立枯丝核菌AG1-IA诱导玉米差异蛋白的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纹枯病是玉米的一种重要病害,由立枯丝核菌Rhizoctonia solani Kühn引起,由于该病害危害玉米近地面几节的叶鞘和茎杆,引起茎基腐败,破坏输导组织,影响水分和营养的输送,因此造成的损失较大。近年来在我国表现出加重和蔓延的趋势,目前该病已作为国内抗病育种的目标。利用常规育种方法选育抗病品种,不仅育种周期长,并且育种周期内由于病原菌的流行,生理小种致病性以及植物与病原菌的互作关系都容易改变。因此利用新技术深入研究玉米对纹枯病的感病和抗病机制,对于从机理上解决植物病害问题具有重要意义。
     本研究采用本课题组多年筛选鉴定出的高耐玉米纹枯病材料R15和高感材料掖478,纹枯病菌为立枯丝核菌高致病性融合菌群AG1-IA。温室培育至拔节期,采用人工嵌入法将两粒布满菌丝的麦粒接种到植株下位第三叶鞘,分别取接种后12 h、24 h、36 h、48 h、72 h的玉米第三下位的叶片为处理材料,未接菌同位叶为对照材料,提取总蛋白。
     接菌后的不同发病症状表明R15对病原菌具有较好的抵抗性,其侵染时间大约在接菌后24 h左右,大面积侵染时间大约在接菌后48 h左右。而掖478对病原菌抵抗力较差,在接菌后12 h之后就已经被侵染,并在24 h时已经表现出扩大侵染症状,36 h~48h是大面积侵染时期。这一结果与本课题组的其他研究结果基本一致。
     本次试验对蛋白质双向电泳体系进行了部分优化:在裂解液中加入硫脲增强了蛋白的可溶性;反复的沉淀洗涤和盐桥的应用减少了盐分的影响:用梯度浓度的标准蛋白代替梯度体积进行定量减少了试验误差等。
     经过电泳分析,从2—DE图谱上找到了15个感兴趣的差异表达蛋白点。通过基质辅助激光解析电离飞行时间质谱技术获得肽质量指纹图谱,数据库搜索比对后,初步鉴定出高于阈值的5个点和其他一些相关的有功能的点:增量表达的莽草酸激酶I、细胞分裂素受体组氨酸激酶、铁氧—硫氧蛋白还原酶催化亚基(FTR-C)和细胞分裂周期蛋白48(CDC48);减量表达的磷酸核酮糖羧化酶/加氧酶大亚基、光合系统I反应中心N亚基和ATP合成酶CF_1-α亚基。
     莽草酸激酶与芳香族氨基酸合成有关,其增量表达可以使玉米植株合成更多的类黄酮、木质素等物质,增强植株抗病性。细胞分裂素和乙烯信号传导途径存在部分重叠的通路,相信被侵染后,细胞分裂素的增加能引发部分乙烯抗病系统。FTR是一个普遍存在的氧化还原系统,在抗氧化和氧化还原调节中起关键作用,植物能通过增加FTR来清除病菌侵染后爆发的活性氧。因为这些蛋白在R15中的增量表达高于掖478,因此R15抗病性高于掖478。
     CDC48参与内质网相关蛋白的降解,表明玉米在受侵染后细胞器开始被破坏。磷酸核酮糖羧化酶/加氧酶是植物光合作用过程中固定CO_2的关键酶,参与植物体内的碳素循环;ATP合成酶参与电子传递,是细胞内能量转换的核心酶;光合系统I蛋白质分子负责利用光能把二氧化碳转变成碳和氧气,吸收光能传递电子。掖478中这些蛋白的减量表达趋势比R15明显,表明掖478在受立枯丝核菌AGI-IA侵染后,物质和能量代谢受到的抑制甚至破坏比R15严重,因此病情更重。
     综上表明玉米在感病后,能增量表达某些抗病蛋白或诱导某些抗病系统的启动,但同时物质和能量代谢途径也有一定程度的抑制,细胞器被破坏。结合接菌后的病斑不断扩大的结果,可以知道感病玉米植株随着病症的加重,抗病能力的加强趋势不及代谢的减弱趋势,使植株衰弱而无法抵抗病原菌的侵染,最终导致植株感病死亡。
Maize banded leaf and sheath blight(BLSB) is caused by Rhizoctonia solani Kuhn and is the most destructive disease of Maize.The disease harms Maize near the ground sections of the leaf sheath and stem,causes corruption of caudex,ruins conductting tissue,affects the transportion of water and nutrition,so it results in significant yield loss.It increased and spreaded in recent years in China.And the disease has been the target of domestic disease resistance breeding.The breeding cycle of conventional methods to select resistant varieties is too long.With the prevalence of pathogens,the pathogenicity of physiological race and the interaction between pathogens with plants are easily changed.Therefore useing new technologies to in-depthly research the infection and resistant mechanisms is of great significance to solve the problem of plant diseases.
     This research used high tolerance maize inbreed lines of R15 and high infection lines of ye478.The pathogen was high pathogenic fungus anastomosis groups AG1-IA of Rhizoctonia solani Kuhn.At the jointing stage in greenhouse,two wheat seeds colonized by AG1-IA were placed into the third sheath of the maize plants.At 12 hrs,24 hrs,36 hrs,48 hrs and 72 hrs of the post-inoculation,the third leaf was picked down to extract total proteins.The uninoculated leaf was the check materials.
     The different symptoms showed that R15 had better resistance to AG1-IA.Its infection time was about 24 hrs after inoculation,and the large area infection time was about 48h after inoculation.Ye478 had poorer resistance to AG1-IA.About 12 hrs after inoculation it had been infected,24 hrs had shown symptoms of expanded infection,and 36 hrs~48 hrs was the larg area infection period.It was about the same with the other results in our research group.
     The 2-DE system was part of optimized:lysis adding thiourea enhanced the solubility of proteins;repeated washing and precipitating,and salt bridge reduced the affection of the salt; concentration gradient of standard proteins instead of the volume gradient reduce experimental error.
     15 differential protein spots was found from 2-DE map.Peptide mass fingerprintings had been got by MALDI-TOF/MS.After searching and comparing in database,five points higher than threshold and some points,which had function,was identifyed.Shikimate kinase I, cytokinin receptor histidine kinase,ferredoxin-thioredoxin reductase catalytic chain(FTR-C) and CDC48 was increased expression;the ribulose-bisphosphate carboxylase/oxygenase (Rubisco) large subunit,ATP synthase CF1-αsubunit and potosystem I reaction center subunit N was reduced expression.
     Shikimate kinase was involved in the synthesis of aromatic amino acid,then its increased expression could synthesis more flavonoids and lignin to enhance plant resistant ability. Cytokininand ethylene signal transduction pathway exists some overlap,after infection, increased cytokinin could trigger part of ET resistant system.FTR was a common redox system.It played a key role in the regulation of anti-oxidation and reduction.Plants could increase the FTR to remove the outbreak reactive oxygen species after infection.These proteins in R15 were expressed more than ye478,so R15 showed haigher disease-resistant than ye478.
     CDC48 involved in ER-associated protein degradation.It showed that after infection the cell of maize began to be destroyed.Rubisco was the key enzyme of CO_2 fixation in the process of photosynthesis,and involved in the carbon cycle in plants;ATPase involved in the electronic transmission of cells is the key enzyme of energy conversion;potosystem I protein molecules used the light,changed CO_2 to carbon and oxygen,absorpted the solar energy and transmited electrons.The trend of the reduced expression of these proteins in ye478 was haigher than R15.It showed that after infection by Rhizoctonia solani AGI-IA,the material and energy metabolism of ye478 was inhibited or even be destroyed more seriously than R15.
     Comprehensively,after infection,maize increase expressed certain disease-resistant proteins or induced some resistance system,but material and energy metabolism at the same time was inhibited in a certain degree,and cell destructed.Integrated the results of expanded symptom,we could know that along with the aggravation,the trend of resistant proteins increased expression was inferior to the weakening trend of energy metabolism,then the plants was weaker and unable to resist the pathogen infection,leading to the death.
引文
[1]郭庆法,王庆成,汪黎明.中国玉米栽培学,上海科学技术出版社,2004:1.
    [2]Voorhee P K.Sclerotial rot of corn caused by Rhizoctonia zeae n.sp,Phytopath.ⅩⅩⅣ,PP:1209-1303.
    [3]戚佩坤,白金铠,朱桂香.吉林省栽培植物真菌病害志,科学出版社,1966:33.
    [4]唐海涛,荣廷昭,杨俊品.玉米纹枯病研究进展,玉米科学,2004,12(1):93-96,99.
    [5]陈捷.玉米病害诊断与防治,金盾出版社,1999:46.
    [6]高卫东.华北区玉米、高梁、谷子纹枯病病原学初步研究,植物病理学报,1987,17(4):247-251.
    [7]吴大椿,方守国,余知和.玉米纹枯病病原及生物学特性研究,湖北农学院学报,1997(3):15-19.
    [8]美国伊利诺斯大学,美国农业部著,喻章,谈文,蒋堆宇等译.玉米病害概要,农林科技译丛,1978(3):25,51.
    [9]陈延熙,张敦华,段霞渝等.我国小麦纹枯病病原学的初步研究,植物保护学报,1983,13(1):39-44
    [10]Mara C.Julian,Javier Acero,Oscar Salazar,et al.Mating type-correlated molecular markers and demonstration of heterokaryosis in the phytopathogenic fungus Thanatephorus cucumeris(Rhizoctonia solani) AG1-IA by AFLP DNA fingerprinting analysis.Biotech 1999,67:49-56.
    [11]U.Liane Rosewich,R.E.Pettway,B.A.McDonald,H.C.Kistler.High levels of gene flow and heterozygoty excess characterize Rhizoctonia solani AGI-IA(Thanatephorus cucumeris) from Texas.Fungal Genet and Biol,1999,28:145-159.
    [12]李祥,候明生,胡汉桥.湖北省水稻纹枯病菌菌丝融合群鉴定.华中农业大学学报,1993,12(1):14-17.
    [13]Jin MS,Korpradiskul V.Isozyme analysis of genetic diversity among Rhizoctonia solani Anastomosis Group 1-IA(AG1-IA).Mycosystem,1998,17(4):331-338.
    [14]李荣华等.玉米纹枯病抗性机制的研究.沈阳农业大学硕士学位论文,2003.
    [15]叶华智等.玉米生育阶段和叶鞘位对纹枯病抗性的影响,中国植物保护学会,第八届全国会员代表大会暨21世纪植物保护发展战略学术研讨会论文集,2001:709-713.
    [16]刘纪膦.玉米育种学,中国农业出版社,1991,
    [17]陈捷,唐朝荣,邹庆道,宋佐衡,王庆华.玉米纹枯病致病因子的研究.吉林农业大学学报,1998,20:138.
    [18]陈捷,唐朝荣,高增贵,薛春生,牛小帆,宋佐衡.玉米纹枯病病菌侵染过程研究.沈阳农业大学学报,2000-10,31(5):503-506.
    [19]郭红莲,陈捷,高增贵.游离脯氨酸在玉米灰斑病抗性机制中作用的研究.玉米科学,2003,11(1):83-85
    [20]Annu.Rew.Phytopathology.2005,43:205-227.
    [21]Paul Schulze-Lefert,Ralph Panstruga.Establishment of Biotrophy by Parasitic Fungi and Reprogramming of Host Cells for Disease Resistance.Annu.Rew.Phytopathology.2003,41:641-667.
    [22]尚俊军,余潮,邹燕,朱友林.玉米对大斑病菌抗性中防卫基因的RT-PCR研究.南昌大学学报(理科版),2002-6,26(2):138-142.
    [23]龙书生,李亚玲,段双科等.玉米苯丙烷类次生代谢物与玉米对茎腐病抗性的关系.西北农林科技 大学学报(自然科学版).2004,32(9):93-96.
    [24]Durrant WE,Dong X.Systemic acquired resistance.Annu.Rew.Phytopathology,2004,42:185-209.
    [25]J.McDowell JM,Dangl JL.Single transduction in the plant immune response.Trends Biochem.Sci.2000,25:79-82.
    [26]Levine A,Pennell RI,Alvarez ME,Palmer R,Lamb C.Calcium-mediated apoptosis in a plant hypersensitive disease resistence response.Curr Biol,1996,4:427-437.
    [27]Mitter R,Shulaev V,and Lamb E.Coordinated activation of programmed cell death and defanse mechanism in transgenic tobacco plant expressing a bacterial proton pump.Plant cell,1995,7:29-42.
    [28]Lamb C,Dixon RA.The oxideative burst in plant disease resistance.Annu Rev Plant Physiol Plant Mol Biol,1997,48:251-275.
    [29]Gmawardena A H,Pearce D M,Jackson M B,et al.Characterization of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize.Planta,2001,212:205-214.
    [30]Oka Y,Chet I,Spiegel Y.An immuncreative protein to wheat-germ agglutinin antibody is induced in oat roots following invasion of the cetreal cyst nematode heterodera avenae,and by jasmonate.MPMI,1997,10(8):961-969.
    [31]Averyhart-Fuliard V,Datta K,Marcus A.A hydroxyproline-rich protein in the soybean cell wall.Proc Natl Acad Sci USA,1988,85:1082-1085.
    [32]沈曾佑.玉米胚芽鞘细胞伸长生长与富含羟脯氨酸的蛋白质的关系.植物生理学报,1988,(2):62-66.
    [33]Gomez J,Sanchez-Martinez D,Stiefel V,Rigau J,Puigdomenech P,Pages M.A gene plant hormone abscisic acid in response to water stress encodes a glycine-rich protein.Nature,1988,334:262-264.
    [34]Goddemeier ML,Wulff D,Feix G.Root-specific expression of a Zea mays gene encoding a novel glycine-rich protein,zmGRP3.Plant Mol Biol,1998,36:799-802.
    [35]Takashi Matsuyama,Hidetaka Satoh,Yasuyuki Yamada,Takashi Hashimoto.A Maize Glycine-Rich Protein Is Synthesized in the Lateral Root Cap and Accumulates in the Mucilage.Plant Physiol.1999,120:665-674.
    [36]Peumans WJ,Barre A,Qiang H,et al.Higher plants development structurally different motifs to recognize foreign glycans.Trends in glycoscence and glycotechnology,2000,12(64):83-101.
    [37]董朝蓬,杜林方,段真.植物凝集素研究进展.天然产物研究与开发,2003,15(1):71-76.
    [38]Wang ZY,Sun XF,Wang F,Tang KX,Zhang JR.Enhancement of resistance to aphids by introducing the snowdrop lectin gene gna into maize plants.J Biosci,2005,30(5):627-638.
    [39]王海河,林奇英,谢联辉,吴祖建.黄瓜花叶病毒三个毒株对烟草细胞内防御酶系统及细胞膜通透性的影响.植物病理学报,2001,31(1):43-49.
    [40]梁琼,燕永亮,侯明生.不同玉米品种抗感MRDV与防御酶活性的关系.华中农业大学学报.2003(22):114-116.
    [41]李荣花,陈捷,高增贵,唐保宏,刘军华.玉米纹枯病抗性与防御酶关系的研究.天津师范大学学报(自然科学版).2005(25):32-36.
    [42]金庆超,叶华智,张敏.苯丙氨酸解氨酶活性与玉米对纹枯病抗性的关系.四川农业大学学报.2003(21):116-118.
    [43]郭红莲,陈捷,高增贵,崔澍,孙艳秋.玉米灰斑病抗性机制中活性氧代谢的作用.植物保护学报.2003(30):134-137.
    [44]Claude P.Selitrennikoff.Antifungal Proteins.Applied and Environmental Microbiology,2001,67(7):2883-2894.
    [45]Nasser W,Maize Pathogenesis-related Proteins:charaterization and celluar distribution ofβ-1,3-Glucanase and chitinases induced by brome mosaic virus infections or mercllric chloride treatment.Physological and Molecular Plant Pathology,1998,36:1-14.
    [46]Cordero M.J.et al.Induction of PR proteins in germinating maize seeds infected with the fungus Fusarium moniliforme.Physological and Molecular Plant Pathology,1992,41:189-200.
    [47]陈捷.我国玉米穗、茎腐病病害研究现状与展望.农业大学学报,2000,31(5):393-401
    [48]Campo S,Montserrat C,Maria C,et al.The defense response of germinating maize embryos against fungal infection:a proteomics approach.Proteomics,2004,4(2):383-396.
    [49]Niderman,T.,I.Genetet,T.Buryere,R.Gees,A.Stintzi,M.Legrand,B.Fritig,E.Mosinger.Pathogenesis-related PR-1 proteins are antifungal.Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans.Plant Physiol.1995,108:17-27.
    [50]Agrawal,G.K.,N.S.Jwa,R.Rakwal.A novel rice(Oryza sativa L.) acidic PR1 gene highly responsive to cut,phytohormones,and protein phosphatase inhibitors.Biochem.Biophys.Res.Commun.2000,274:157-165.
    [51]Morrisette,J.,J.Kratzschmar,B.Haendler,R.El-Hayek,J.Mochca-Morales,B.M.Martin,J.R.Patel,R.L.Moss,W.D.Schleuning,R.Coronado,L.D.Possani.Primary structure and properties of helothermine,a peptide toxin that blocks ryanodine receptors.Biophys.J.1995,68:2280-2288.
    [52]Stintzi,A.,T.Heitz,V.Prasad,S.Wiedemann-Merdioglu,S.Kauffmann,P.Geoffroy,M.Legrand,B.Fritig.Plant 'pathogenesis-related proteins and their role in defense against pathogens.Biochimie.1993,75:687-706.
    [53]Ward Eruc R,George B Payne,Mary B Moyer,et al.Differential regulation ofβ-1,3-Glucanase messenger RNAs in response to pathogen infection[J].Plant Physiol,1991,96:390-397.
    [54]Watanabe,T.,R.Kanai,T.Kawase,T.Tanabe,M.Mitsutomi,S.Sakuda,K.Miyashita.Family 19 chitinases of Streptomyces species:characterization and distribution.Microbiology,1999,145:3353-3363.
    [55]Jach,G.,B.Gornhardt,J.Mundy,J.Logemann,E.Pinsdorf,R.Leah,J.Schell,C.Maas.Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco.Plant J.1995,8:97-109.
    [56]Roberts,W.,C.P.Selitrennikoff.Zeamatin,an antifungal protein from maize with membrane-permeabilizing activity.J.Gen.Microbiol.1990,136:1771-1778.
    [57]Huynh,Q.K.,J.R.Borgmeyer,J.F.Zobel.Isolation and characterization of a 22 kDa protein with antifungal properties from maize seeds.Biochem.Biophys.Res.Commun.1992,182:1-5.
    [58]Trudel,J.,J.Grenier,C.Potvin,A.Asselin.Several thaumatin-like proteins bind to β-1,3-glucans.Plant Physiol.1998,118:1431-1438.
    [59]Blanco-Labra,A.,F.A.Iturbe-Chinas.Purification and characterization of an α-amylase inhibitor from maise(Zea maize).J.Food Biochem.1980,5:1-17.
    [60]Richardson,M.,S.Valdes-Rodriquez,A.Blanco-Labra.A possible function for thaumatin and a TMV-induced protein suggested by homology to a maize inhibitor.Nature.1987:327:432-434.
    [61]Schimoler-O'Rourke,R.,M.Richardson,C.P.Selitrennikoff.Zeamatin inhibits trypsin and α-amylase activities.Appl.Environ.Microbiol.2001,67:2365-2366.
    [62]Hwu,L.,C.C.Huang,D.T.Chen,A.Lin.The action mode of the ribosome-inactivating protein α-sarcin.J.Biomed.Sci.2000,7:420-428.
    [63]Endo Y,Wool IG.The site of action of alpha-sarcin on eukaryotic ribosomes:The sequence at the alpha-sarcin cleavage site in 28s ribosomal ribonucleic acid.Joumal of Biological chemistry,1982,257:9054-9060.
    [64]Iglesias,R.,F.J.Arias,M.A.Rojo,C.Escarmis,J.M.Ferreras,T.Girbes.Molecular action of the type 1 ribosome-inactivating protein saporin 5on Vicia sativa ribosomes.FEBS Lett.1993,325:291-294.
    [65]Zhang,G.P.,Y.L.Shi,W.P.Wang,W.Y.Liu.Cation channel formed at lipid bilayer by Cinnamomin,a new type Ⅱ ribosome-inactivating protein.Toxicon,1999,37:1313-1322.
    [66]Stirpe F.Ribosome-inactivating protein.Toxicon,2004,44(4):371-383.
    [67]郭燕姣,王静云,王林华,陆秀华,姜国勇等.玉米核糖体失活蛋白对3种微生物生长抑制作用的研究.莱阳农学院学报(自然科学版),2006,23(4):326-329.
    [68]Molina,A.,A.Segura,F.Garcia-Olmedo.Lipid transfer proteins(nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens.FEBS Lett.1993,16:119-122.
    [69]Guerbette,F.,M.Grosbois,A.Jolliot-Croquin,J.C.Kader,A.Zachowski.Lipid-transfer proteins from plants:structure and binding properties.Mol.Cell.Biochem.1999,192:157-161.
    [70]Johal G S,Briggs S P.Reductase activity encoded by the HM1 disease resistance gene in maize.Science,1992,258:985-987.
    [71]Ronald PC.The molecular basis of disease resistance in rice.Plant Molecular Biology.1997,35:179-186.
    [72]Hammond-Kosack KE,Jones JDG.Plant disease resistance genes.Annu.Rev.Physiol.Plant.Mol.Biol.,1997,48:575-607.
    [73]Parniske M,Hammond-Kosack KE,Golstein C,Thomas CM,Jones DA,Harrison K,Wulff BBH,Jones JDG.Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato.Cell,1997,91:821-832.
    [74]Tao Y,Yuan FH,Leister RT,Ausubel FM,Katagiri F.Mutational analysis of the Arabidopsisnucleotide binding site-leucine-rich repeat resistance gene RPS2.The Plant Cell,2000,12:2541-2554.
    [75]Abbott A.And now for the proteome.Nature,2001,409:747.
    [76]Service RF.High-speed biologists search for gold in proteins.Science,2001,294:2074-2077.
    [77]Wasinger V C,Cordwell S J,Cerpa-Poljak A,et al.Progress with gene-product mapping of the Millicutes:Mycoplasoma genitalium.Electrophoresis,1995,16(7):1090-1094.
    [78]Pandey A,Mann M.Proteomics to study genes and genomes.Nature,2000,405(6788):837-846.
    [79]Rappsilber J,Mann M.What does it mean to identify a protein in proteomics? Trends in Biochemical Sciences,2002,27(2):74.
    [80]O'Farrell PH.High resolution two-dimensional electrophoresis of protein.The Journal of Biological Chemidtry,1975,250(10):4007-4021.
    [81]Lescuyer P,Strub J M,Luche S,et al.Progress in the definition of a reference huamn mitochondrial proteome.Proteomics,2003,3(2):157-167.
    [82]应万涛,钱小红.生物质谱技术应用及发展.军事医学科学院院刊,2000,24(2):146-150.
    [83]欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及其调控.植物生理学通讯,1988,24(3):9-16.
    [84]Ashida H,Danchin A,Yokota A.Was photosynthetic RuBisCO recruited by acquisitive evolution from RuBisCO-like proteins involved in sulfur metabolism? Res Microbiol,2005,156:611-618.
    [85]Walters DR,Ayres PG.Ribulose bisphosphate carboxylase protein and enzymes of CO_2 assimilation in barley infected by powdery mildew(Erysiphe graminis hordei).Journal of Phytopathology.1984,109:208-218.
    [86]Wright DP,Baldwin BC,Shephard MC,et al.Soure-sink relationships in wheat leaves infected with powdery mildew.Ⅱ.Changes in the regulation of the Calvin cycle.Physiological and Molecular Plant Pathology.1995,47:255-267.
    [87]Higgins CM,Manners JM,Scott KJ.Decrease in three messenger RNA species coding for chtoroplast proteins in leaves of barley infected with Erysiphe graminis f.sp hordei.Plant Physiology.1985,78:145-151.
    [91]Inoue T,Higuchi M,Hashimoto Y,et al.Identification of CRE1 as a cytokinin receptor from Arabidopsis.Nature,2001,409:1060-1063.
    [92]Chae H S,Faure F,Kieber J J.The eto1,eto2 and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein.Plant Cell,2003,15:545-559.
    [93]Suzuki T,Sakurai K,Ueguchi C,et al.Two types of putative nuclear factors that physically interact with histidine-containing phosphotransfer(Hpt) domains,signaling mediators in His-to-Asp phosphorelay,in Arabidopsis thaliana.Plant Cell Physiol,2001,42:37-45.
    [94]夏德习,管清杰,金淑梅,等.拟南芥硫氧还蛋白M1型基因(AtTRX ml)与环境逆境之间的关系.分子植物育种,2007,5(1):21-26.
    [95]Christophe L,Dominique M,Yves M,et al.The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor.Plant Physiology,2004,134:1006-1016.
    [96]Lee M Y,Skin K H,Kim Y K,et al.Induction of thioredoxin is required for nodule development to reduce reactive oxygen species levels in soybean roots.Plant Physiology,2005,139:1881-1889.
    [97]张志明.立枯丝核菌AG1-IA诱导玉米差异表达基因的研究.四川农业大学博士学位论文,2006.
    [98]廖长见.玉米纹枯病抗病候选基因的表达分析.四川农业大学硕士学位论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700