玉米秸皮生物机械法制浆的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米秸皮含有37.62%的硝酸乙醇纤维素,重均纤维长度为0.987,它比全玉米秸秆更适合于做造纸原料。同时考虑到目前机械法制浆高能耗、化学制浆引起环境污染的问题。本论文采用新的木质纤维素原料——玉米秸皮作为造纸原料进行生物机械法制浆的研究。
     通过Bavendamm-PDA平板从济南长清玉米种植地筛选出四株产生变色反应的菌株。从山东大学微生物技术国家重点实验室获得的五株菌中Phanerochaete chrysosporium-25和Phanerochaete chrysosporium-14的Bavendamm-PDA平板呈阴性,Trametes hirsuta lg-9,Trametes versicolor,Irpex lacteus均呈阳性。这9种菌株的玉米秸皮降解实验结果显示对玉米秸皮选择性降解的顺序为:Trametes hirsuta lg-9 > Sd > P.C.-14 > P.C.-25 > Trametes versicolor > Sc。
     将筛选到的对玉米秸皮选择性降解最强的菌株Trametes hirsuta lg-9用于玉米秸皮生物机械法制浆的研究。通过不同菌龄、不同培养方式得到的接种物接种玉米秸皮在无外通空气和连续通空气两种条件下预处理玉米秸皮45d制机械浆,得到的结果显示无外通空气方式培养,低菌龄的接种物处理得到的纸浆强度优于高菌龄;同菌龄的培养物,固态静置培养接种物处理样强度性能优于液态震荡培养接种物。连续通空气培养时,由于打浆度上的差异,有待研究。用固态静置培养物接种,无外通空气方式引起的重量损失小于外通空气,且强度性能也优于后者。用液态震荡培养物接种,则结果相反。Trametes hirsuta lg-9预处理引起了玉米秸皮机械浆白度和光散射系数的降低和光吸收系数的增加。且Trametes hirsuta lg-9预处理后的玉米秸皮在所研究的两段磨浆条件下,引起的磨浆能耗降低幅度在70-85%之间。另外研究发现Trametes hirsuta lg-9玉米秸皮生物机械浆的强度性能与打浆过程中引起的细小增量与保水值增量的比值有较好的线性正相关关系。
     通过预处理时间对Trametes hirsuta lg-9玉米秸皮制生物机械浆影响的研究发现,Trametes hirsuta lg-9预处理玉米秸皮过程中产木聚糖酶、纤维素酶和漆酶,产酶量顺序为木聚糖酶>纤维素酶>漆酶。产酶速率表现为初期增加较快,中期减缓,后期降低的趋势。且Trametes hirsuta lg-9预处理玉米秸皮引起了发酵体系pH的变化。磨浆段能耗的测定结果显示磨浆能耗随着处理时间不断降低,且在α=0.1时,磨浆能耗与Trametes hirsuta lg-9预处理过程中的产酶量无相关性,而与Trametes hirsuta lg-9预处理后的玉米秸皮红外光谱3414cm~-1和1653cm~-1的相对吸收强度具有线性相关性。造成Trametes hirsuta lg-9玉米秸皮机械浆的强度随着处理时间降低的原因是纤维素酶不断积累引起纤维素解聚,引起α-纤维素含量的降低。Trametes hirsuta lg-9预处理秸皮增加了脂肪族羰基和与苯环共轭的羰基含量,因此引起了Trametes hirsuta lg-9预处理玉米秸皮机械浆的光吸收系数的增加,从而降低了纸浆的白度。Trametes hirsuta lg-9预处理玉米秸皮过程中对愈疮木基的降解多于紫丁香基的降解,且预处理初期对纤维素的结晶区降解多于无定形区,而后期以对无定形区的降解为主。Trametes hirsuta lg-9预处理玉米秸皮的显微观察显示Trametes hirsuta lg-9对玉米秸皮的侵入从表皮细胞开始逐渐深入到薄组织和维管束部分。
Corn stalk barks contain 37.62% nitric acid-ethanol cellulose and their weight-average fiber length is 0.987, so they are more suitable for using as paper-making materials than the whole corn stalk. Besides, to avoid the high electric consumption of mechanical pulping and environmental pollution caused by chemical pulping in current pulping and paper-making industry, the thesis adapted the new lignocellulosic materials—corn stalk barks as raw material to carry out the research on biomechanical pulping.
     Four stains that produced colored reaction were isolated from planted ground of corn at ChangQing district in Jinan by Bavendamm-PDA plate. Among the five stains obtained from the state key laboratory of microbial technology in Shandong university, Bavendamm-PDA plate of Phanerochaete chrysosporium-25 and Phanerochaete chrysosporium-14 was negative, that of Trametes hirsuta lg-9,Trametes versicolor,Irpex lacteus was positive. The experiment of degradation of corn stalk barks by the nine strains showed that the sequence of selective degradation on corn stalk barks was: Trametes hirsuta lg-9 > Sd > P.C.-14 > P.C.-25 > Trametes versicolor>Sc.
     The strongest selective degrading strains on corn stalk barks isolated—Trametes hirsuta lg-9 was applied to corn stalk barks biomechanical pulping. Mechanical pulpling of corn stalk barks was performed after pretreated in no-exogenous air or aeration by different age inoculums gained by different cultivated method. The results indicated that in no-exogenous air, the strength of pulp made from corn stalk barks treated by young age inoculums was superior to samples treated by old age inoculums; with regard to the same age inoculums, the strength of sample treated by solid static cultivated inoculums excelled those treated by liquid shaking cultivated inoculums. In continuous aeration, further research was required due to the discrimination of the beating degree. When corn stalk barks were inoculated by solid static inoculums, the weight loss in no-exogenous air was less than that in continuous aeration and its strength property was also better than the latter. While corn stalk barks were treated by liquid shaking cultivated inoculums, the outcome was opposite. Pretreatment by Trametes hirsuta lg-9 caused the decrease of brightness and light scattering coefficient of corn stalk barks mechanical pulp and the increase of light absorption coefficient. And the energy consumption of corn stalk barks after treated by Trametes hirsuta lg-9 in the two-stage refining condition studied reduced from 70% to 85%. In addition, the research discovered the positive linear correlation between the strength property of biomechanical pulp of corn stalk barks pretreated by Trametes hirsuta lg-9 and the ratio of increment of fine caused by beating to increment of water retention value was significant.
     The research of effect of pretreatment time on biomechanical pulping of corn stalk barks treated by Trametes hirsuta lg-9 indicated during the course of pretreatment of corn stalk barks, Trametes hirsuta lg-9 produced xylanase, cellulase, and laccase and the sequence of yield of enzyme was: xylanase>cellulase>laccase. The ratio of producing enzyme increased quickly in early period, slowed down in middle period, and decreased in last stage. And the pretreatment by Trametes hirsuta lg-9 caused change of pH of the fermentation system. The result of energy consumption estimation during refining indicated the electric consumption constantly reduced with time, and ifα=0.1 was chosen as th significant level, there was no correlation between the energy consumption and yield of enzyme produced in the course of pretreatment, but there was linear correlation between the energy consumption and the relative absorption intensity of 3414cm-1 and 1653cm-1 in infrared spectrum of corn stalk barks pretreated by Trametes hirsuta lg-9. The reason why led to the reduction of strength of corn stalk barks biomechanical pulp by Trametes hirsuta lg-9 as pretreatment time was that the continuous accumulation of cellulase brought about the depolymerization of cellulose, and eventually caused the decrease ofα-cellulose content. The pretreatment by Trametes hirsuta lg-9 raised the number of aliphatic carbonyl group and carbonyl group conjugated to benzene ring, so the light absorption coefficient of corn stalk barks biomechanical pulp by Trametes hirsuta lg-9 increased, and finally pulp brightness decreased. During the pretreatment of corn stalk barks by Trametes hirsuta lg-9, the degradation of the guaiacyl unit was more than that of the syringyl unit, and in early period the degradation of crystalline region predominated, while in latter period the degradation of amorphous region was principal. Microscopic observation of corn stalk barks pretreated by Trametes hirsuta lg-9 revealed invasion of hypha of Trametes hirsuta lg-9 began with epidermal cell and gradually penetrated into parenchymas and vascular bundles.
引文
[1] J.Pérez, J. Mu?oz-Dorado, T. de la Rubia, et al. Biodegradation and biological treatments of cellulose, hemicellulose, lignin : an overview[J]. Internaional Microbiology, 2002, 5(2): 53-63
    [2] T.K. Kirk, E.B. Cowling. Biological decomposition of solid wood[J]. Advances in Chemistry Series 1984, 207: 455-487
    [3] M. Akhtar, R. Blanchette, T. Kent Kirk. Biotechnology in the pulp and paper industry[M]. Berlin: Springer-Verlag, 1997, 159-195
    [4] KE Hammel. Driven by nature: plant litter quality and decomposition[M]. Wallingford: CAB International, 1997, 33–46
    [5] Karl-Erik Eriksson. Fungal degradation of wood components[J]. Pure and Applied Chemistry, 1981, 53(1): 33-43
    [6] L Otjen, R Blanchette, M Effland, et al. Assessment of 30 white rot basidiomycetes for selective lignin degradation[J]. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 1987, 41(6): 343-349
    [7] Robert A. Blanchette. Delignification by wood-decay fungi[J]. Annual review of Phytopathology, 1991, 29: 381-398
    [8]池玉杰,鲍甫成.木质素生物降解与生物制浆的研究现状分析[J].林业科学,2004,40(3):167-174
    [9] Gergely Kálmán Melinda Gáspár, Kati Réczey. Corn fiber as a raw material for hemicellulose and ethanol and production[J]. Process Biochemistry, 2007, 42(7): 1135-1139
    [10] M.E. Himmel, S.Y. Ding, D.K. Johnson, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production[J]. Science, 2007, 315(5813): 804-807
    [11] A. Carroll, C. Somerville. Cellulosic biofuels[J]. Annual Review of Plant Biology, 2009, 60: 165-182
    [12] M.L. Zhang, Y.T. Fan, Y. Xing, et al. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures[J]. Biomass and Bioenergy, 2007, 31(4): 250-254
    [13] A. Philippoussis, G. Zervakis, P. Diamantopoulou. Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita, Volvariella volvacea and Pleurotus spp[J]. World Journal ofMicrobiology and Biotechnology, 2001, 17(2): 191-200
    [14] Outi Niemenmaa, Antti Uusi-Rauva, Annele Hatakka. Wood stimulates the demethoxylation of [O14CH3]-labeled lignin model compounds by the white-rot fungi Phanerochaete chrysosporium and Phlebia radiata[J]. Archives of Microbiology, 2006, 185(4): 307-315
    [15] M. Maki, K.T. Leung, W. Qin. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass[J]. International Journal of Biological Sciences, 2009, 5(5): 500-516
    [16] E.A. Bayer, H. Chanzy, R. Lamed, et al. Cellulose, cellulases and cellulosomes[J]. Current Opinion in Structural Biology, 1998, 8(5): 548-557
    [17] S.Y. Ding, Q. Xu, M. Crowley, et al. A biophysical perspective on the cellulosome: new opportunities for biomass conversion[J]. Current Opinion in Biotechnology, 2008, 19(3): 218-227
    [18] C. Sánchez. Lignocellulosic residues: biodegradation and bioconversion by fungi[J]. Biotechnology Advances, 2009, 27(2): 185-194
    [19] R. Kumar, S. Singh, O.V. Singh. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives[J]. Journal of Industrial Microbiology and Biotechnology, 2008, 35(5): 377-391
    [20] A.N. Kapich, K.A. Jensen, K.E. Hammel. Peroxyl radicals are potential agents of lignin biodegradation[J]. FEBS Letters, 1999, 461(1-2): 115-119
    [21] M Hofrichter. Review: lignin conversion by manganese peroxidase (MnP)[J]. Enzyme and Microbial Technology, 2002, 30(4): 454-466
    [22] T. Higuchi. Microbial degradation of lignin: Role of lignin peroxidase, manganese peroxidase, and laccase[J]. Proceedings of the Japan Academy, Series B, 2004, 80(5): 204-214
    [23] F.J. Ruiz-Due as, M. Morales, E. García, et al. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases[J]. Journal of Experimental Botany, 2009, 60(2): 441-452
    [24] Nam-Seok Cho, Woonsup Shin, Seon-Wha Jeong, et al. Degradation of lignosulfonate by fungal laccase with low molecular mediators[J]. Bulliten of the Korean Chemical society, 2004, 25(10): 1551-1554
    [25] P Ander, L Marzullo. Sugar oxidoreductases and veratryl alcohol oxidase as related to lignin degradation[J]. Journal of Biotechnology, 1997, 53(2-3): 115-131
    [26] Masood Akhtar, Robert A.Blanchette, Gary C.Myers, et al. Environmentally Friendly Technologies for the Pulp and Paper Industry[M]. New York: John Wiley& Sons, Inc, 1997, 309-342
    [27] M.Akhtar, G.M.Scott, R.E.Swaney, et al. Enzyme Applications in Fiber Processing[M]. Washington, DC: American Chemical Society, 1998, 15-26
    [28] S.S.Bar-Lev, T.K.Kirk. Fungal treatment can reduce energy requirements for secondary refining of TMP[J]. Tappi Journal, 1982, 65(10): 111-113
    [29] Karl-Erik Eriksson, Lars Vallander. Properties of pulps from thermomechanical pulping of chips pretreated with fungi[J]. Svensk Papperstidning, 1982, 85(6): R33-R38
    [30] M. Akhtar, T.K.Kirk, R.A.Blanchette. Biopulping: An overview of consortia research[A]. Proceedings of the 6th International Conference on Biotechnology in the Pulp and Paper Industry: Advances in Applied and Fundamental Research[C]. Vienna: Facultas-Universitaetsverlag, 1996: 187-192
    [31] RA Blanchette, TA Burnes, GF Leatham, et al. Selection of white-rot fungi for biopulping[J]. Biomass, 1988, 15(2): 93-101
    [32] Pekka Maijala Terhi K.Hakala, Jonas Konn, Annele Hatakka. Evaluation of novel wood-rotting polypores and corticioid fungi for the decay and biopulping of Norway spruce (Picea abies) wood[J]. Enzyme and Microbial Technology, 2004, 34(3-4): 255-263
    [33] M. Akhtar, R.A. Blanchette, T.A. Burnes. Using Simons stain to predict energy savings during biomechanical pulping[J]. Wood and Fiber Science, 1995, 27(3): 258-264
    [34] Irving B.Sachs, Gary F. Leatham, Gary C. Myers. Biomechanical pulping of aspen chips by Phanerochaete Chrysosporium:fungal growth patten and effects on wood cell walls[J]. Wood and Fiber Science & Technology, 1989, 21(4): 331-342
    [35] Gary F.Leatham, Gary C.Myers, Theodore H.Wegner. Biomechanical pulping of aspen chips:energy saving resulting from different fungal treatments[J]. Tappi Journal, 1990, 73(5): 197-200
    [36] Gary F. Leatham, GARY C. Myers, Theodore H. Wegner, et al. Biomechanical pulping of aspen chips: paper strength and optical properties resulting for different fungal treatments[J]. Tappi Journal, 1990, 73(3): 249-255
    [37] Masood Akhtar. Biomechanical pulping of aspen wood chips with three stains of Ceriporiopsis subvermispora[J]. Holzforschung, 1994, 48(3): 199-202
    [38] Masood Akhtar, Michael C.Attridge, Gary C.Myers, et al. Biomechanical pulping of loblolly pine wih different strains of the white-rot fungus Ceriporiopsis subvermispora[J]. Tappi Journal, 1992, 75(2): 105-109
    [39] Masood Akhtar, Michael C.Attridge, Gary C.Myers, et al. Biomechanical pulping of Loblolly pine chips with selected white-rot fungi[J]. Holzforschung, 1993, 47(1): 36-40
    [40] Robert A.Blanchette, Todd A.Burnes, Marjorie M.Eerdmans, et al. Evaluating isalates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora for use in biological pulping processes[J]. Holzforschung, 1992, 46(2): 109-115
    [41] Robert A. Blanchette, Gary F. Leatham, Michael Attridge, et al. Biomechanical pulping with Ceriporiopsis Subvermispora[P]. USA: 5055159. 1991-10-08
    [42] Masood Akhtar, Gary M. Scott, Ross E. Swaney, et al. Biomechanical pulping : a-mill scale evaluation[J]. Resourse, Conservation and Recycling, 2000, 28(3-4): 241-252
    [43] Matti Siila-aho Jaakko Pere, Liisa Viikari. Biomechanical pulping with enzymes:Response of coarse mechanical pulp to enzymatic modification and secondary refining[J]. Tappi Journal 2000, 83(5): 1-8
    [44] Masood Akhtar, Eric G Horn, Michael J Lentz, et al. Eucalyptus biomechanical pulping process[P]. USA: 0154762A1. 2004-8-12
    [45] Priscila Brasil de Souza-Cruz, Juanita Freer, Matti Siika-Aiika, et al. Extraction and determination of enzymes produced by Ceriporiopsis subvermispora during biopulping of Pinus taeda wood chips[J]. Enzyme and Microbial Technology, 2004, 34(3-4): 228-234
    [46] A Guerra, R Mendon a, A Ferraz, et al. Structural characterization of lignin during Pinus taeda wood treatment with Ceriporiopsis subvermispora[J]. Applied and Environmental Microbiology, 2004, 70(7): 4073-4078
    [47] Anderson Guerra, Régis Mendoca, AndréFerraz. Molecular weight distribution of wood components extracted from Pinus taeda biotreated by Ceriporiopsis subvermispora[J]. Enzyme and Microbial Technology, 2003, 33(1): 12-18
    [48] Chris Hunt, William, Eric Horn, et al. A biopulping mechanism: Creation of acid groups on fiber[J]. Holzforschung, 2004, 58(4): 434-439
    [49] M. Hernández, M.J. Hernández-Coronado, M.I. Pérez, et al. Biomechanical pulping of spruce wood chips with Streptomyces cyaneus CECT 3335 and handsheet characterization[J]. Holzforschung, 2005, 59(2): 173-177
    [50] A Guerra, PC Pavan, A Ferraz. Bleaching, brightness stability and chemical characteristics of Eucalyptus grandis-bio-TMP pulps prepared in a biopulping pilot plant[J]. Appita Journal, 2006, 59(5): 412-415
    [51] F Masarin, A Ferraz. Evaluation of Eucalyptus grandis Hill ex Maiden biopulpingwith Ceriporiopsis subvermispora under non-aseptic conditions[J]. Holzforschung, 2008, 62(1): 1-7
    [52] F Masarin, PC Pavan, MP Vicentim, et al. Laboratory and mill scale evaluation of biopulping of Eucalyptus grandis Hill ex Maiden with Phanerochaete chrysosporium RP-78 under non-aseptic conditions[J]. Holzforschung, 2009, 63(3): 259-263
    [53] P Maijala, M Kleen, C Westin, et al. Biomechanical pulping of softwood with enzymes and white-rot fungus Physisporinus rivulosus[J]. Enzyme and Microbial Technology, 2008, 43(2): 169-177
    [54] M.E. Arias, J. Rodríguez, M.I. Pérez, et al. Analysis of chemical changes in Picea abies wood decayed by different Streptomyces strains showing evidence for biopulping procedures[J]. Wood Science and Technology, 2010, 44(2): 179-188
    [55] Manuel Valmaseda, Gonzalo Almendros, Angel T.Martinez. Substrate-dependent degradation pattens in the decay of wheat straw and beech wood by ligninolytic fungi[J]. Applied Microbiology and Biotechnology, 1990, 33(4): 481-484
    [56] A.T. Martinez, S. Camarero, F. Guillen, et al. Progress in biopulping of non-woody materials: chemical, enzymatic and ultrastructural aspects of wheat straw delignification with ligninolytic fungi from the genus Pleurotus[J]. FEMS Microbiology Reviews, 1994, 13(2-3): 265-273
    [57] Harmohinder S.Sabharwal, Masood Aktar, Robert A. Blanchette, et al. Biomechanical pulping of kenaf[J]. Tappi Journal, 1994, 77(12): 105-112
    [58] Harmohinder S.Sabharwal, Masood Aktar, Robert A.Blanchette, et al. Refiner mechanical and biomechanical pulping of jute[J]. Holzforschung, 1995, 49(6): 537-544
    [59] J Dorado, G Almendros, S Camarero, et al. Transformation of wheat straw in the course of solid-state fermentation by four ligninolytic basidiomycetes[J]. Enzyme and Microbial Technology, 1999, 25(7): 605-612
    [60] Juan Ramos, Teresa Roias, Fernando Navarro, et al. Enzymatic and fungal treatment on sugarcane bagasse for the production of mechanical pulps[J]. Agricultural and Food Chemistry, 2004, 52(16): 5057-5062
    [61]李明.世界玉米生产回顾和展望[J].玉米科学,2010,18(3):165-169
    [62] K.L. Kadam, J.D. McMillan. Availability of corn stover as a sustainable feedstock for bioethanol production[J]. Bioresource Technology, 2003, 88(1): 17-25
    [63] R. Lal. World crop residues production and implications of its use as a biofuel[J]. Environment International, 2005, 31(4): 575-584
    [64] H. Blanco-Canqui, R. Lal. Soil and crop response to harvesting corn residues for biofuel production[J]. Geoderma, 2007, 141(3-4): 355-362
    [65]刘瑞伟.我国农作物秸秆利用现状及对策[J].农业与技术,2009,29(1):7-9
    [66]孙竹莹,郭升民.玉米秸杆皮穰分离及其制浆试验[J].中华纸业,2001,22(5):41-42
    [67]张彦波,杨汝男,王岩等.除髓玉米秆亚铵法蒸煮浅探[J].纸和造纸,2007,26(5):30-32
    [68]张彦波,杨汝男,李士勇等.亚铵法玉米秆浆过氧化氢强化氧脱木素的研究[J].中国造纸,2007,26(5):65-66
    [69]丁琳,李士勇,张彦波等.氧漂玉米秆化学浆的光催化补充漂白[J].大连工业大学学报,2008,27(1):50-53
    [70]陈洪雷.玉米秸秆废弃物在制浆造纸领域中的应用[D].济南:山东轻工业学院,2008
    [71]李金花,宋红竹,薛永常等.我国制浆造纸木材纤维原料的现状及发展对策[J].世界林业研究,2003,16(6):32-35
    [72] T.H. Wegner, G.C. Myers, GF Leatham. Biological treatments as an alternative to chemical pretreatments in high-yield wood pulping[J]. Tappi journal, 1991, 74(3): 189-193
    [73] RA Blanchette. Delignification by wood-decay fungi[J]. Annual Review of Phytopathology, 1991, 29(1): 381-403
    [74]库丽霞,陈彦惠,岳建芝等.玉米秸秆能量指标的测定和利用研究[J].玉米科学,2004,12(1):114-118
    [75] W Bavendamm. The occurrence and detection of oxidases in wood-destroying fungi[J]. Z Pjlanzenkrankh Pjlanzenshutz, 1928, 38: 257-276
    [76] RW Davidson, WA Campbell, DJ Blaisdell. Differentiation of wood-decaying fungi by their reactions on gallic or tannic acid medium[J]. Journal of Agricultural Research, 1938, 57(9): 683-695
    [77] TK Kirk, A Kelman. Lignin degradation as related to the phenoloxidases of selected wood-decaying basidiomycetes[J]. Phytopathology, 1965, 55(7): 739-745
    [78] Karin Fackler, Marieke Schmuizer, Leka Manoch, et al. Evaluation of the selectivity of white rot isolates using near infrared spectroscopic techniques[J]. Enzyme and Microbial Technology, 2007, 41(6-7): 881-887
    [79] Ewald Srebotnik, Kurt Messner. A simple method that uses differential staining and light microscopy to assess the selectivity of wood delignification by white rot fungi[J]. Applied and Environmental Microbiology, 1994, 60(4): 1383-1386
    [80] RA Blanchette. Screening wood decayed by white rot fungi for preferential lignin degradation[J]. Applied and Environmental Microbiology, 1984, 48(3): 647-653
    [81]白毓谦,方善康,高东等.微生物实验技术[M].济南:山东大学出版社,1987:105
    [82]黄仪秀,钱存柔.微生物实验教程[M].北京:北京大学出版社,1999:68-69
    [83]石淑兰,何福望,张曾等.制浆造纸分析与检测[M].北京:中国轻工业出版社,2003:35-39
    [84] G Lindeberg. On the occurrence of polyphenol oxidases in soil-inhabiting basidiomycetes[J]. Physiologia Plantarum, 1948, 1(2): 196-205
    [85] C.Srinivasan, T.M.D'souza, K.Boominathan, et al. Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767[J]. Applied and Environmental Microbiology, 1995, 61(12): 4274-4277
    [86] T Kanda, K Wakabayashi, K NIsizawa. Purification and properties of an endo-cellulase of avicelase type from Irpex lacteus (Polyporus tulipiferae)[J]. Journal of Biochemistry, 1976, 79(5): 977-988
    [87] Qifeng Yang, Huaiyu Zhan, Shuangfei Wang, et al. Bio-modificaiton of eucalyptus chemithermo-mechanical pulp with different white-rot fungi[J]. Bioresource 2007, 2(4): 682-692
    [88] B. Xiao, X. F .Sun, RunCang Sun. Chemical, structural, and thermal characterizations of alkali-soluble lignin and hemicellulsoes, and cellulose from maize stems, rye straw, and rice straw[J]. Polymer Degradation and Stability, 2001, 74(2): 307-319
    [89]何立明,王文杰,王桥等.中国秸秆焚烧的遥控检测与分析[J].中国环境监测,2007,25(1):42-50
    [90] M. Akhtar, G. M. Scott, R. E. Swaney, et al. Enzyme Applications in Fiber Processing[M], Washington, DC American Chemical Society, 1998, 15-26
    [91] Gary F.Leatham, Gary C.Myers, Theodore H.Wegner, et al. Biomechanical pulping of aspen chips:paper strength and paper properties resulting from different fungal treatments[J]. Tappi Journal, 1990, 73(3): 249-255
    [92] Marguerite Sykes. Bleaching and brightness stability of aspen biomechanical pulps[J]. Tappi Journal, 1993, 76(11): 121-126
    [93]祖若夫,胡宝龙,周德庆.微生物学实验教程[M].上海:复旦大学,1993:207-209
    [94] DS Arora, DK Sandhu. Laccase production and wood degradation byTrametes hirsuta[J]. Folia Microbiologica, 1984, 29(4): 310-315
    [95] Tamara Vares, Annele Hatakka. Lignin-degrading activity and ligninolytic enzymes of different white-rot fungi: effects of manganese and malonate[J].Can. J. Boi,1997,75(61-71
    [96] M Kuba ková, S Karacsonyi, R Toman.Purification of xylanase from the wood-rotting fungus Trametes hirsuta[J]. Folia Microbiologica, 1976, 21(1): 28-35
    [97] M.霍夫里特,A.斯泰因比歇尓.生物高分子第1卷木质素、腐殖质和煤[M].北京:化学工业出版社,2004:211
    [98] AndréFerraz, Ana M.Córdova, Angela Machuca. Wood biodegradation and enzyme production by Ceriporiopsis subvermispora during solid-state fermentation of Eucalyptus grandis[J]. Enzyme and Microbial Technology, 2003, 32(1): 59-65
    [99]隆言泉.造纸原理与工程[M].北京:中国轻工业出版社,1994:384-385
    [100] Ewald Srebotnik, Kurt Messner, Roland Foisner. Penetrability of White Rot-Degraded Pine Wood by the Lignin Peroxidase of Phanerochaete chrysosporium[J]. Applied and Environmental Microbiology, 1988, 54(11): 2608-2614
    [101] Hui-sheng Yu, Kal-Erik Eriksson. Influence of oxygen on the degradation of wood and straw by white-rot fungi[J]. Svensk Papperstidning, 1985, 88(6): R57-R60
    [102] BD Faison, TK Kirk. Relationship between lignin degradation and production of reduced oxygen species by Phanerochaete chrysosporium[J]. Applied and Environmental Microbiology, 1983, 46(5): 1140-1145
    [103] Frederick C.Michel Jr, Eric A.Grulke, C.Adinarayana Reddy. Determination of the Respiration Kinetics for Mycelial Pellets of Phanerochaete chrysosporium[J]. Applied and Environmental Microbiology, 1992, 58(5): 1740-1745
    [104]沈萍.微生物学[M].北京:高等教育出版社,2000:137
    [105]刘斌.无机化学[M].北京:中国医药科技出版社,2010:63-65
    [106]王金发,何炎明.细胞生物学教程[M].北京:科学出版社,2004:18-25
    [107]张耕生.生物学技术[M].北京:高等教育出版社,1994:20-50
    [108]马学严.医用试剂与常数手册[M].长春市:吉林科学技术出版社,1985:234
    [109]王镜岩,朱圣庚,徐长法.生物化学(上册)[M].(第二版)北京:高等教育出版社,2002:335-336
    [110] PAD Rickard, TA Laughlin. Detection and assay of xylanolytic enzymes in aCellulomonas isolate[J]. Biotechnology Letters, 1980, 2(8): 363-368
    [111]杭州大学化学系分析化学教研所.分析化学手册第一分册基础知识与安全知识[M].(第二版)北京:化学工业出版社,1996:344
    [112] T.K.Ghose. Measurement of cellulase activities[J]. Pure and Applied Chemistry, 1987, 59(2): 257-268
    [113]何为,詹怀宇,王习文等.一种改进的漆酶酶活检测方法[J].华南理工大学学报(自然科学版):2003,31(012):46-50
    [114]陈培榕,李景虹,邓勃.现代仪器分析与技术[M].(第二版)北京:清华大学出版社,2006:92
    [115] Daljit S. Arora, Paramjit K. Gill. Comparison of two assay procedures for lignin peroxidase[J]. Enzyme and Microbial Technology, 2001, 28(7-8): 602-605
    [116] Hiroyuki Wariishi, Khadar Valli, Michael H. Gold. Manganese(Ⅱ) oxidation by manganese peroxidase from the basidiomycetes Phanerochaete chrysosporium, kinetic mechanism and role of chelators[J]. The Journal of Biological Chemistry, 1992, 267(33): 23688-23695
    [117] T Sasaki, T Kajino, B Li, et al. New pulp biobleaching system involving manganese peroxidase immobilized in a silica support with controlled pore sizes[J]. Applied and Environmental Microbiology, 2001, 67(5): 2208-2212
    [118] Tamara Vares, Mika Kalsi, Annele Hatakka. Lignin peroxidase, Manganese peroxidase, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat straw[J]. Applied and Environmental Microbiology, 1995, 61(10): 3515-3520
    [119] Daljit Singh Arora, Mukesh Chander, Paramjit Kaur Gill. Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw[J]. International Biodeterioration & Biodegradation, 2002, 50(2): 115-120
    [120] M. Hofrichter, D. Ziegenhagen, T. Vares, et al. Oxidative decomposition of malonic acid as basis for the action of manganese peroxidase in the absence of hydrogen peroxide[J]. FEBS Letters, 1998, 434(3): 362-366
    [121] EM Silva, SF Martins, AMF Milagres. Extraction of manganese peroxidase produced by Lentinula edodes[J]. Bioresource Technology, 2008, 99(7): 2471-2475
    [122]孙艳玲,高培基,曲音波等.纤维素酶酶系对草浆改性的研究[J].中国造纸学报,2001,16(2):76-79
    [123]徐祖耀,黄本立,鄢国强.材料表征与检测技术手册[M].北京:化学工业出版社,2009:195-196
    [124]沈德言.红外光谱法在高分子研究的应用[M].北京:科学出版社,1982:62-64,105-107
    [125]杨淑惠.植物纤维化学[M].北京:中国轻工业出版社,2005:103-104,180
    [126]周建峰.有机化学实验[M].上海:华东理工出版社,2002:66
    [127]刑存章,于跃芹.有机化学[M].济南:山东大学出版社,2001:501-510
    [128]陈嘉翔.植物纤维化学结构的研究方法[M].广州:华南理工出版社,1989:4-5 ,22,147
    [129]王宗明,何欣翔,孙殿琴.实用红外光谱学[M].(第二版)北京:石油工业出版社,1990:238-248
    [130]荆煦瑛,陈式棣,么思云.红外光谱使用指南[M].天津:天津科学技术出版社,1992:1-4
    [131] J. Dorado, G. Almendros, J.A. Field, et al. Infrared spectroscopy analysis of hemp (Cannabis sativa) after selective delignification by Bjerkandera sp. at different nitrogen levels[J]. Enzyme and microbial technology, 2001, 28(6): 550-559
    [132] O. Faix, J. Bremer, O. Schmidt, et al. Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis--gas chromatography and Fourier-transform infrared spectroscopy[J]. Journal of Analytical and Applied Pyrolysis, 1991, 21(1-2): 147-162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700