal of Phytopathology, 1995; 143(11~12): 639~642.
    [181] Garrett S.D. Factors affecting the severity of take-all .Ⅰ.The importance of soil microorganisms. Journal of the Department of Agricultural Science of Austrilia. 1934, 37: 664-674
    [182] 戴法超, 高卫东, 吴仁杰等. 一种值得注意的玉米病害-弯孢菌叶斑病[J]. 植物病理学, 1995, 25(4)330.
    [183] 赵来顺, 田学军, 李玉琴. 玉米黄斑病研究 I 病原菌鉴定.[J]. 河北农业大学学报, 1995, 18(2)43~45.
    [184] 吕国忠, 刘志恒, 何富刚等. 辽宁省爆发一种新病害-玉米弯孢菌叶斑病[J]. 沈阳农业大学学报, 1997, 28(1)75~76.
    [185] 戴法超, 王晓鸣, 朱振东. 玉米弯孢菌叶斑病研究[J]. 植物病理学, 1998, 28(2)123~129.
    [186] 李富华, 叶华智, 王玉涛, 熊绵平. 玉米弯孢叶斑病的研究进展[J]. 玉米科学, 2004, 12(2): 97~101, 107.
    [187] Richard W. Smiley, Peter H. Dernoeden, and Bruce B. Clarke. Compendium of Turf-grass Disease[M]. American Phytopathological Society, 1992.
    [188] Clarke, B.B. and Gould, A.B., eds. Turfgrass patch diseases caused by ectotrophic root infecting fungi. APS Press. 1993.
    [189] Catherine A. York Turf Grass Diseases and Associated Disorders [M]. The Sports Turf Research Institute, 1998.
    [190] 王生荣. 甘肃省小麦全蚀病菌变种类型的初步鉴定, 甘肃农业科学, 1996, 31(2): 171~174.
    [191] 王美南. 禾顶囊壳的遗传差异研究[M]. 西北农林科技大学 2002 届博士学位研究生学位毕业论文.
    [192] Brooks, D.H.. Wild and cultivated grasses as carriers of the take-all fungus ( Ophiobolus graminis ). Ann. Appl. Biol.1965, 55, 307~316.
    [193] Du Plessis SJ, Nortje JH. Susceptibility of wheat and rye varieties and grass species to Ophiobolus graminis Sacc. Scietific Bullitin. Union of South Africa Department of Agriculture. 1951, 3~8.
    [194] Garrett SD. Soil condition and the take-all disease of wheat. VII. Survival of Ophiobolus graminis on the roots of different grasses. Annals of Applied Biology. 1921, 28, 325~332.
    [195] 刘爱新, 郑是琳, 吴洵耻等. 山东省禾谷类作物纹枯病研究. 北京: 中国农业出版社, 1995 山东植物病理研究: 157~167.
    [196] Vilgalys R,Cubetama. Molecular systematics and population biology of Rhizoctonia[J]. Annu Rev Phytopathol, 1994,32:132~155.
    [197] Cubetama,Vilgalys R. Population biology of Rhizoctonia solani complex[J]. Phytopathol, 1997, 87(4): 480~484.
    [198] Sneh Burpee, L L., Ogoshi A. Identification of Rhizoctonia spcies[M]. APS Press, St. Paul, USA, 1991.
    [199] Sneh B, Jabaji-hare S, Neate S. Dijst G. 1996 Rhizoctonia Species; Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Dordrecht/Boston/ London. Kluwer Academic Pubishers. 1~403.
    [200] Anderson NA..The genetics and pathology of Rhizoctonia solani. Ann. Rev. Phytopatbol. 1982, 20:329~347.
    [201] Ogoshi,A..Ecology and Pathogenicity of Anastomsis and Intraspecific groups of Rhizoctonia solani Kühn. Ann. Rev.Phytopathol. 1987, 25:125~43.
    [202] Mordue, J.E.M., Gurrahr.S., and Bridge, P.D.. An integrated approach to Rhizotonia taxonomy: cultrual, biochemical and numerical techniques. Mycol.Res. 1989, 92(1):78~90.
    [203] Anderson NeilA.. Evaluation of Rhizoctonia complex in relation to seedling blight of flax. Plant disease. 1977, 81(2):140~142.
    [204] Vilgalys, R., and Cubeta,M.A. Molecular, Systematics and populations biology of Rhizoctonia .Ann. Rev. phytopathol. 1994.32:135~55.
    [205] Laroche JP, Jabaji-Hare SH, Charest P.M. Differentiation of two anastomosis groups of Rhizoitonia solani by isozyme analysis. Phytopathology, 1992.82:1387~93.
    [206] Chin, S. Yang. And Richad, P.KORF. Ascorhizoctonia Gen. Nov. and complexipes emend., two genera for anamorphs of species as singed to Tricharina (Discomycetes). Mycotaxon, 1985.XXIII:475~481.
    [207] Moore Royall T. The genera of Rhizoctonia-like fungi Ascorhizgctonia, ceratorhizagen. nov. Epulorhixa gen nov, Momiliopsis and Rhizoctonia. Mycotaxon, 1987.XXIX:91~99
    [208] Warcup, J.H. and Talbot, P.H.B. Perfect states of some Rhizoctonias. Trans. Br. Mycol. soc. 1966.49(3):427~435.
    [209] Gerard C., Adams Jr, and Edward E. Butler. Influence of Nutrition on the Formation of Basidia and Basidiospores in Thanatephorus cucumeris. The American Phytopatholohical society. 1983. 73(2):147~151.
    [210] Vilgalys,R.,and Cubeta,M.A. Molecular,Systematics and populations biology of Rhizoctonia. Ann. Rev.phytopathol. 1994.32:135~55.
    [211] Gerard C.A., Adams JR., and Edward E.Bustler. Environmental on the Formation of Basidia and Basidiospores in Thanatephorus cucumeris. The American Phytopathologycal Society. 1983. 73(2):152~155.
    [212] Flentje NT., Stretton helena M.and hawn EJ., Nuclear Distribution and Behaviour throughout the life Cycles of Thanatephorus, Waitea and Ceratobasisdiun. Aust.J. Biol. Sci., 1962. 16:450~466.
    [213] Parmeter, JR. Sherwood Rt, Paltt Wd, Anastomosis grouping among isolates of Thanatephorus cucumeris. [J], Phytopathology, 1969, 59: 1270~1278.
    [214] 陈延熙, 张敦华, 段霞渝等. 关于 Rhizoctonia solani 菌丝融合分类和有性世代的研究[J]. 植物病理学报, 1985, 15 (8): 139~143.
    [215] Carling DE, Kuninaga, S. and Leiner, R.H.. Relatedness within and among intraspecific groups of Rhizoctonia solani, a comparison of grouping by anastomosis and DNA hybridization[J]. Phytoparasitica, 1988, 16: 209~210.
    [216] Ogoshi, A. Grouping of Rhizoctonia solani Kuhn and their perfect stages [J]. Review of Plant Protection Research. 1975. 8: 93~103.
    [217] Ogoshi, A. Studies on the grouping of Rhizoctonia solani Kuhn with hyphal anastomosis and on the perfect stages of groups[J]. Bulletin of the National Institute of Agricultural Sciences, C.1976.30, 1~63.
    [218] 李华荣. 丝核菌的菌丝融合群及其遗传多样性研究的新进展[J]. 菌物系统, 1999, 18(1): 100~107.
    [219] Duncans, Barton J E, Obrien P A. Analysis of Variation in isolates of Rhizoctonia solani by random amplified polymorphic DNA assay[J] Mycol Res, 1993,97(9):1075~1082.
    [220] Lilja A, Hetala AM, Karjalainen R, 1996. Identification of a uninucleate Rhizoctonia sp. by pathogenicity, hyphal anastomosis and RAPD analysis. Plant Pathology. 45: 997~1006.
    [221] Bounous, Jabaji-Haresh, Hogue R, etal. Polymerase chain reaction-based assay for specific detection of Rhizoctonia solani AG-3 isolates[J] Mycol Res, 1999, 103(1):1~8.
    [222] O`Brien P A. Molecular markers in Australia isolates of Rhizoctonia solani[J] Mycol Res, 1994, 98(6):665~671.
    [223] Jabaji-Hare S H, Meller Y, Gill S, et al. Investigation of genetic relatedness among anastomosis groups of Rhizoctonia solani using cloned DNA probes[J] Can J Plant Pathol, 1990,12:393~404.
    [224] Vilgalys R, Gonzalez D. Ribosomal DNA restriction fragment length polymorphisms in Rhizoctonia solani [J] Phytopathol, 1990, 80: 151~158.
    [225] Liu Z L, Sinclair J B., Genetic diversity of Rhizoctonia solani anastomosis group2. Phytopathology. 1992. 82: 778~787.
    [226] Cubeta M A, Echandi E, Abernethy T, et al. Characterization of anastomosis groups of binucleate Rhizoctonia spp. using restriction analysis of an amplified ribosomal RNA gene[J], Phytopathol, 1991,81:1395~1400.
    [227] Cubeta M A., Briones-Ortega R. and Vilgalys R. Reassessment of heterokaryon formation in Rhizoctonia solani anastomos is Group4. Mycologia. 1993. 85(5):777~787.
    [228] Kanematsus, Naitos. Genetic Characterization of Rhizoctonia solani AG2-3 by analyzing restriction fragment length polymorphism of nuclear ribosomal DNA internal transcribed spacers[J] Ann Phytopathol Soc Japan, 1995,61:18~21.
    [229] 霍纳新. 小麦纹枯病原菌遗传多样性分析和小麦品种资源抗性鉴定[D]. 北京: 中国农业科学院研究生院, 1999.
    [230] Vilgalys, R., Cubeta,M.A. Molecular,Systematics and populations biology of Rhizoctonia. Ann. Rev. phytopathol. 1994. 32:135~55.
    [231] Liu ZL, Sinclair JB., Genetic diversity of Rhizoctonia solani anastomosis group 2. Phytopathology 1992.82:778~87.
    [232] 易润华, 梁承邺, 朱西儒, 周而勋. 广东省水稻纹枯病菌遗传多样性与致病力分化的研究. 热带亚热带植物学报, 2002, 10(2): 161~170.
    [233] 曹菊香, 周而勋, 杨媚, 朱西儒. 不同地理来源水稻纹枯病菌的 RAPD 分析. 植物病理学报, 2002, 32(1): 369~370.
    [234] 李华荣. 丝核菌的菌丝融合群及其遗传多样性研究的新进展[J]. 菌物系统, 1999, 18(1)100~107.
    [235] 孟庆忠, 刘志恒, 王鹤影等. 水稻纹枯病研究进展[J]. 沈阳农业大学学报, 2001, 10(32)376~381.
    [236] 李斯深, 刘爱新, 李强. 小麦纹枯病抗性研究进展[J]. 山东农业大学学报, 1999, 30(1)85~90.
    [237] 蒙姣荣, 张超冲, 李界秋, 韦刚. 广西玉米纹枯病菌的菌丝融合群及其对杀菌剂的敏感性 [J]. 中国农学通报, 2006, 22(7): 452~454.
    [238] 肖炎农, 李建生, 郑用链, 徐尚忠, 于广洋. 湖北省玉米纹枯病病原丝核菌的种类和致病性[J]. 菌物系统, 2002, 21(3): 419~424.
    [239] 陈厚德, 梁继农, 朱华, 赵桂东, 刘荆. 江苏玉米纹枯病菌的菌丝融合群及其对药剂的敏感性[J]. 江苏农业学报, 1997, 13(2): 94~98.
    [240] 蒙姣荣, 张超冲, 李界秋, 韦刚. 广西水稻纹枯病菌菌丝融合群鉴定初报[J]. 中国农学通报, 2006, 22(6): 327~329.
    [241] 喻大昭, 杨小军, 杨立军. 湖北省小麦纹枯病病原菌丝融合群研究[J]. 湖北农业科学, 2000, 3: 39~42.
    [242] 方正, 陈怀谷, 陈厚德, 王裕中. 江苏省小麦纹枯病病原组成及其致病力研究[J]. 麦类作物学报, 2006, 26 (1): 117~ 120.
    [243] 杨金红, 郭庆元, 季良. 新疆 6 种豆科作物立枯丝核菌菌丝融合群研究[J]. 新疆农业科学, 2005, 42 (6) : 382~385.
    [244] 陈素清, 吴斌, 秦蓁, 刘光珍, 邓丽, 邓先明. 四川棉花立枯丝核菌菌丝融合群研究[J]. 西南农业学报, 1998, 12(1): 56~60.
    [245] 冯典兴, 郑爱萍, 王世全等. 四川省不同寄主立枯丝核菌的遗传分化和致病力研究[J]. 植物病理学报, 2005, 35(6): 520~525.
    [246] 黄江华, 周而勋, 戚佩坤. 广州地区 13 种作物丝核菌的鉴定[J]. 华南农业大学学报, 2003, 24(4): 24~27.
    [247] 陶家凤, 张敏, 文成敬. 西南地区立枯丝核菌菌丝融合群及其生态学研究[J]. 四川农业大学学报, 1994, 12(3): 364~369.
    [248] 杨根华, 周道芬, 杨允凤. 云南省丝核菌种群分类及其分布[J]. 云南农业大学学报, 2001, 16(3): 170~172.
    [249] 张穗, 吴友三, 朱有缸. 丝核菌菌丝融合群种类、寄生专化性及与温度的关系[J]. 生态学杂志, 1999, 18(1): 9~14.
    [250] Garrett SD. Soil condition and the take-all disease of wheat. VII. Survival of Ophiobolus graminis on the roots of different grasses. Annals of Applied Biology. 1921,28, 325-332
    [251] Piper C.V and Coe H.S. Rhizoctonia in lawn and pastures[J], Phytopathology, 1919, 78: 15~16
    [252] Couch H.B,. Disease of turfgrasses. 2nd [M], Robert E Krieger Publishing Com. Huntington, 1973.
    [253] Couch, H.B. Diseases of turfgrasses, 3rd [M]. Krieger Publishing Company. 1995.
    [254] Richard W. Smiley, Peter H. Dernoeden, and Bruce B. Clarke. Compendium of Turf-grass Disease 2nd [M]. American Phytopathological Society Press. 1992.
    [255] Clarke, B.B. and Gould, A.B.. Turfgrass patch diseases caused by ectotrophic root infecting fungi[M]. APS Press, 1993.
    [256] Catherine A. York. Turf Grass Diseases and Associated Disorders [M]. The Sports Turf Research Institute Press, 1998.
    [257] Zhang, M. Dernoeden, P. H. Rhizoctonia solani anastomosis groups and other fungi associated with brown patch-affected turfgrasses in Maryland, USA. [J] International Turfgrass Society Research Journal. 1997. 8: 959~969.
    [258] Martin, S. B. Jeffers, S. N. Rogers, A. Isolation frequency and pathogenicity of Rhizoctonia species from tall fescue crown and leaf tissues from two locations in South Carolina. [J] International Turfgrass Society Research Journal. International Turfgrass Society, 2001. 9: 689~694.
    [259] Herr, L. J. Fulton, M. M. Rhizoctonia solani AG-1-1A and AG-2-2 IIIB cause brown patch on tall fescue and creeping bentgrass in Ohio. [J] Plant Disease. 1995. 79: 11, 1186.
    [260] Wang, T. C. Hsieh, S. P. Y. Rhizoctonia spp. causing turfgrass disease and their anastomosis groups in Taiwan. [J] Plant Pathology Bulletin. 1993. 2: 3, 111~118.
    [261] Catherine AY, 1998. Turf-grass Diseases and Associated Disorders [M]. Yorkshire. The Sports Turf Research Institute Press. 1~59.
    [262] Clarke BB and Gould AB, 1993. Turfgrass Patch Diseases Caused by Ectotrophic Root InfectingFungi[M]. St. Paul Minnesota. American Phytopathological Society Press. 1~70.
    [263] Hietala, AM, Sen RB, Lilja A, 1994. Anamorphic and teleomorphic characteristics of a uninucleate Rhizoctonia solani isolated from the roots of nursery grown conifer seedlings. Mycological Research. 98(9):1044~1050.
    [264] Monteith J, Dahl AS, 1932. Turf disease and their control. Bulletin of Green Section of the United States Golf Association. 12: 85~187.
    [265] Toshikazu T, James B, Beard, 1997. Color Atlas of Turfgrass Diseases on Golf Courses[M]. Hardcover. Ann Arbor Press. 1~140.
    [266] 南志标, 李春杰. 中国牧草真菌病害名录. 草业科学, 1994 增刊.
    [267] 薛福祥. 兰州地区冷季型草坪真菌病害研究. 草业科学, 2003, 20(3): 66~70.
    [268] 肖建国, 李华荣, 林桂芸, 颜思齐. 小麦纹枯病抗性鉴定. 西南农业大学学报, 1989, 11(4): 339~342.
    [269] 石明旺, 徐明富, 茹正刚等. 小麦纹枯病的田间流行动态模糊聚类分析, 植物病理学报, 1997, 27(1): 23~27.
    [270] 王玉正. 山东省小麦纹枯病为害损失及防治指标的研究. 植物保护学报, 1997, 24(1): 44~47.
    [271] 方中达. 植病研究方法[M], 北京: 中国农业出版社, 1998.
    [272] Elliott-MT. Disease response of Bermuda-grasses to Gaeumannomyces graminis var. graminis. Plant disease. 1995, 79: 7, 699~702; 21 ref.
    [273] Wilkinson-HT. First report of root rot on centipedegrass ( Eremochloa ophiuroides ) caused by Gaeumannomyces graminis var. graminis. Plant-disease. 1994,78: 12, 1220; 1 ref.
    [274] Wilkinson-HT; Kane-RT. Gaeumannomyces graminis var. graminis infecting Zoysiagrass in Illinois.: Plant-Disease. 1993, 77 : 1, 100; 1 ref.
    [275] Wilkinson-HT; Pedersen-D. Gaeumannomyces graminis var. graminis infecting St. Augustinegrass in selection in southern California. Plant-Disease. 1993, 77 : 5, 536; 2 ref.
    [276] Tomaso-Peterson-M; Trevathan-LE; Gonzalez-MS. Take-all root rot of St. Augustine-grass : first report in Mississippi. : Plant-Disease. 2000, 84: 8, 921~921; 1 ref.
    [277] Penrose L. Evidence for resistance in wheat grown in sand culture to the take-all pathogen, Gaeumannomyces graminis var. tritici[J]. Annals of Applied Biology, 1985,107; 105~108.
    [278] 袁红旭, 商鸿生 人工诱导禾谷顶囊壳有性态发生方法的研究[J] 西北农业大学学报, 1999, 27(3): 56~60.
    [279] Cook. R.J. and Papendick. R.I. Influence of water potential of soils and plants on root diseases. A. Rey. Phytopath. 1972, 10, 349~374.
    [280] Datnoff-LE; Elliott-ML; Krausz-JP. Cross pathogenicity of Gaeumannomyces graminis var. graminis from Bermudagrass, St. Augustinegrass and rice in Florida and Texas. Plant-disease. 1997, 81 : 10, 1127~1131; 18 ref..
    [281] Hollins, T.W., Scoot. P.R., Pathogenicity of Gaeumannomyces graminis isolates to wheat and rye seedlings Plant Pathology, 1990, 39, 269~273.
    [282] Hollins, T.W., Scoot. P.R., Gregory., R.S. The relative resistance of wheat, rye and truticale to take-all caused by Gaeumannomyces graminis Plant Pathology, 1986, 35, 93~100.
    [283] 姚健民, 许恒武 玉米全蚀病发现简报. 植物保护, 1986, 12: 12.
    [284] 姚健民, 冯华 玉米全蚀病菌生物学性状研究 辽宁农业科学, 1988, 6: 45~49.
    [285] Deacon. J.W. and Scott,D.B. Phialophora zeicola sp. nov., and itsrole in the root rot-stalk rot complex of maize. Transactions of the British. Mycological. Society., 1983, 81 (2):247~262.
    [286] Ward. E. and Bateman. G.L. Comparison of Gaeumannomyces and Phialophora – like fungal pathogens from maize and other plants using DNA methods. New Phytologist. 1999,141:323~331.
    [287] 史建荣, 王裕中, 沈素文等. 江苏省小麦纹枯病菌致病力研究[J]. 江苏农业学报, 1997, 13(3): 188~190.
    [288] 杨小军, 杨立军, 赵永玉等. 湖北省小麦纹枯病原菌丝融合群和致病力研究[J]. 华中农业大学学报, 2000, 19(2)106~111.
    [289] 杨共强, 王素霞等. 河南省小麦纹枯病菌源及其致病性研究[J]. 河南农业科学, 2002, 10.
    [290] Carling DE, Kuninaga, S. and Leiner, R.H.. Relatedness within and among intraspecific groups of Rhizoctonia solani, a comparison of grouping by anastomosis and DNA hybridization[J]. Phytoparasitica, 1988, 16: 209~210.
    [291] Carling, D. E., Baird, R. E., Gitaitis, R. D., Brainard, K. A., and Kuninaga, S. Charaterization of AG-13, A newly reported anastomosis group of Rhizoctonia solani [J]. Phytopathology, 2002, 92 :893~ 899.
    [292] Vilgalys, R. ,and Cubeta, M. A. Molecular, Systematics and populations biology of Rhizoctonia. Ann. Rev .phytopathol. 1994. 32:135~55.
    [293] 刘力, 葛起新. 华东地区立枯丝核菌融合群鉴定[J ]. 浙江农业大学学报, 1987 , 13(3) : 227~233.
    [294] 于金凤, 张修国, 李红美, 张天宇. 立枯丝核菌第一融合群的遗传分化[J]. 菌物系统, 2003, 22(1): 69~73.
    [295] Ogoshi, A. Grouping of Rhizoctonia solani Kuhn and their perfect stages [J]. Review of Plant Protection Research. 1975. 8: 93~103.
    [296] Ogoshi, A. Studies on the grouping of Rhizoctonia solani Kuhn with hyphal anastomosis and on the perfect stages of groups[J]. Bulletin of the National Institute of Agricultural Sciences, C.1976.30, 1~63.
    [297] Wang, T. C. Hsieh, S. P. Y. Rhizoctonia spp. causing turfgrass disease and their anastomosis groups in Taiwan. [J] Plant Pathology Bulletin. 1993. 2: 3, 111~118.
    [298] 黄江华, 周而勋, 戚佩坤. 广州地区 13 种作物丝核菌的鉴定[J]. 华南农业大学学报, 2003, 24(4): 24~27.
    [299] Hsiang, T.; Dean, J. D. DNA sequencing for anastomosis grouping of Rhizoctonia solani isolates from Poa annua[J]. International Turfgrass Society Research Journal. International Turfgrass Society, 2001. 9: 674~678. 23 ref.
    [300] Toda, T.; Mushika, T.; Hyakumachi, M. Development of specific PCR primers for the detection of Rhizoctonia solani AG 2-2 LP from the leaf sheaths exhibiting large-patch symptom on zoysia grass. FEMS Microbiology Letters. Elsevier Science B.V., Amsterdam, Netherlands: 2004. 232: 1, 67~74. 28 ref.
    [301] Toda, T.; Hyakumachi, M.; Suga, H. et al. Differentiation of Rhizoctonia AG-D isolates from turfgrass into subgroups I and II based on rDNA and RAPD analyses. European Journal of Plant Pathology. 1999. 105: 9, 835~846. 40 ref.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700