阿魏酸酯酶的生产及在植物纤维材料降解中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿魏酸是在植物界中存在最广泛的羟基肉桂酸成分之一,因其具有去除活氧自由基、吸收紫外线、抑制色素生成及抗炎等作用,被广泛的应用于医药、化妆品及化工等行业。另外,阿魏酸与半纤维素、木素通过酯键交联,加强了三维的多糖网状结构,并且限制了纤维素的利用和微生物对于植物纤维类材料的降解。
     阿魏酸酯酶是半纤维素降解酶系的组成部分之一,它可以打断半纤维素之间的、半纤维素与木素之间交联的酯键,一方面促进半纤维素、木素与纤维素的分离,有利于纤维素的进一步利用;另一方面促进阿魏酸等酚酸类物质的分离。阿魏酸酯酶在生物乙醇生产、制浆造纸、动物饲料生产和生物合成中具有广泛的应用价值。
     本论文中,采用阿魏酸乙酯为唯一碳源的筛选培养基,根据产阿魏酸酯酶的菌株可在该平板上产生透明圈的特点,从土壤样品和实验室保藏的菌株中筛选到几株产阿魏酸酯酶菌株。进一步通过不断传代培养和液态发酵方式对菌种进行复筛,最终筛选得到一株产阿魏酸酯酶能力强的菌株4-3-a。通过扩增其18S rDNA片段和内转录间隔区序列(ITS)的方法对菌株进行鉴定,并结合菌株形态和菌体形态观察将该菌株鉴定为黄曲霉(Aspergillus flavus)。该菌株是有报道的第二株产阿魏酸酯酶的黄曲霉,其产酶能力与相关文献报道的菌株相比处于中上游水平。
     对用来测定阿魏酸酯酶酶活的底物去淀粉麦麸(DSWB)的制备方法进行了改进,通过研究证明,采用淀粉酶处理方法代替文献中使用的化学处理方法,可以使得麦麸中残留的淀粉含量达到测定酶活时对底物要求的水平。
     利用单因子实验、正交实验等统计学方法对于液态发酵培养基成分进行优化,得到较好的产酶培养基组成为:碳源6%,酵母浸粉0.4%,KH2PO40.05%,NaNO30.9%,MgSO40.05%。同时实验结果表明,碳源种类对阿魏酸酯酶的生产影响较大,其中以麦草粉、玉米秸秆粉和玉米芯粉为碳源时产阿魏酸酯酶情况较好。进一步利用混料设计方法对碳源的组成进行了优化,获得了最优的碳源配比,即当碳源总量为6%时,玉米杆和玉米芯的配比为36:64时可以获得最高的产酶效果。通过优化该菌株液体发酵生产阿魏酸酯酶的工艺参数,获得了最佳发酵工艺条件为:初始pH值为7.0,转速为210 rpm,培养温度为32℃,接种量为6%,装液量为100 mL(500 mL三角瓶)。经过对菌株4-3-a的液态发酵培养基成分及培养条件进行优化,使其产阿魏酸酯酶的水平提高2.5倍。利用混料设计实验方法优化混合碳源的组成,在国内尚属首次。
     对菌株4-3-a所产的阿魏酸酯酶进行酶学性质分析,当以去淀粉麦麸(DSWB)作为反应底物时,该酶的最适反应pH为6.0,最适反应温度为65℃;该酶在pH 5.0~7.0的微酸性环境中和50℃以下时有良好的稳定性;同时,该酶对溶解合成底物用的40%及以下的乙醇具有良好的耐受性。
     卡伯值测定和红外光谱分析表明麦草经过菌株液态发酵处理后,木素含量有所减少,酯键和木素的特征吸收都有不同程度的降低,证实了阿魏酸酯酶的作用;进一步分析发现,菌液处理后麦秸中阿拉伯糖含量降低显著,说明阿魏酸酯酶可以促进阿拉伯木聚糖的溶出。采用热水处理然后磨浆的方式,可以在大量保留酯键的基础上使麦秸结构变得疏松,有利于后续的酶解进行。纤维素酶解时添加阿魏酸酯酶,可以改善底物的酶解糖化效果,也可以在保持较高纤维素转化率的前提下,通过添加阿魏酸酯酶减少纤维素酶用量。
Ferulic acid is the most abundant, ubiquitous hydroxycinnamic acid distributed widely throughout the plant kingdom. It has a wide variety of applications in pharmaceutical, cosmetic and chemical industry because it has effects of erasing radical and active oxygen, absorbing UV, inhibiting pigment formation and inflammatory. Furthermore, ferulic acid is crosslinking with hemicellulose and lignin by ester, which strengthened the three-dimensional polysaccharide network and inhibiting the utilizaion of cellulose and bio-degradation of plant fiber material by microorganisms.
     Feruloyl esterase (FAE) is one type of hemicellulose degrading enzymes. FAE hydrolyzed the ester bond between the arabinose substitutions and ferulic acid, which is involved in crosslinking xylan to lignin, and destroyed three-dimensional network structures of plant cell walls. Feruloyl esterase has been widely used in the bio-ethanol production, pulping industry, animal feed production and the biological synthesis process.
     In the paper, Fungus 4-3-a was screened by selective screening using ethyl ferulate as sole carbon source in medium in the plates, and continuously culturing in liquid fermentation to produce FAE. This fungus has a good ability to produce Feruloyl esterase. The strain was identified to be Aspergillus flavus by analyzing 18S rDNA, ITS fragment and morphological properties. The strain was the second reported Aspergillus flavus strain with the ability to produce feruloyl esterase.
     Destarched wheat bran (DSWB) was used as substrate to determine FAE enzyme activity. The process of DSWB production was researched and DSWB with lower residual starch content was obtained by amylase treatment substitute for chemical treatment reported in many literatures. The DSWB was suitable for determining enzyme activity of FAE.
     Compositions of culture mediums in liquid fermentation of strain 4-3-a were optimized by using single factor experiments, orthogonal experiments and statistical methods, and the suitable culture medium was:carbon source of 6%, yeast extract of 0.4%, KH2PO4 0.05%, NaNO3 0.9%, MgSO4 0.05%. It was shown that carbon source has a significant influence on production of FAE. The mixture design method was used to optimize the composition and ratio of carbon sources to obtain high activity enzyme. It was found that enzyme with the highest activity of FAE can be produced when dosage of total carbon source was 6%, and ratio of corn stover to corn cob was 36:64. The culture conditions for liquid fermentation of strain 4-3-a were also optimized in the paper and shown as follows:initial pH 7.0, speed 210 rpm, culture temperature 32℃, inculation of 6%, and culture volume of 100 mL in 500 mL flask. Compared to original medium and culture conditions, the activity of FAE was increased to 2.5 folds when strain 4-3-a was cultured in the optimized cultures and conditions. The experimental method of mixture design was firstly used to optimize carbon source composition of the culture mediums.
     The properties of feruloyl esterase produced by strain 4-3-a were analyzed and shown that the optimum pH is 6.0 and the optimum temperature of 65℃. It is stable in the range of pH 5.0 to 7.0 and temperature below 50℃. It is also an enzyme with ethanol-tolerance when ethanol consistency was below 40% in enzyme solution to dissolve synthetic substrate for determining enzymatic activity.
     The lignin content, single sugars contents and morphology of wheat straw were analyzed by Kappa number test, HPLC and infrared spectroscopy after wheat straw was treated with the strain 4-3-a by liquid culture method. It was shown that the lignin and sugar contents were decreased after bio-treatment, especially for the arabinose content; and absorption of ester bond was decreased, which means the FAE produced by the strain 4-3-a breaks ester bond and promotes degradation of arabinoxylan. The saccharification of cellulose in wheat straw pretreated with hot water was improved by adding FAE to cellulase solution and conversion ratio of cellulose was increased. Also, the dosage of cellulase can be decreased by adding FAE to hydrolyzing system when conversion ratio was kept at a similar degree.
引文
1. Ou S, Kwok KC. Ferulic acid:Pharmaceutical functions, preparation and applications in foods. J Sci Food Agric 2004,84:1261-1269.
    2. Omar MM. In Phenolic compounds in food and their effect on health I. ACS Symposium Series 1992,12:154-168.
    3. Nethaji M, Pattabhi V. Structure of 3-(4-Hydroxy-3-methoxyphenyl)-2-propenoic acid (ferulic acid). Acta Cryst 1988, C44:275-277.
    4. Mathew S, Abraham TE. Ferulic acid:An antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit Rev Biotechnol 2004,24:59-83.
    5. Kampa M, Alexaki VI, Notas G, Nifli AP, Nistikaki A, Hatzoglou A, Bakogeorgou E et al. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells:Potential mechanisms of action. Breast Cancer Res 2004,6:63-74.
    6. Lee YS. Role of NADPH oxidase-mediated generation of reactive oxygen species in the mechanism of apoptosis induced by phenolic acids in HepG2 human hepatoma cells. Arch Pharm Res 2005,28:1183-1189.
    7. Lesca P. Protective effects of ellagic acid and other plant phenols on benzo pyrene-induced neoplasia in mice. Carcinogenesis 1983,4:1651-1653.
    8. Mori H, Kawabata K, Yoshimi N, Tanaka T, Murakami T, Okada T, Murai H. Chemopreventive effects of ferulic acid on oral and rice germ on large bowel carcinogenesis. Anticancer Res 1999,19:3775-3778.
    9. Lin FH, Lin JY, Gupta RD, Tournas JA, Burch JA, Selim MA, Monteiro-Riviere NA et al. Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. J Invest Dermatol 2005,125:826-833.
    10. Priefert H, Rabenhorst J, Steinbuchel A. Biotechnological production of vanillin. Appl Microbiol Biotechnol 2001,56:296-314.
    11. Ernst G. Antioxidant potential of ferulic acid. Free Radic Biol Med 1992,13: 435-448.
    12. Mathew S, Abraham TE. Bioconversions of ferulic acid, a hydroxycinnamic acid. Crit Rev Microbiol 2006,32:115-125.
    13. Li GL, Wang JJ, Wang JZ, Liu YY, Jin Y. Effect of ferulic acid on the proliferation of nerve cells of retinas in vitro. Zhonghua Yan Ke Za Zhi 2003,39: 650-654.
    14. Sohn YT, Oh JH. Characterization of physicochemical properties of ferulic acid. Arch Pharm Res 2003,26:1002-1008.
    15. Rosazza JP, Huang Z, Dostal L, Volm T, Rousseau B. Biocatalytic transformations of ferulic acid:An abundant aromatic natural product. J Industrial Microbiol Biotechnol 1995,15:457-471.
    16. Mueller-Harvey I, Hartley RD, Harris J, Curzon EH. Linkage of pcoumaroyl and feruloyl groups to cell-wall polysaccharides of barley straw. Carbohydr Res 1986, 148:71-85.
    17. Colquhoun U, Ralet MC, Thibault JF, Faulds CB, Williamson G. Feruloylated oligosaccharides from cell wall polysaccharides. Part Ⅱ:Structure and identification of feruloylated oligosaccharides from sugar beet pulp by NMR spectroscopy. Carbohydr Res 1994,263:243-256.
    18. Ishii T, Hiroi T, Thomas JR. Feruloylated xyloglucan and p-coumaroyl arabinoxylan oligosaccharides from bamboo shoot cell-walls. Phytochemistry 1990,29:1999-2003.
    19. Smith MM, Hartley RD. Occurrence and nature of ferulic acid substitution of cell-wall polysaccharides in graminaceous plants. Carbohyd Res 1983,118: 65-80.
    20. Benoit I, Navarro D, Marnet N, Rakotomanomana N, Lesage-Meessen L, Sigoillot J-C, Asther M, Asther M. Feruloyl esterases as a tool for the release of phenolic compounds from agro-industrial by-products. Carbohydr Res 2006,341: 1820-1827.
    21. Saulnier L, Vigouroux L, Thibault J-F. Isolation and partial characterization of feruloylated oligosaccharides from maize bran. Carbohydr Res 1995,272: 241-253.
    22. Garleb KA, Fahey Jr GC, Lewis SM, Kerley MS, Montgomery L. Chemical composition and digestibility of fibre fractions of certain by-product feedstuffs fed to ruminants. J Anim Sci 1988,66:2650-2662.
    23. Yu P, Maenz DD, McKinnon JJ, Racz VJ, Christensen DA. Release of ferulic acid from oat hulls by Aspergillus ferulic acid esterase and Trichoderma xylanase. J Agric Food Chem 2002,50:1625-1630.
    24. Yu P, McKinnon JJ, Maenz DD, Racz VJ, Christensen DA. The interactive effects of enriched sources of Asperillus ferulic acid esterase and Trichoderma xylanase on the quantitative release of hydroxycinnamic acids from oat hulls. Can J Anim Sci 2002,82:251-257.
    25. Saulnier L, Thibault JF. Ferulic acid and diferulic acids as components of sugar beet pectins and maize bran heteroxylans. J Sci Food Agric 1999,79:396-402.
    26. Fry SC. Cross-linking matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol 1986,37:165-186.
    27. Iiyama K, Lam TBT, Stone BA. Phenolic bridges between polysaccharides and lignin in wheat internodes. Phytochemistry 1990,29:733-737.
    28. Ralph J, Helm RF. Lignin/hydroxicinnamic acid polysaccharide complexes; synthetic models for regochemical characterization. In:Jun HG, Buxton DR, Hatfield RD, Ralph J, editors. Forage cell wall structure and digestibility. Madison: American Society for Agronomy, Crop Science Society of America, Soil Science Society of America; 1992. p.119-127.
    29. Ishii T. Structure and functions of feruloylated polysaccharides. Plant Sci 1997, 127:111-27.
    30. Lam TBT, Kadoya K, Iiyama K. Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the b-position, in grass cell walls. Phyochemistry 2001,57:987-92.
    31. Jaramillo S, Rodriguez R, Jimenez A, Guillen R, Fernandez-Bolanos J, Heredia A. Effects of storage conditions on the accumulation of ferulic acid derivatives in white asparagus cell walls. J Sci Food Agric 2007,87:286-296.
    32. Ogiwara T, Satoh K, Kadoma Y, Murakami Y, Unten S, Atsumi T, Sakagami H et al. Radical scavenging activity and cytotoxicity of ferulic acid. Anticancer Res 2002,22:2711-2717.
    33. Balasubashini MS, Rukkumani R, Viswanathan P, Menon VP. Ferulic acid alleviates lipid peroxidation in diabetic rats. Phytother Res 2004,18:310■ 314.
    34. Tarbouriech N, Prates JA, Fontes CM, Davies GJ. Molecular determinants of substrate specificity in the feruloyl esterase module of xylanase 10B from Clostridium themrocellum. Acta Crystallogr D Biol Crystallogr 2005,61:194-197.
    35. Faulds CB, Williamson G. Ferulic acid esterase from Aspergillus niger: Purification and partial characterization of two forms from a commercial source of pectinase. Biotechnol Appl Biochem 1993,17:349-359.
    36. Evangelos Topakas, Christina Vafiadi, Paul Christakopoulos. J Process Biochemistry,2007,42:497-509.
    37. Topakas E, Christakopoulos P, Faulds CB. J Biotechnol,2005,115:355-366.
    38. Koseki T, Furuse S, Iwano K, Matsuzawa H. Purification and characterization of a feruloyl esterase from Aspergillus awamori. Biosci Biotech Biochem 1998,62: 2032-2034.
    39. Tenkanen M, Schuseil J, Puls J, Poutanen K. Production, purification and characterisation of an esterase liberating phenolic acids from lignocellulosics. J Biotechnol 1991,18:69-84.
    40. Mathew S, Abraham TE. Studies on the production of feruloyl esterase from cereal brans and sugar cane bagasse by microbial fermentation. Enzyme Microb Technol 2005,36:565-570.
    41. Faulds CB, Vries RP, Kroon PA, Visser J, Williamson G. Influence of ferulic acid on the production of feruloyl esterases by Aspergillus niger. FEMS Microbiol Lett 1997,157:239-244.
    42. Faulds CB, Williamson G. Purification and characterization of a ferulic acid esterase (FAE-Ⅲ) from Aspergillus niger:specificity for the phenolic moiety and binding to microcrystalline cellulose. Microbiology 1994,140:779-787.
    43. Johnson KG, Silva MC, MacKenzie CR, Schneider H, Fontana JD. Microbial degradation of hemicellulosic materials. Appl Biochem Biotechnol 1989,20-21: 245-258.
    44. Smith DC, Bhat KM, Wood TM. Xylan-hydrolysing enzymes from thermophilic and mesophilic fungi. World J Microbiol Biotechnol 1991,7:475-484.
    45. Rumbold K, Biely P, Mastihubova M, Gudelj M, Guebitz G, Robra KH, Prior BA. Purification and properties of a feruloyl esterase involved in lignocellulose degradation by Aureobasidium pullulans. Appl Environ Microbiol 2003,69: 5622-5626.
    46. Donaghy J, Kelly PF, McKay AM. Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli. Appl Microbiol Biotechnol 1998,50:257-260.
    47. Donaghy JA, Bronnenmeier K, Soto-Kelly PF, McKay AM. Purification and characterization of an extracellular feruloyl esterase from the thermophilic anaerobe Clostridium stercorarium. J Appl Microbiol 2000,88:458-466.
    48. Topakas E, Christakopoulos P. Production and partial characterization of alkaline feruloyl esterases by Fusarium oxysporum during submerged batch cultivation. World J Microbiol Biotechnol 2004,20:145-150.
    49. Shin HD, Chen RR. Production and characterization of a type B feruloyl esterase from Fusarium proliferatum NRRL 26517. Enzyme Microb Technol 2006,38: 478-485.
    50. Crepin VF, Faulds CB, Connerton IF. A non-modular type B feruloyl esterase from Neurospora crassa exhibits concentration-dependent substrate inhibition. Biochem J 2003,370:417-427.
    51. Panagiotou G, Granouillet P, Olsson L. Production and partial characterization of arabinoxylan-degrading enzymes by Penicillium brasilianum under solid-state fermentation. Appl Microbiol Biotechnol 2006,27:1117-1124.
    52. Asther M, Haon M, Roussos S, Record S, Delattre M, Meessen LL, Labat M, Asther M. Feruloyl esterase from Aspergillus niger a comparison of the production in solid state and submerged fermentation. Process Biochem 2002,38: 685-691.
    53. MacKenzie CR, Bilous D. Ferulic acid esterase activity from Schizophyllum commune. Appl Environ Microbiol 1988,54:1170-1173.
    54. Johnson KG, Harrison BA, Schneider H, MacKenzie CR, Fontana JD. Xylan-hydrolysing enzymes from Streptomyces spp. Enzyme Microb Technol 1988,10:403-409.
    55. Crepin VF, Faulds CB, Connerton IF. Functional classification of the microbial feruloyl esterases. Appl Microbiol Biotechnol 2004,63:647-652.
    56. Kroon PA, Faulds CB, Williamson G. Purification and characterization of a novel esterase induced by growth of Aspergillus niger on sugar-beet pulp. Biotechnol Appl Biochem 1996,23:255-262.
    57. Fillingham IJ, Kroon PA, Williamson G, Gilbert HJ, Hazlewood GP. A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multiprotein cellulosebinding cellulase-hemicellulase complex. Biochem J 1999,343:215-224.
    58. Ralet MC, Faulds CB. Williamson G, Thibault, JF. Degradation of feruloylated oligosaccharides from sugar-beet pulp and wheat bran by ferulic acid esterases from Aspergillus niger. Carbohydr Res 1994,263:257-269.
    59. Bartolome B, Faulds CB, Kroon PA, Waldron K, Gilbert HJ, Hazlewood G, Williamson G. An Aspergillus niger esterase (ferulic acid esterase III) and a recombinant Pseudomonas fluorescens subsp. cellulosa esterase (Xy1D) release a 5-5'-ferulic dehydrodimer (diferulic acid) from barley and wheat cell walls. Appl Environ Microbiol 1997,63:208-212
    60. Faulds CB, Williamson G. Release of ferulic acid from wheat bran by a ferulic acid esterase (FAE-Ⅲ) from Aspergillus niger. Appl Microbiol Biotechnol 1995, 43:1082-1087.
    61. Kroon PA, Garcia-Conesa MT, Fillingham IJ, Hazlewood GP, Williamson G. Release of ferulic acid dehydrodimers from plant cell walls by feruloyl esterases. J Sci Food Agric 1999,79:428-434.
    62. Williamson G, Faulds CB, Kroon PA. Specificity of ferulic acid (feruloyl) esterases. Biochem Soc Trans 1998,26:205-209.
    63. Kroon PA, Faulds CB, Brezillon C, Williamson G. Methyl phenylalkanoates as substrates to probe the active site of esterases. Eur J Biochem 1997.248:245-251.
    64. Kroon PA, Williamson G. Release of ferulic acid from sugarbeet pulp by using arabinanase, arabinofuranosidase and an esterase from Aspergillus niger. Biotechnol Appl Biochem 1996,23:263-267.
    65. Thibault JF, Asther M, Ceccaldi BC. Fungal bioconversion of agricultural by products to vanillin. Lebensmit tel-Wissenschaft und Technologie 1998,31:530-536.
    66. Ralph J, Quideau S, Grabbe JH, Hatfield RD. Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls. J Chem Soc Perkin Trans 1994,41:3485-3498.
    67. Hermoso JA, Sanz-Aparicio J, Molina R, Juge N, Gonzalez R, Faulds CB. The crystal structure of feruloyl esterase A from Aspergillus niger suggests evolutive functional convergence in feruloyl esterase family. J Mol Biol 2004,338:495 ■ 506.
    68. Brady L, Brzozowski AM, Derewenda ZS, Dodson E, Dodson G, Tolley S, Turkenburg JP et al. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 1990,343:767-770.
    69. Aliwan FO, Kroon PA, Faulds CB, Pickersgill R, Williamson G. Ferulic acid esterase-Ⅲ from Aspergillus niger does not exhibit lipase activity. J Sci Food Agric 1999,79:457-459.
    70. Kroon PA, Williamson G, Fish NM, Archer DB, Belshaw NJ. A modular esterase from Penicillium funiculosum which releases ferulic acid from plant cell walls and binds crystalline cellulose contains a carbohydrate binding module. Eur J Biochem 2000,267:6740-6752.
    71. Coutinho PM, Henrissat B. Carbohydrate-active enzymes:An integrated database approach. In:Gilbert, HJ, Davies GJ, Henrissat B, Svensson B eds. Recent Advances in Carbohydrate Bioengineering. Cambridge:Royal Society of Chemistry 1999.
    72. Blair DE, van Aalten DM. Structures of Bacillus subtilis PdaA, a family 4 carbohydrate esterase, and a complex with N-acetyl-glucosamine. FEBS Lett 2004, 570:13-19.
    73. Schubot FD, Kataeva IA, Blum DL, Shah AK, Ljungdahl LG, Rose JP, Wang BC. Structural basis for the substrate specificity of the feruloyl esterase domain of the cellulosomal xylanase Z from Clostridium thermocellum. Biochemistry 2001,40: 12524-12532.
    74. Ferreira P, Diez N, Gutierrez C, Soliveri J, Copa-Patino JL. Streptomyces avermitilis CECT 3339 produces a ferulic acid esterase able to release ferulic acid from sugar beet pulp soluble feruloylated oligosaccharides. J Sci Food Agric 1999, 79:440-442.
    75. McAuley KE, Svendsen A, Patkar SA, Wilson KS. Structure of a feruloyl esterase from Aspergillus niger. Acta Crystallogr D Biol Crystallogr 2004,60:878-887.
    76. Dodson, G., and Wlodawer, A. Catalytic triads and their relatives. Trends Biochem. Sci.1998,23:347-352.
    77. Wharton, C.W. The serine proteases. In Comprehensive Biological Catalysis, vol. 1, M.L. Sinnott, ed. (London:Academic Press),.1998:345-379.
    78. L.B. Selinger, C.W. Forsberg and K.-J. J Anaerobe 1996,2:263-284.
    79. Blum DL, Kataeva IA, Li XL, Ljungdahl LG. Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. J Bacteriol 2000,182:1346-1351.
    80. Vafiadi C, Topakas E, Wong KK, Suckling ID, Christakopoulos P. Mapping the hydrolytic and synthetic selectivity of a type C feruloyl esterase (StFaeC) from Sporotrichum thermophile using alkyl ferulates. Tetrahedron:Asymmetry 2005, 16:373-379.
    81. Sorensen HR, Meyer AS, Pedersen S. Enzymatic hydrolysis of watersoluble wheat arabinoxylan.1. Synergy between a-L-arabinofuranosidases, endo-1,4-b-xylanases, and b-xylosidase activities. Biotechnol Bioeng 2003,81: 726-731.
    82. Topakas E, Stamatis H, Biely P, Christakopoulos P. Purification and characterization of a type B feruloyl esterase (StFAE-A) from the thermophilic fungus Sporotrichum thermophile. Appl Microbiol Biotechnol 2004,63:686-690.
    83. Dzedzyulya El, Becker EG, Okunev ON, Sinitsyn AP. Feruloyl esterase from Aspergillus sp.:Purification, properties, and action on natural substrates. Biochemistry 1999,64:405-410.
    84. Zheng L, Zheng P, Sun Z, Bai Y, Wang J, Guo X. Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus. Bioresource Technol 2007,98:1115-1119.
    85. Borneman WS, Hartley RD, Morrison WH, Akin DE, Ljungdahl LG. Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Appl Microbiol Biotechnol 1990,33:345-351.
    86. Castanares A, McCrae SI, Wood TM. Purification and properties of a feruloyl/p coumaroyl esterase from the fungus Penicillium pinophilum. Enzyme Microb Tech 1992,14:875-884.
    87. Donaghy J, McKay AM. Purification and characterization of a feruloyl esterase from the fungus Penicillium expansum. J Appl Microbiol 1997,83:718-726.
    88. Record E, Asther M, Sigoillot C, Pages S, Punt PJ, Delattre M, Haon M et al. Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching application. Appl Microbiol Biotechnol 2003,62:349-355.
    89. Pannala R, Razaq R, Halliwell B, Singh S, Rice-Evans CA. Inhibition of peroxynitrite dependent tyrosine nitration by hydroxycinnamates:nitration or electron donation. Free Radical Biol Med 1998,24:594-606.
    90. Kanski J, Aksenova M, Stoyanova A, Butterfield DA. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro:structureactivity studies. J Nutr Biochem. 2002,13:273-281.
    91. Sigoillot C, Camarero S, Vidal T, Record E, Asther M, Perez-Boada M, Martinez MJ, Sigoillot JC, Asther M, Colom JF, Martinez AT. Comparison of different fungal enzymes for bleaching high-quality paper pulps. J Biotechnol 2005,115: 333-343.
    92. Tabka MG, Gimbert IH, Monod F, Asther M, Sigoillot JC. Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme Microb Technol 2006,39: 897-902.
    93. Yu P, McKinnon JJ, Christensen DA. Hydroxycinnamic acids and ferulic acid esterase in relation to biodegradation of complex plant cell walls. Can J Anim Sci 2005,85:255-67.
    94. Yu P, McKinon JJ, Christansen DA. Improving the nutrinional value of oat hulls for ruminant animals with pretreatment of a multi-enzyme cocktail:in vitro studies. J Anim Sci 2005,83:1133-1141.
    95. Chen J, Fales SL, Varga GA, Royse DJ. Biodegradation of cell wall components of maize stover colonized by white-rot fungi and resulting impact on in vitro digestibility. J Sci Food Agric 1995,68:91-98.
    96. Dossat V, Combes A, Marty A. Lipase-catalysed transesterification of high oleic sunflower oil. Enzyme Microb Technol 2002,30:90-94.
    97. Vafiadi C, Topakas E, Christakopoulos P. Regioselective esterase-catalyzed feruloylation of L-arabinobiose. Carbohydr Res 2006,341:1992-1997.
    98. Giuliani S, Piana C, Setti L, Hochkoeppler A, Pifferi PG,Williamson G, Faulds CB. Synthesis of pentylferulate by a feruloyl esterase from Aspergillus niger using water-in-oil microemulsions. Biotechnol Lett 2001,23:325-330.
    99. J Donaghy aP F,Kelly aA M McKay. Detection of ferulic acid esterase production by Bacillus spp. and Lactobacilli. Appl Microbiol Biotechnol,1998, 50:257-260.
    100.欧仕益,张颖,张璟.碱解麦麸制备阿魏酸的研究[J].食品科学,2002,23(8):162-163.
    101. Johnson K G, Harrison B A, Schneider H, et al. Xylanhydrolysing enzymes from Streptomyces spp J. Enzyme Microbiol Technol,1988,10; 403-409.
    102.张英.食品理化与微生物检测实验,中国轻工业出版社 2004.
    103.魏景超.真菌鉴定手册,上海科学技术出版社,1979.
    104.石淑兰制浆造纸分析与检测,中国轻工业出版社2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700