秸秆纤维乙醇技术工程化及技术经济研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是可以为人类提供能量的自然资源,是人类赖以生存和社会赖以发展的物质基础。近年来随着世界低碳经济浪潮的到来,世界各国制定了可再生能源发展规划,并提供了专项资金推动可再生能源的技术研究和产业化发展。在生物质可再生能源研究开发体系中,纤维乙醇技术成为公众、政府和企业支持的商业载体,也是实现未来生物炼制发展的基础平台和重要途径。
     维乙醇技术产业化是一个不断探索和优化的过程。目前虽然国内外在纤维乙醇领域研究不断取得新技术进步,并基于不同的技术工艺先后建立了近40多条中试生产线,还处于产业化发展的初级阶段,表明影响和制约产业化发展的关键技术需要亟待解决。
     本课题基于秸秆纤维燃料乙醇工程试验研究,重点进行了纤维乙醇预处理关键技术、技术工程化实施及技术经济分析,并取得了阶段性的结论和成果。主要包括以下几个方面:
     (1)在对现有国内外纤维中试生产生产线比较研究的基础上,基于蒸汽爆破与稀同线双效预处理生产线设计理念,并在此指导下完成了300t/a秸秆纤维燃料乙醇中试示范生产线初步的物料衡算和工艺流程,设备技术参数,并系统地完成了设备设计、加工、安装与调试,为工程试验研究提供基础平台。
     (2)基于300t/a秸秆纤维乙醇工程试验线,进行了稀预处理工艺的试验。试验结果表明,糖化48h秸秆粉糖化率达到50.5%,发酵72h乙醇浓度到23.1g/L,乙醇回收率达到82.5%,与试验小试结果基本一致。
     (3)基于BOX-Behnken design中心组合试验设计,利用响应面分析法建立了以还原总糖为响应值的工艺数学模型,并在此基础上进行了工艺优化,获得较高的还原总糖浓度。结果表明,维压时间t=227s、蒸汽压强p=3.08MPa和碳氢铵浓度C=2.11%,还原总糖浓度达到60.04g/L。结果表明,蒸汽爆破预处理技术工艺表明,糖化率达到53.5%,乙醇浓度到24.8g/L,乙醇回收率达到82.9%,蒸汽爆破预处理工程试验比稀预处理工艺较好的试验效果。运用热重分析(TGA)、X衍射分析(XRD)和扫描电镜(SED)方法综合研究了蒸汽爆破预处理对秸秆理化特性影响的研究,结果表明,蒸汽爆破预处理对玉米秸秆理化特性改变较为显著。
     (5)研究了秸秆乙醇废利用的新途径,有利于提高秸秆乙醇废的经济附加值。防水材料原料中添加10~11%的秸秆纤维废,生产成本降低8~9%,且防水材料的不透水性提高8.1%,最大拉力时延伸率提高了0.92%。经人工气候老化后检测,拉力保持率比对照高3.5%。
     (6)基于工程热力学方程分析了影响蒸汽能耗的因素,建立了秸秆纤维乙醇生产净能量分析模型,并分析了两种不同生产工艺的能量流动分布。结果表明,汽爆预处理生产系统总能耗与稀预处理工艺减少1027.7MJ/t,能投比提高了0.11,并进行两种技术工艺的成本估算,及影响乙醇成本的敏感性分析。结果表明,蒸汽爆破预处理生产成本略低于稀工艺,纤维素酶是实现纤维乙醇产业化发展的关键性因素。
Energy is a kind of natural resource which supply energy for humanbing, and it is the material foundation for human living and society developing. Following the low carbon economy wave in recently years, most countries established their developing plan for regenerable energy, and supply special fund to promote technology and industy development of regenerable energy. Biomass energy is the largyest regenerable energy source in the world,and in the research and exploitation system of biomass energy, fibre ethanol technology has became an important economy carrier supported by publication,governments and corporations, at the same time, it is the basic platform and important channel to realize biomass refine developing in future.
     Cellulosic ethanol technology industry is an exploring and optimizing process Though there have gaining continuing technology developing in fibre ethanol research field, and about 40 middle pre-production trials have built on the base of different technologies in the world, fibre ethanol industry is still on the primary stage of industry production, the developing actualities of cellulosic ethanol shown that there are key technologyies which restrict fibre ethanol industry transforming need to be resolve now.
     This task was based on the three phases of straw cellulosic fuel ethanol middle engineering test demonstration study, took the key technology of raw materials pretreament, production technic transform to engineering, and process economics study as main studing. Phasely conclusions and fruits for the study were given as follow:
     (1)The design thought of two methods of steam explosion and dilute acid combined action to pretreat raw materials was drawn out after compared middle engineering tests operating in the world now, and then materials and supplies calculation of middle engineering tests with the capability of 300t straw every year was achieved, technical parameters of the main equipments were radicated, equipments design, machining,fixation and shakedown test were systematicly been done,the basic study base of the middle engineering tests was accomplishhed.
     (2)with the pilot production demonstration line of 300t/a,the experiment and runing of two kinds of pretreatment technic to deal with corn straw were accomplished. The results of dilute acid pretreat experiment shown that saccharified ratio reached 50.5%,ethnol concentration reached 23.1g/L, and ethnol recovery reached 82.5%。
     (3)with BOX-Behnken design, the technics mathematical model which took total saccharified ratio as respond was set up by answer side analytical method,and technics optimize simulation was accomplished by the model,better total deoxidize sugar dates gained by the experiment. The experiment dates shown that pretreatment corn straw by vapour blast at the condition of pressure maintain 227s,vapour pressure keep 3.08Mpa,and ammonium acid carbonate concentration keep 2.11%, the total deoxidize sugar concentration could reached 60.04g/L.
     (4)Pretreatment corn straw by steam explosion could produce better effect than dilute acid.In the dates of the experiment pretreatment corn straw by vapour blast,saccharify got 53.5%,ethanol concentration got 24.8g/L,and ethanol recovery ratio got 82.9%. TGA, XRD and SED methods were integrated to study the physical and chemical characteristic of corn straw after vapour blast.the results shown that vapour blast pretreatment have depressed cellulose rime distinctnessly.
     (5)The new useage of corn straw residue was explored. corn straw residue could be used as waterproof material, that could enhance additional profit of corn straw residue which had been used to produced ethnol fuel.Been added 10~11% corn straw residue, the producing cost of waterproof material could depressed 8~9%,and the water proof ability enhance 8.1%, the the extensibility under maximum pulling enhanced 0.92%,the pulling keep rate was 3.5% higer than comparison dates.
     (6)The factors affect energy consume in the two pretreation methods were been emphatically analysed.thermodynamics equation of steam explosion process was built, and factors affect energy consume of vapour were analyzed.that could supply reference for the optimization and amplification of steam explosion equipment.the experiment results shown that the total energy consume of steam explosion was 1027.7MJ/t less than dilute technology.
引文
[1]张百良,宋华民,李世欣.生物能源发展及科技创新机遇[J].农业工程学报, 2008, 24(2): 285-289.
    [2]吴创之,周肇秋,阴秀丽,等.我国生物质能源发展现状与思考[J].农业机械学报, 2009: 91-97.
    [3]江泽民.对中国能源问题的思考[J].上海交通大学学报, 2008, 42(3): 346-366.
    [4]张百良.生物能源技术工程化[G].北京:科学出版社, 2009: 186-198.
    [5] Gan L, Yu J. Bioenergy transition in rural China: Policy options and co-benefits[J]. Energy Policy, 2008, 36(2): 531-540.
    [6]姚向君,王革华,田宜水.国外生物质能的政策与实践[M].北京:化学工业出版社, 2006.
    [7] Escobar J C, Lora E S, Venturini O J, et al. Biofuels: Environment, technology and food security[J]. Renewable and Sustainable Energy Reviews , 2009, 13: 1275-1287.
    [8]严良政,张琳,王士强,等.中国能源作物生产生物乙醇的潜力及分布特点[J].农业工程学报, 2008, 24(5): 213-216.
    [9] Hengyun Maa B L O B. A survey of China’s renewable energy economy[J]. Renewable and Sustainable Energy Reviews, 2010, 14: 438-445.
    [10]徐颖,刘鸿雁.能源植物的开发利用与展望[J].中国农学通报, 2009, 25(3): 273-300.
    [11] Duff S J B, Murray W D. Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review[J]. Bioresource Technology, 1996, 55(1): 1-33.
    [12] Johnson J. Technology Assessment of Biomass Ethanol:A multi-objective, life cycle approach under uncertainty[D]. Kansas: University of Kansas, 1997.
    [13] Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel[J]. Applied Energy, 2009, 86: 2273-2282.
    [14]张扬健,向威达,周涛,等.我国燃料乙醇发展现状和趋势分析[J].中国能源, 2009, 31(1): 31-36.
    [15]曲音波等.生物燃料[Z].化学工业出版社, 2009.
    [16] Dwivedi P, Alavalapati J R R, Lal P. Cellulosic ethanol production in the United States: Conversion technologies, current production status, economics, and emerging developments[J]. Energy for Sustainable Development, 2009, 13(3): 174-182.
    [17] Yue Z, Teater C, Liu Y, et al. A sustainable pathway of cellulosic ethanol production integrating anaerobic digestion with biorefining[J]. Biotechnol Bioeng, 2009: 1-29.
    [18] Diasa M O S, Ensinasa A V, Nebrac S A, et al. Production of bioethanol and other bio-based materials from sugarcane bagasse: Integration to conventional bioethanol production process[J]. chemical engineering research and design, 2009, 87: 1206-1216.
    [19]陈伟红,闫德冉,杜风光,等.纤维质原料生产燃料乙醇的研究进展[J].农业与技术, 2006, 26(4): 29-34.
    [20]任天宝.玉米秸秆发酵制取燃料乙醇的试验研究[D].郑州:河南农业大学, 2007.
    [21]于晓东,樊峰鸣.秸秆发电燃料收加储运过程模拟分析[J].农业工程学报, 2009, 25(10): 215-219.
    [22]邢爱华,刘罡,王垚,等.生物质资源收集过程成本、能耗及环境影响分析[J].过程工程学报, 2008, 8(2): 305-314.
    [23]刘岗,郝德海,董玉平.生物质秸秆收集成本研究及实证分析[J].技术经济, 2006(2): 85-88.
    [24] Alvira P, Tomás-PejóE, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review[J]. Bioresource Technology, 2009.
    [25]宋安东,薛仁军,谢慧,等.不同微生物降解木质纤维素效率和过程的对比研究[J].安全与环境学报, 2009, 09(2): 1-9.
    [26]李淑君.植物纤维水解技术[M].北京:化学工业出版社, 2009.45-52.
    [27] Bonini C, Auria M D, Di Maggio P, et al. Characterization and degradation of lignin from steam explosion of pine and corn stalk of lignin: The role of superoxide ion and ozone[J]. industrial crops and products , 2008, 27: 182-188.
    [28]欧阳嘉,董郑伟,谢喆,等.汽爆玉米秸秆渣诱导产纤维素酶及其水解特性[J].南京林业大学学报(自然科学版), 2009, 33(4): 98-103.
    [29] Lee J. Biological conversion of lignocellulosic biomass to ethanol.[J]. J Biotechnol, 1997, 56(1): 1-24.
    [30] R乌尔伯,D赛尔.白色生物技术[M].北京:科学出版社, 2009.
    [31] Y s, J c. Hydrolysis of lignocellulosic materials for ethanol production: a review[J]. Bioresource Technology, 2002, 83: 1-11.
    [32]张荫雷,李莉,戴天纭,等.预处理方法对玉米秸秆利用的影响[J].纤维素科学与技术, 2009, 17(3): 35-40.
    [33]靳胜英,张福琴,张礼安.木质纤维原料制乙醇原料预处理技术[Z]. 2008: 10, 81-87.
    [34] Hendriks A T W M, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology 100 (2009) 10–18, 2009, 100: 10-18.
    [35] Yan L, Zhang H, Chen J, et al. Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery[J]. Bioresource Technology, 2009, 100: 1803-1808.
    [36] Saha B C, Cotta M A. Comparison of pretreatment strategies for enzymatic saccharification and fermentation of barley straw to ethanol[J]. New Biotechnology, 2009: 1-7.
    [37]王树荣,庄新姝,骆仲泱,等.木质纤维素类生物质超低水解试验及产物分析研究[J].工程热物理学报, 2006, 27(5): 741-744.
    [38] Oisson L.生物燃料[M].北京:化学工业出版社, 2009.
    [39]付明忠,庄新珠,许敬亮,等.木质纤维素类生物质稀水解技术研究进展[C].广州: 2006.
    [40] Ballesteros I, Ballesteros M, Manzanares P, et al. Dilute sulfuric acid pretreatment of cardoon for ethanol production[J]. Biochemical Engineering Journal, 2008, 42(1): 84-91.
    [41] Han G, Deng J, Zhang S, et al. Effect of steam explosion treatment on characteristics of wheat straw[J]. Industrial Crops and Products , 2010, 31: 28-33.
    [42] Li J, Gellerstedt G, Toven K. Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals.[J]. Bioresour Technol, 2009, 100(9): 2556-2561.
    [43]陈洪章,刘丽英.蒸汽破碎技术原理及应用[M].北京:化学工业出版社, 2007.
    [44] Ruiz E O, Cara C O, Manzanares P, et al. Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks[J]. Enzyme and Microbial Technology 42 (2008) 160–166, 2008, 42: 160-166.
    [45] Hgren K O, Rudolf A, Galbe M. Fuel ethanol production from steam-pretreated corn stover using SSF athigher dry matter content[J]. biomass&bioenergy, 2006, 30: 863-869.
    [46] Oliva J M, Sáez F, Ballesteros I, et al. Effect of Lignocellulosic Degradation Compounds from Steam Explosion Pretreatment on Ethanol Fermentation by Thermotolerant Yeast Kluyveromyces marxianus[J]. Applied Biochemistry and Biotechnology, 2003, 105(1-3): 141-153.
    [47]王许涛,张百良,宋安东,等.蒸汽爆破技术在秸秆厌氧发酵中的应用[J].农业工程学报, 2008, 24(8): 189-192.
    [48]张杰,张晓东,孟祥梅,等.纤维素酶研究进展[J].可再生能源, 2007, 25(5).
    [49]景春娥,赵旭,常思静,等.纤维素酶在燃料乙醇工业中的应用研究进展[J].酿酒科技, 2009(3): 98-104.
    [50] Berlin A, Gilkes N, Kurabi A, et al. Weak lignin-binding enzyme[J]. Appl. Biochem. Biotechnol, 2005, 121–124: 163-170.
    [51] S D B, A C T, W J T. Bacteria engineered for fuel ethanol production: current status[J]. Appl Microbiol Biotechnol, 2003, 63(258- 266).
    [52]杜风光,史吉平,张龙,等.纤维质生产燃料乙醇产业化研究进展[Z]. 2007: 29, 72-75.
    [53] Barry D. Solomon J R B K. Grain and cellulosic ethanol: History, economics, and energy policy [Z]. 2007: 31, 416-425.
    [54]美国国家可再生能源实验室.现代生物能源技术[M].北京:科学出版社, 2009.55-60.
    [55] Tolan J S. Iogen’s process for producing ethanol from cellulosic biomass[Z]. 2002: 3, 339-345.
    [56]卡姆波吉特.,卡姆帕特里克. R.格鲁博迈克.生物炼制-工业过程与产品[M].北京:化学工业出版社, 2007.
    [57]曲音波.纤维素乙醇产业化[J].化学进展, 2007, 19(7): 1098-1105.
    [58]王静康.化工过程设计[M].北京:化学工业出版社, 2006.
    [59]路德维希E. E.化工装置实用工艺设计[M].北京:化学工业出版社, 2006.
    [60]斯佩特詹姆斯G.化学工程师实用数据手册[M].北京:化学工业出版社, 2006.
    [61]王志文,蔡仁良.化工容器设计》[M].北京:化学工业出版社, 2005.
    [62]缪传华,顾国亮,袁连山.工业化学过程与计算[M].北京:化学工业出版社, 2005.
    [63]刘朝霞,焦相卿.仪表及自动化[M].北京:化学工业出版社, 2007.
    [64]陈南英,刘玉兰.常用化工单元设备的设计[M].上海:华东理工大学出版社, 2005.
    [65]张晓东.计算机辅助化工厂设计[M].北京:化学工业出版社, 2005.
    [66]中国石化集团上海工程有限公司.化工工艺设计手册(上下册)[M].北京:化学工业出版社, 2003.
    [67] Seider Warren D.,Seader J. D.,Lewin Daniel R.产品与过程设计原理-合成、分析与评估[M]. WILEY, 2003.
    [68]成大先.机械设计手册[M].北京:化学工业出版社, 1997.
    [69]周伟国,马国彬.能源工程管理[M].上海:同济大学出版社, 2007.
    [70]张元兴.生物反应器工程[M].上海:华东理工大学出版社, 2001.
    [71]李鑫刚.现代蒸馏技术[M].北京:化学工业出版社, 2009.
    [72] Shao X, Lynd L, Bakker A, et al. Reactor scale up for biological conversion of cellulosic biomass to ethanol[J]. Bioprocess Biosyst Eng, 2009.
    [73] Slade R, Bauen A, Shah N. The commercial performance of cellulosic ethanol supply-chains in Europe.[J]. Biotechnol Biofuels, 2009, 2(1): 3.
    [74] Greer D. Accelerating The Cellulosic Ethanol Industry[Z]. 2009: 50.
    [75] Ara O A, De Paoli M. Pilot plant scale preparation of dodecylbenzene sulfonic acid doped polyaniline in ethanol/water solution: Control of doping, reduction of purification time and of residues[J]. Synthetic Metals, 2009, 159(19-20): 1968-1974.
    [76]袁金刚. 5000吨/年1-辛烯概念设计和300吨/年1-辛烯中试设计[D].中国石油大学(北京), 2008.
    [77]宋安东,任天宝,谢慧,等.化学预处理对玉米秸秆酶解糖化效果的影响[J].化学与生物工程, 2006, 23(8).
    [78]沈萍,陈向东.微生物学实验[M].北京:高等教育出版社, 2007.
    [79]宋安东,康怀彬,王占彬,等.以木糖为原料的酒精发酵研究[J].郑州轻工业学院学报(自然科学版), 2003, 18(3).
    [80] Bakos G C, Tsioliaridou E, Potolias C. Technoeconomic assessment and strategic analysis of heat and power co-generation (CHP) from biomass in Greece[J]. Biomass & Bioenergy, 2008, Vol.32(No.6): 558-567.
    [81]赵青玲.秸秆成型燃料燃烧过程中沉淀腐蚀问题的试验研究[D].郑州:河南农业大学,2007.
    [82]宋安东.生物质(秸秆)纤维燃料乙醇生产工艺试验研究[D].河南农业大学, 2003.
    [83]黄进,周紫燕.木质素改性高分子材料研究进展[J].高分子通报, 2007(1): 50-61.
    [84]叶菊娣,洪建国.蒙脱土对木质素基环氧树脂材料的影响[J].南京林业大学学报(自然科学版), 2006, 30(3).
    [85]霍夫里特,斯坦因比谢尔.生物高分子[M].北京:化学工业出版社, 2004.
    [86]陶用珍管映亭.木质素的化学结构及其应用[Z]. 2003: 11, 42-54.
    [87]郭伊丽,王少光,武书彬,等.玉米秸秆木素的化学结构及热解特性[J].华南理工大学学报(自然科学版), 2006, 34(3): 40-44.
    [88] Jung H G, Lamb J F S. Prediction of cell wall polysaccharide and lignin concentrations of alfalfa stems from detergent ber analysis[J]. Biomass and Bioenergy, 2004, 27: 365-373.
    [89]张万烽,林青,林健,等. Mannich法合成木质素胺型沥青乳化剂及其分析[J].应用化工, 2006(05): 366-368.
    [90]程贤甦,刘树生.酶解木质素的研究进展及其在橡胶工业中的应用[J].橡胶科技市场, 2009 (19): 23-26.
    [91]陈国符,邬义明.植物纤维化学[M].北京:轻工业出版社, 1980.35-38.
    [92]李润卿.有机结构波谱分析[M].天津:天津大学出版社, 2003.56-65.
    [93]杨之礼.纤维素化学[M].北京:轻工业出版社, 1961.25-32.
    [94]黄志桂,黄冬根.改性黑液木质素胶一木屑纤维板的研制[J].西南师范大学学报(自然科学版), 1993, 18(1): 44-51.
    [95] Kaar W E, Gutierrez C V. Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol[J]. biomass and bioenergy, 1998, 14(3): 277-287.
    [96]孙亚东,蒋建新,孙冉,等.纤维乙醇及渗透汽化原位分离技术研究进展[J].中国能源, 2008, 30(9): 17-25.
    [97] Ruiz E, Cara C, Manzanares P, et al. Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks[J]. Enzyme and Microbial Technology, 2008, 42(2): 160-166.
    [98]裘晓华,裘娟萍,张正波,等.响应面法优化多杀菌素发酵培养基的研究[J].工业微生物, 2009, 39(3): 21-29.
    [99] Ma H, Liu W, Chen X, et al. Enhanced enzymatic saccharification of rice straw by microwave pretreatment[J]. Bioresource Technology, 2009, 100(3): 1279-1284.
    [100]杨卿,武书彬.麦草的热失重特性及动力学[J].农业工程学报, 2009, 25(3): 193-197.
    [101] Yu C T, Chen W H, Men L C, et al. Microscopic structure features changes of rice straw treated by boiled acid solution[Z]. 2009: 29, 308-315.
    [102]杜海清,王晶,白雪峰.木质类生物质热解过程的热重分析研究[J].黑龙江大学自然科学学报, 2008, 25(1): 85-92.
    [103]宋春财,胡浩权.秸秆及其主要组分的催化热解及动力学研究[J].煤炭转化, 2003, 26(3): 91-96.
    [104]陈晋南.传递过程原理[M].北京:化学工业出版社, 2004.215-225..
    [105]胡荣祖,高胜利,赵凤起,等.热分析动力学[M].北京:科学出版社, 2008.
    [106]刘荣厚,袁海荣,徐璐.玉米秸秆热解反应动力学的研究[J].太阳能学报, 2007, 28(5): 527-530.
    [107]王明峰,蒋恩臣,周岭.玉米秸秆热解动力学分析[J].农业工程学报, 2009, 25(2): 204-208.
    [108]宋春财,胡浩权,朱盛维, et al.生物质秸秆热重分析及几种动力学模型结果比较[J].燃料化学学报, 2003, 31(4): 310-315.
    [109]李继红,杨世关,郑正,等.互花米草中温厌氧发酵木质纤维结构的变化[J].农业工程学报, 2009, 25(2).
    [110] Roncero M B, Tortes A L. TCF bleaching of wheat straw pulp using ozobe and xylanase.Part A:Paperquality assessment[J][J]. Bioresource Technology, 2003, 87(3): 305-314.
    [111]贺学礼.植物学[M].北京:科学出版社, 2008.
    [112] Luo L, van der Voet E, Huppes G. An energy analysis of ethanol from cellulosic feedstock–Corn stover[J]. Renewable and Sustainable Energy Reviews, 2009, 13: 2003-2011.
    [113] Undersander P A V. Economics and Energy of Ethanol Production from Alfalfa,Corn, and Switchgrass in the Upper Midwest, USA[Z]. 2008: 1, 44-55.
    [114] Jr W J F, Lien S J, Courchene C E, et al. Production of ethanol from carbohydrates from loblolly pine:A technical and economic assessment[J]. Bioresource Technology, 2008, 99: 5051-5057.
    [115] Huang J J. Life Cycle Analysis of Hybrid Poplar Trees for Cellulosic Ethanol[D]. 2007.
    [116] Per Sassner M G A G. Techno-Economic Aspects of a Wood-to-Ethanol Process: Energy Demand and Possibilities for Integration[J]. 2003.
    [117]陈俊,刘朝,刘娟芳,等.近饱和区过热水蒸汽性质的分子动力学模拟研究[J].工程热物理学报, 2007, 28(z1): 5-11.
    [118]孙晓岩,项曙光.通用蒸汽动力系统的综合与模拟[J].计算机仿真, 2006, 23(1).
    [119]胡志华,匡波,杨燕华.蒸汽爆炸粗混合过程中的蒸发阻力模型[J].工程热物理学报, 2006, 27(6).
    [120] Ahn H K, Sauer T J, Richard T L, et al. Determination of thermal properties of composting bulking materials[J]. Bioresource Technology, 2009, 100: 3974-3981.
    [121]李智渝,王益,沈俭一.表面反应动力学机理研究的新进展[J].化学通报, 1998(8).
    [122]齐鸣斋.化工能量分析[M].上海:华东理工出版社, 2009.
    [123]张管生.科学用能管理与方法[M].北京:国防工业出版社, 1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700