木质纤维素和菊芋生物质生产乳酸的生物炼制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物可降解聚乳酸材料需求量的显著增加极大地促进了乳酸生产行业的发展。利用价格低廉且资源丰富的农业废弃物作为原料进行生物发酵乳酸的生产技术更是受到了极大关注。这些生物质原料主要包括菊芋、玉米秸秆、小麦秸秆以及稻秆等。本论文主要对利用菊芋和纤维素生物质为原料生产乳酸的生物炼制工艺进行了深入系统的研究。
     首先,从用于玉米秸秆原料进行乙醇发酵的体系中分离得到了一株非常特异的乳酸菌Pediococcus acidilacticiDQ2,并利用16S DNA测序和微生物实验方法对其进行菌种鉴定。研究证明,其具有超级耐热和耐受木质纤维素来源抑制物的特性。
     其次,将这株新分离得到的乳酸菌P. acidilactici DQ2用于以菊芋块茎为原料的乳酸发酵工艺中。同时,在该研究过程中发现三种商业糖化酶存在较高的菊粉酶活性。对其根本原因进行研究,进一步鉴定发现在工业糖化酶中存在两种具有菊粉酶活性的蛋白。利用Genencor公司生产的一种GA-L New工业糖化酶对菊芋块茎进行糖化能够获得较高的果糖糖化得率。然后,以P. acidilactici DQ2作为乳酸发酵菌,GA-L New作为菊粉酶,利用菊芋块茎进行同步糖化和乳酸发酵(SSF)72h,能够得到111.5g/L的乳酸,其得率为0.46g/g DM,并且生产速率可达1.55g/L/h。对常规菊粉酶和以商业糖化酶替代菊粉酶进行的发酵过程中添加酶所占的成本进行了比较,发现利用商业糖化酶替代菊粉酶能够有效降低该发酵工艺成本。上述结果提出了一条利用价格低廉的商业糖化酶水解菊芋块茎进行乳酸发酵的现实可行的生产工艺。
     最后,通过最新研发的干法生物炼制工艺,以玉米秸秆为原料,进行P. acidilacticiDQ2的乳酸发酵。主要考察了生物脱毒菌Amorphotheca resinae ZN1对预处理原料中抑制物的去除能力,以及生物脱毒作用对后续P. acidilactici DQ2发酵乳酸的影响。在预处理后的玉米秸秆中残留的不同浓度的抑制物对乳酸的发酵性能存在严重影响。通过7-10天的生物脱毒过程能够完全去除原料中的抑制物,从而使同步糖化和乳酸发酵过程的乳酸浓度和得率显著提高。同时,利用盘磨对预处理后的玉米秸秆进行磨浆处理,并考察了磨浆过程对乳酸发酵的影响。以经过上述磨浆和深度生物脱毒处理的玉米秸秆作为原料,在带有螺带式搅拌桨的5L发酵罐中,固含量为25%DM、pH5.5、温度48℃C条件下进行SSF,最终乳酸浓度可达74.2g/L,相应得率为59.76%,并且生产速率可达1.03g/L/h。该结果表明以生物质原料资源链条中的农业木质纤维素废弃物作为原料进行纤维素乳酸的生产过程是一条实际可行的生物炼制工艺。
     通过以上结果可以得出以下结论,本论文分离鉴定了一株耐热耐抑制物乳酸发酵菌P. acidilactici DQ2,并研究开发了一种利用该乳酸菌分别以菊芋和纤维素生物质为原料进行高浓度乳酸生产的生物炼制工艺。这些研究将为以后通过价格低廉资源丰富的农业生物质生产高附加值的化工产品的产业化发展铺平道路。
The sharp increase in manufacturing biodegradable polylactic acid (PLA) has significantly stimulated lactic acid production from low value and abundant agricultural residues materials such as inulin, corn stover, wheat straw, and rice straw. In this thesis, the biorefinery processing technology for fermentative production of lactic acid using inulin and lignocellulose biomass as the raw materials wasintensively studied.
     First, an interesting lactic acid bacteria strain, Pediococcus acidilacticiDQ2, was isolated from the corn stover slurry of ethanol fermentation. P. acidilactici DQ2was identified using16S DNA sequencing and microbial methods. The unique properties of P. acidilaclici DQ2, the excellent thermo-and inhibitor-tolerance, were demonstrated and carefully investigated.
     Then, the newly isolatedP. acidilactici DQ2strain was applied to the lactic acid fermentation using Jerusalem artichoke tubers (Jat) as the raw materials. A high inulinase activity was found in three commercially available glucoamylase enzymes. Its origin was investigated and two proteins in the commercial glucoanylases were identified as the potential enzymes showing inulinase activity. One of the commercial glucoamylases, GA-L New from Genencor, was used for Jerusalem artichoke tubers (Jat) hydrolysis and a high hydrolysis yield of fructose was obtained. The simultaneous saccharification and lactic acid fermentation (SSF) of Jat was carried out using GA-L New as the inulinase and P. acidilactici DQ2as the fermenting strain. A high lactic acid titer, yield, and productivity of111.5g/L,0.46g/g dry material (DM), and1.55g/L/h, respectively, were obtained within72hours. The enzyme cost using the commercial glucoamylase as inulinase was compared to that using the typical inulinase and a large profit margin was identified. The results provided a practical way of Jat application for lactic acid production using cheap commercial glucoamylase enzyme.
     Finally, corn stover was used as the raw materials for lactic acid production using the same strain P. acidilactici DQ2through the newly developed dry biorefinery processing technology. The effect of the inhibitor removal intensity by the biodetoxification strain Amorphotheca resinae ZN1on the lactic acid fermentation of P. acidilactici DQ2was carefully investigated. Different amount of inhibitor residues in the pretreated corn stover materials severely affected the performance of lactic acid fermentation. The complete removal of all the inhibitor substances after7-10days of bio-detoxification led to the higher lactic acid yield and titer in the simultaneous saccharification and lactic acid fermentation process. The effect of disk milling of the pretreated corn stover on the lactic acid fermentation was also investigated. After the deep biodetoxification and disk milling, the SSF at48℃, pH5.5, and25%(w/w) solids loading in5L of helical agitatedbioreactor resulted in the lactic acid titer, yield, and productivity of74.2g/L,59.76%, and1.03g/L/h, respectively. The result provided a practical process option for cellulosic lactic acid production using agro-lignocellulose residual in the chain of biomaterial resources.
     Conclusively, the biorefinery processing technology of inulin and lignocellulose biomass for production of lactic acid were established with high lactic acid titer and yield using new microorganisms and new processing technology in this thesis. These studies paved the way of industrial application of value added chemicals from cheap and abundant agricultural biomass.
引文
Abdel-Rahman M.A., Tashiro Y., Zendo T., Hanada K., Shibata K., Sonomoto K.2011. Efficient homofermentative L(+) lactic acid production from xylose by a novel lactic acid bacterium, Enterococcus mundtii QU 25. Applied and Environmental Microbiology.,77, pp.1892-1895.
    Adsul M.G., Singhvi M.S., Gaikaiwari S.A., Gokhale D.V.2011. Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresource Technology,102, pp.4304-4312.
    Akerberg C., Zacchi G.2000. An economic evaluation of the fermentative production of lactic acid from wheat flour. Bioresource Technology,75, pp.119-126.
    Altaf M.D., Naveena B.J., Reddy G.2007. Use of inexpensive nitrogen sources and starch for L(+) lactic acid production in anaerobic submerged fermentation. Bioresource Technology,98, pp.498-503.
    Anastasiadou S., Filiousis G., Ambrosiadis I., Koidis P.2008. Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627:Production conditions, purification and characterization. Bioresource Technology,99, pp.5384-5390.
    Anne H., Samuli H., Leena P., Jouni H., Susanne K. W., Tuulia H.2010. Novel, dynamic on-line analytical separation system for dissolution of drugs from poly (lactic acid) nanoparticles. Journal of Pharmaceutical and Biomedical Analysis,51, pp.125-130.
    Anne M. E., Alan P. V.2011. Lactic acidosis and colon cancer:Oncologic emergency?. Clinical Colorectal Cancer,10, pp.194-197.
    Auras R., Harte B., Selke S.2004. An overview of polylactides as packaging materials. Macromolecular Bioscience,4, pp.835-864.
    Axelsson L.2004. Lactic acid bacteria:Classification and physiology. In S. Salminen, A. V. Wright, and A. Ouwehand (eds.). Lactic acid bacteria:Microbiological and Functional Aspects (3rd ed., pp.1-66). Marcel Dekker, New York.
    Ayse A., Badal C.S., Bruce S.D., Gregory J. K., Michael A.C.2013. Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production. Bioresource Technology.130, pp.603-612.
    Ballesteros I., Oliva J.M., Navarro A.A., Gonzalez A., Carrasco J., Ballesteros M.2000. Effect of chip size on steam explosion pretreatment of softwood. Applied Biochemistry and Biotechnology,84, pp.97-110.
    Barney M., Volgyi A., Navarro A., Ryder D.2001. Riboprinting and 16S rRNA gene sequencing for identification of brewery Pediococcus Isolates. Applied and Environmental Microbiology,67, pp.553-560.
    Baumgartner S., Dax T.G., Praznik W., Fa H.2000. Characterisation of the high-molecular weight fructan isolated from garlic (Alliumsalivum L.). Carbohydrate Research,328,pp. 177-183.
    Bennik M.H., Smid E.J., Gorris L.G.M.1997. Vegetable-associated Pediococcus parvulus produces pediocin PA-1. Applied and Environmental Microbiology,63, pp.2074-2076.
    Benninga H.A.1990. The history of lactic acid making. Kluwer Academic Publishers, Dordrecht, the Netherlands.
    Bhowmik T., Marth, E.1989. Role of Micrococcus and Pediococcus species in cheese ripening:a review. Journal of Dairy Science.73. pp.859-866.
    Bhowmik, T., Riesterer R., Van Boekel M. A. J. S., Marth E. H.1990. Characteristics of low-fat Cheddar cheese made with added Micrococcus or Pediococcus species. Milchwissenschaft,45, pp.230-235.
    Bianchi M.M., Brambilla L., Protani F.2001. Efficient homolactic fermentation by Kluyveromyces lactis strains defective in pyruvate utilization and transformed with the heterologous LDH gene. Applied and Environmental Microbiology,67, pp.5621-5625.
    Bitra V.S.P., Womac A.R., Igathinathane C. Sokhansanj S.2010. Knife mill comminution energy analysis of switchgrass, wheat straw, and corn stover and characterization of particle size distribution. American Society of Agricultural and Biological Engineers, 53, pp.1639-1651.
    Blandino A., Al-Aseeri M.E., Pandiella S.S., Cantero D., Webb C.2003. Cereal-based fermented foods and beverages. Food Research International,36, pp.527-543.
    Budhavaram N.K., Fan Z.2009. Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains. Bioresource Technology,100, pp.5966-5972.
    Buyiikkileci A.O., Harsa S.2004. Batch production of L(+) lactic acid from whey by Lactobacillus casei (NRRL B-441). Chemical Technology,79, pp.1036-1040.
    Cai Y., Kumai S., Ogawa M., Benno Y., Nakase T.1999. Characterization and identification of Pediococcus species isolated from forage crops and their application for silage preparation. Applied and Environmental Microbiology,65, pp.2901-2906.
    Caldwell S.L., McMahon D.J., Oberg C.J., Broadbent J.R.1996. Development and characterization of lactose-positive pediococcus species for milk fermentation. Appl. Environ. Microbiol,62, pp.936-41.
    Caliskan H., Kursuncu B., Kurbanoglu C., Guven S.Y.2013. Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods. Materials & Design,45, pp.473-479.
    Cara C., Ruiz E., Ballesteros M., Manzanares P., Negro M.J., Castro E.2008. Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel,87, pp.692-700.
    Carr F.J., Chill D., Maida N.2002. The lactic acid bacteria:a literature survey. Critical Reviews in Microbiology,28, pp.281-370.
    Chahal S.P. 1989. Lactic acid. In:Kreutzer, M. (Ed.), Ullmann's Encyclopedia of Industrial Chemistry, Vol. A15, VCH Berlag, Berlin, pp.97-105.
    Chai W. M., Liu X., Hu Y. H., Feng H. L., Jia Y. L., Guo Y. J., Han T., Chen Q. X.2013. Antityrosinase and antimicrobial activities of furfuryl alcohol, furfural and furoic acid. International Journal of Biological Macromolecules.57, pp.151-155.
    Chandel A.K., Chandrasekhar G., Silva M.B., S. Silva S.D.2012. The realm of cellulases in biorefinery development. Critical Reviews in Biotechnology,32, pp.187-202.
    Chatterjee P., Chakraborty S.2012. Material selection using preferential ranking methods. Materials & Design,35, pp.384-393.
    Chen H.Z, Li H.Q, Liu L.Y.2011. The inhomogeneity of corn stover and its effects on bioconversion. Biomass and Bioenergy.35, pp.51940-1945.
    Chen L.J., Xing L., Hana L.2009. Renewable energy from agro-residues in China:solid biofuels and biomass briquetting technology. Renewable & Sustainable Energy Reviews,13, pp.2689-2695.
    Chi Z., Chi Z., Zhang T., Liu G., Yue L.2009. Inulinase-expressing microorganisms and applications of inulinases. Applied Microbiology and Biotechnology,82,211-220.
    Chi Z.M., Zhang T., Cao T.S., Liu X.Y., Cui W.,Zhao C.H.2011. Biotechnological potential of inulin for bioprocesses, Bioresource Technology,102,4295-4303.
    Cho Y.J., Sinha J., Park J.P., Yun J.W.2001. Production of inulooligosaccharides from inulin by a dual endoinulinase system. Enzyme and Microbial Technology,29, pp.428-433.
    Choi H.-Y., Ryu H.-K., Park K.-M., Lee E.G., Lee H.W, Kim S.-W., Cho E.-S.2012. Direct lactic acid fermentation of Jerusalem artichoke tuber extract using Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis. Bioresource Technology,114, pp.745-747.
    Cristina S., Itziar E., Araceli G., Rodrigo L.-P., Jalel L.2012. Lactic acid production by alkaline hydrothermal treatment of corn cobs. Chemical Engineering Journal,181-182, pp.655-660.
    Cui F.J., Li Y.B, Wan C.X.2011. Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresource Technology. 102. pp.1831-1836.
    Datta R., Henry M.2006. Lactic acid:recent advances in products, processes and technologies-a review. Chemical Technology and Biotechnology,81, pp.1119-1129.
    Datta R., Tsai S.-P., Bonsignore P., Moon S.-H., James R. F.1995. Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiology Reviews,16, pp.221-231.
    Derycke D., Vandamme E.J.1984. Production and properties of Aspergillus niger inulinase. Chemical Technology and Biotechnology.34, pp.45-51.
    Djukic-Vukovic A.P., Mojovic L.V., Vukasinovic-Sekulic M.S., Rakin M.B., Nikolic S.B., Pejin J.D., Bulatovic M.L.2012. Effect of different fermentation parameters on L-lactic acid production from liquid distillery stillage. Food Chemistry,134, pp.1038-1043.
    Du B., Sharma L.N., Becker C., Chen S.F., Mowery R.A., van Walsum G.P., Chambliss C.K., 2010. Effect of varying feedstock-pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnology and Bioengineering,107, pp.430-440.
    Ennahar S., Cai Y., Fujita Y.2003. Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis. Applied and Environmental Microbiology.69, pp.444-451.
    Fabio A.C.M., Eduardo M.B., Josse M.S., Jose M.D.G., Attilio C., Ricardo P. de S.O.2013. Lactic acid properties, applications and production:A review. Trends in Food Science & Technology,30, pp.70-83.
    Fenske J.J., Griffin D.A., Penner M.H.1998. Comparison of aromatic monomers in lignocellulosic biomass prehydrolysates. Industrial Microbiology and Biotechnology, 20, pp.364-368.
    Fitzpatrick J.J., O'Keeffe U.2001. Influence of whey protein hydrolyzate addition to whey permeate batch fermentations for producing lactic acid. Process Biochemistry,37, pp.183-186.
    Fitzsimons A., Duffner F., Curtin D., Brophy G., O'Kiely P., O'Connell M.1992. Assessment of Pediococcus acidilactici as a Potential Silage Inoculant. Applied and Environmental Microbiology.58, pp.3047-3052.
    Fontes C.M., Gilbert H.J.2010. Cellulosomes:highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annual Review of Biochemistry,79. pp.655-681.
    Gao C., Ma C.Q., Xu P.2011. Biotechnological routes based on lactic acid production from biomass-a review. Biotechnology Advances.29, pp.930-939.
    Gao J., Xu H., Li Q.J., Feng X.H., Li S.2010. Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacilluspolymyxa ZJ-9 to produce R, R-2,3-Butanediol. Bioresource Technology, 101, pp.7076-7082.
    Gao L.J., Yang H.Y., Wang X.F., Huang, Z.Y., Ishii M., Igarashi Y., Cui Z.J.2008. Rice straw fermentation using lactic acid bacteria. Bioresource Technology,99, pp.2742-2748.
    Gao M. T., Hirata M., Toorisaka M., Hano T.2009a. Development of a fermentation process for production of calcium-L-lactate. Chemical Engineering and Processing,48, pp.464-469.
    Gao M.-T., Shimamura T., Ishida N., Takahashi H.2009b. Fermentative lactic acid production with a metabolically engineered yeast immobilized in photo-crosslinkable resins. Biochemical Engineering Journal,47, pp.66-70.
    Gao T., Wong Y., Chungkei Ng., Ho K.P.2012. L-lactic acid production by Bacillus subtilis MUR1. Bioresource Technology,121, pp.105-110.
    Garde A., Jonsson G., Schmidt A.S, Ahring B.K.2002. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Bioresource Technology,81, pp.217-223.
    Garjonyte R., Melvydasb V., Malinauskasa A.2008. Effect of yeast pretreatment on the characteristics of yeast-modified electrodes as mediated amperometric biosensors for L-lactic acid. Bioelectrochemistry,74, pp.188-194.
    Garvie E.I.1980. Bacterial lactate dehydrogenases. Microbiol Reviews,44, pp.106-139.
    Gaye O.B.,Sukan S.S.,Vassilev N.1994. Production and properties of inulinase fromAspergillus niger. Biotechnology Letters,16, pp.275-280.
    Ge X.Y. and Zhang W.G.2005. A shortcut to the production of high ethanol concentration from Jerusalem artichoke tubers. Food Technology and Biotechnology,43:241-246.
    Ge X.Y, Qian H., Zhang W.G.2009. Improvement of L-lactic acid production from Jerusalem artichoke tubers by mixed culture of Aspergillusniger and Lactobacillus sp. Bioresource Technology,100, pp.1872-1874.
    Ge X.Y, Yuan J., Qin H., Zhang W.G.2011. Improvement of L-lactic acid production by osmotic-tolerant mutant of Lactobacillus casei at high temperature. Applied Microbiology and Biotechnology,89, pp.73-78.
    Gil M., Arauzo I., Teruel E., Bartolome C.2012. Milling and handling Cynara Cardunculus L. for use as solid biofuel:Experimental tests. Biomass and Bioenergy,4, pp.145-156.
    Goffeau A., Barrell B.G., Bussey H., Davis R.W., Dujon B., Feldmann H., Galibert F., Hoheisel J.D., Jacq C., Johnston M., Louis E.J., Mewes H.W., Murakami Y., Philippsen P., Tettelin H., Oliver S.G.1996. Life with 6000 genes. Science,274, pp.546-567.
    Guo L., Zhang J., Hu F., Ryu D.D.Y., Bao J.,2013. Consolidated bioprocessing of highly concentrated jerusalem artichoke tubers for simultaneous saccharification and ethanol fermentation. Biotechnology and bioengineering.110, pp.2606-2615.
    Guo Q., Chen X.L., Liu H.F.2012. Experimental research on shape and size distribution of biomass particle. Fuel,94, pp.551-555.
    Guo W., Jia W.. Li Y., Chen S.2010. Performances of Lactobacillus hrevis for producing lactic acid from hydrolysate of lignocellulosics. Applied Microbiology and Biotechnology.161, pp.124-136.
    Haakensen M., Dobson C.M., Janet E.H., Barry Z.2009a. Reclassification of Pediococcus dextrinicus (Coster and White 1964) back 1978 (Approved Lists 1980) as Lactobacillus dextrinicus comb. nov., and emended description of the genus Lactobacillus. International Journal of Systematic and Evolutionary Microbiology,59. pp.615-621.
    Haakensen M., Schubert A., Ziola B.2009b. Broth and agar hop-gradient plates used to evaluate the beer-spoilage potential of Lactobacillus and Pediococcus isolates. International Journal of Food Microbiology,130, pp.56-60.
    Hamdy S., Haddadi A., Somayaji V., Ruan D.2007. Samuel J. Pharmaceutical analysis of synthetic lipid a based vaccine adjuvants in poly (D,L-lactic-co-glycolic acid) nanoparticle formulations. Pharmaceutical and Biomedical Analysis,44, pp.914-923.
    Helena A., Svetoslav D.T., Carol A. van R., Tim H., Leon M.T.D., Paula T.2007. Characterization of two bacteriocins produced by Pediococcus acidilactici isolated from "Alheira", a fermented sausage traditionally produced in Portugal. International Journal of Food Microbiology,116, pp.239-247.
    Helene B.K., Birgitte K.A., Anette S.S., Anne B.T.2002. Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technology,82, pp.15-26.
    Hetenyi K., Nemeth A., Sevella B.2011. Role of pH-regulation in lactic acid fermentation: Second steps in a process improvement. Chemical Engineering and Processing:Process Intensification,3, pp.293-299.
    Hofvendahl K., Barbel H.-H.2000. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology,26, pp.87-107.
    Holland R., Crow V., Curry B.2011. Lactic acid bacteria:Pediococcus spp. Encyclopedia of Dairy Sciences (Second Edition), pp.149-152.
    Igathinathanea C., Womac A.R., Sokhansanj S., Narayand S.2009. Size reduction of high and low moisture corn stalks by linear knife grid system. Biomass and Bioenergy. 33, pp.547-557.
    Ilmen M., Koivuranta K., Ruohonen L.2007. Efficient production of L-lactic acid from xylose by Pichia stipitis. Applied and Environmental Microbiology,73, pp.117-123.
    Iqbal M.M., Elmahboub A.E., Mansour E.2012. Significant thermal energy reduction in lactic acid production process. Applied Energy,89, pp.74-80.
    Irmler S., Bavan T., Oberli A., Roetschi A., Badertscher R., Guggenbiihl B., Berthoud H. 2013. Catabolism of Serine by Pediococcus acidilactici and Pediococcus pentosaceus. Applied and Environmental Microbiology,79, pp.1309-1315.
    Jacquet N., Vanderghem C., Blecker C., Malumba P., Delvigne F., Paquot M.2012. Improvement of the cellulose hydrolysis yields and hydrolysate concentration by management of enzymes and substrate input. Cerevisia,37, pp.82-87.
    Janda J. M., Sharon L. A.2007.16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory:pluses, perils, and pitfalls. J Clin Microbiol.45, pp.2761-2764.
    Jia O.Y., Ma R., Zheng Z.J., Cai C., Zhang M., Jiang T.2013. Open fermentative production of L-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low cost raw material. Bioresource Technology,135, pp.475-480.
    Jing W., Jin Z.Y., Bo J., Augustine A.2003. Production and separation of exo-and endoinulinase from Aspergillus ficuum. Process Biochemistry,39, pp.5-11.
    John H.L.,1999. Microbiological production of lactic acid. Advances in Applied Microbiology,42, pp.45-95.
    John R.P., Anisha G.S., Nampoothiri K.M., Pandey A.2009. Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnology Advances,27, pp.145-152.
    Jung K.W., Kim D.H., Kim S.H., Shin H.S.2011. Bioreactor design for continuous dark fermentative hydrogen production. Bioresource Technology,102, pp.8612-8620.
    Juturu V., Wu J.C.2012. Microbial xylanases:Engineering, production and industrial applications. Biotechnology Advances,30, pp.1219-1227.
    Kaldy K.S., Johnston A., Wilson D.B.1980. Nutritive value of Indian bread-root, squawroot, and Jerusalem artichoke. Economic Botany,34,352-357.
    Kango N.2008. Production of inulinase using tap roots of Dandelion (Taraxacum officinale) by Aspergillus niger. Food Engineering,85, pp.473-478.
    Kata H., Aron N., Bela S.2011. Role of pH-regulation in lactic acid fermentation: Second steps in a process improvement. Chemical Engineering and Processing, 50. pp.293-299.
    Kaur B.. Chakraborty D., Kaur G., Kaur G.2013. Biotransformation of rice bran to ferulic acid by pediococcal isolates. Applied Biochemistry and Biotechnology. 170. pp.854-67.
    Khullar E., Dien B.S., Rausch K.D., Tumbleson M.E., Singh V.2013. Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus. Industrial Crops and Products,44, pp.11-17.
    Kim H.J., Lee S.S, Kim J.B, Mitchell R.J., Lee J.H.2013. Environmentally friendly pretreatment of plant biomass by planetary and attrition milling. Bioresource Technology,144, pp.50-56.
    Kim S.H., Mark T. H.2005. Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresource Technology,96, pp.1994-2006.
    Kim S.-J., Choi J.-H., Kim J.-H.2012. Removal of acetic acid and sulfuric acid from biomass hydrolyzate using a lime addition-capacitive deionization (CDI) hybrid process. Process Biochemistry,47, pp.2051-2057.
    Kim Y., Ximenesa E., Mosiera N.S., Ladisch M.R.2011. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme and Microbial Technology,48, pp.408-415.
    Klinke H.B., Thomsen A.B., Ahring B.K.2004. Inhibition of ethanol producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Biochemistry and Biotechnology,66, pp.10-26.
    Laopaiboon P., Thani A., Leelavatcharamas V., Laopaiboon L.2010. Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresource Technology,101, pp.1036-1043.
    Larsson M., Galbe M., Zacchi G.1997. Recirculation of process water in the production of ethanol from softwood. Bioresour Technol,60, pp.143-151.
    Lasprilla A.J.R., Martinez G.A.R., Lunelli B.H., Jardini A.L., Maciel R,2012. Poly-lactic acid synthesis for application in biomedical devices. Biotechnology Advances,30, pp.321-328.
    Lee J.M., Jameel H., Richard A.V.2010. A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technology,101, pp.5449-5458.
    Leisner J.J., Pot B., Christensen H., Rusul G., Olsen J.E., Wee B.W., Muhamad K., Ghazali H.M.1999. Identification of lactic acid bacteria from Chili Bo, a Malaysian food ingredient. Applied and Environmental Microbiology.65, pp.599-605.
    Leroy G., Grongnet J.F., Mabeau S., Corre D. L., Julien C.B.2010. Changes in inulin and soluble sugar concentration in artichokes (Cynarascolymus L.) during storage. the Science of Food and Agriculture,90, pp.1203-1209.
    Li L.L., Li L., Wang Y.P., Du Y.G., Qin S.,2013. Biorefinery products from the inulin-containing crop Jerusalem artichoke. Biotechnology Letters,35, pp.471-477.
    Li Z., Han L., Ji Y.J., Wang X.N., Tan T.W.2010. Fermentative production of L-lactic acid from hydrolysate of wheat bran by Lactobacillus rhamnosus. Biochemical Engineering Journal,49, pp.138-142.
    Lim L.T., Auras R., Rubino M.2008. Processing technologies for poly (lactic acid). Progress in Polymer Science,33, pp.820-852.
    Lim S.-H., Ryu J.-M, Lee H.W., Jeon J.H, Sok D.-E., Choi E.-S.2011. Ethanol fermentation from Jerusalem artichoke powder using Saccharomyces cerevisiae KCCM50549 without pretreatment for inulin hydrolysis. Bioresource Technology,102, pp.2109-2111.
    Litchfield J.H..2009. Lactic Acid, Microbially Produced. Encyclopedia of Microbiology (Third Edition), Copyright (?) 2009 Elsevier Inc. All rights reserved., ISBN:978-0-12-373944-5, pp.362-372.
    Liu X.Y., Chi Z., Liu G.L., Wang F., Madzak C., Chi Z.M.2010. Inulin hydrolysis and citric acid production from inulin using the surfaceengineered Yarrowia lipolytica displaying inulinase, Metabolic Engineering,12, pp.469-476.
    Liu Z. H., Qin L., Pang F., Jin M. J., Li B. Z., Kang Y, Dale B.E., Yuan Y. J.2013. Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover. Industrial Crops and Products,44, pp.176-184.
    Lopes M.S., Jardini A.L., Filho R.M.2012. Poly (lactic acid) production for tissue engineering applications. Procedia Engineering,42, pp.1402-1413.
    Lu Z.D., He F., Shi Y, Lu M.B., Yu L.J.2010. Fermentative production of L(+)-lactic acid using hydrolyzed acorn starch, persimmon juice and wheat bran hydrolysate as nutrients. Bioresource Technology,101, pp.3642-3648.
    Lu Z.D., Wei M., Yu L.J.2012. Enhancement of pilot scale production of L(+)-lactic acid by fermentation coupled with separation using membrane bioreactor. Process Biochemistry, 47, pp.410-415.
    Lv X. C., Weng X., Zhang W., Rao P.-F., Ni L.2012. Microbial diversity of traditional fermentation starters for Hong Qu glutinous rice wine as determined by PCR-mediated DGGE. Food Control,28, pp.426-434.
    Maas R.H., Springer J., Eggink G., Weusthuis R.A.2008a. Xylose metabolism in the fungus Rhizopus oryzae:effect of growth and respiration on L(+)-lactic acid production. Industrial Microbiology and Biotechnology,35. pp.569-578.
    Maas R.H.W.. Bakker R.R., Jansen M.L.A., Visser D., De Jong E., Eggink G., Weusthuis. R.A.2008b. Lactic acid production from lime-treated wheat straw by Bacillus coagulans, neutralization of acid by fed-batch addition of alkaline substrate. Applied and Environmental Microbiology,78, pp.751-758.
    Makarova K.S., Koonin E.V.2007. Evolutionary genomics of lactic acid bacteria. Journal of Bacteriology,189, pp.1199-1208.
    Mantzouridou F., Spanou A., Kiosseoglou V.2012. An inulin-based dressing emulsion as a potential probiotic food carrier. Food Research International,46, pp.260-269.
    Marchetti G., Inulin and falcons.1993. Industrial Alignment,32, pp.945-949.
    Marques S., Santos J.A.L., Girio F.M., Roseiro J.C.2008. Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation. Biochemical Engineering,41, pp.210-216.
    Marugg J.D., Gonzalez C.F., Kunka B.S., Ledeboer A.M., Pucci M.J., Toonen M.Y., Walker S.A., Zoetmulder L.C., Vandenbergh P.A.1992. Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Applied and Environmental Microbiology,58, pp.2360-2367.
    McKay L.L., Baldwin K.A.1990. Application for biotechnology:present and future improvements in lactic acid bacteria. FEMS Microbiology Reviews,87, pp.3-14.
    Meng Y., Xue Y.F., Yu B., Gao C.H., Ma Y.H.2012. Efficient production of L-lactic acid with high optical purity by alkaliphilic Bacillus sp. WL-S20. Bioresource Technology,116, pp.334-339.
    Menon V., Rao M.2012. Trends in bioconversion of lignocellulose:biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science,38, pp.522-550.
    Miller C., Fosmer A., Rush B., McMullin T., Beacom D., Suominen P.2011. Industrial production of lactic acid. Comprehensive Biotechnology (Second Edition),3, pp.179-188.
    Miller K.R., Soucek M. D.2012. Photopolymerization of biocompatible films containing poly(lactic acid). European Polymer Journal,48, pp.2107-2116.
    Miura S., Arimura T., Hoshino M., Kojima M., Dwiarti L., Okabe M.2003. Optimization and scale-up of L-lactic acid fermentation by mutant strain Rhizopus sp MK-96-1196 in air-lift bioreactors. Bioscience and Bioengineering,96, pp.65-69.
    Modi S., Jain J.P., Domb A.J., Kumar N.2006. Copolymers of pharmaceutical grade lactic acid and sebacic acid:Drug release behavior and biocompatibility. European Journal of Pharmaceutics and Biopharmaceutics,64, pp.277-286.
    Mohamed Ali A.-R., Tashiro Y., Sonomoto K.2011. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria:Overview and limits. Journal of Biotechnology,156, pp.286-301.
    Mohamed Ali A.-R., Yukihiro T., Kenji S.2013. Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances,31, pp.877-902.
    Moon S.E., Wee Y.J., Choi G.W.2012. A novel lactic acid bacterium for the production of high purity L-lactic acid, Lactobacillus paracasei subsp. paracasei CHB2121. Journal of Bioscience and Bioengineering,114, pp.155-159.
    Moshe Raccach.1999. PEDIOCOCCUS. Encyclopedia of Food Microbiology, Pages 1641-1647
    Mosier N., Wyman C., Dale B., Elander R., Holtzapple Y.Y.L.M., Ladisch M.2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology,96, pp.673-686.
    Nakano S., Ugwu C.U., Tokiwa Y.2012. Efficient production of D(-)-lactic acid from broken rice by Lactobacillus delbrueckii using Ca(OH)2 as a neutralizing agent. Bioresource Technology,104, pp.791-794.
    Nampoothiri K.M., Nair N.R., John R.P. 2010. An overview of the recent developments in polylactide (PLA) research. Bioresource Technology,101, pp.8493-8501.
    Nancib N., Nancib A., Boudjelal A., Benslimane C., Blanchard F., Boudrant J.2001. The effect of supplementation by different nitrogen sources on the production of lactic acid from date juice by Lactobacillus casei subsp. rhamnosus. Bioresource Technology,78, pp.149-153.
    Nattrass L., Higson A., Updated February 2011. Overview of the current and potential market for biorenewable lactic acid (CH3CHOHCOOH). The National Non-Food Crops Centre (NNFCC). Platform Chemicals, Renewable Chemicals Factsheet. http://www.nnfcc.co.uk/publications/nnfcc-renewable-chemicals-factsheet-lactic-acid
    Nghiem N.P., Ramirez E.C., McAloon A.J., Yee W., Johnston D.B., Hicks K.B.2011. Economic analysis of fuel ethanol production from winter hulled barley by the EDGE (Enhanced Dry Grind Enzymatic) process. Bioresource Technology,102,6696-6701.
    Nguyen D.T.L, Van Hoorde K., Cnockaert M., De Brandt E., Aerts M., Binh Thanh L., Vandamme P.2013 b. A description of the lactic acid bacteria microbiota associated with the production of traditional fermented vegetables in Vietnam. International Journal of Food Microbiology,163, pp.19-27.
    Nguyen D.T.L., Van Hoorde K., Cnockaert M., Brandt E.D., Bruyne K.D., Le B.T., Vandamme P.2013a. A culture-dependent and -independent approach for the identification of lactic acid bacteria associated with the production of nem chua. a Vietnamese fermented meat product. Food Research International.50. pp.232-240.
    Noah D.W.. Joseph D.F., Daniel J.S.2010. Impact of corn stover composition on hemicellulose conversion during dilute acid pretreatment and enzymatic cellulose digestibility of the pretreated solids. Bioresource Technology.101, pp.674-678.
    O'Sullivan D.J.. Lee J.-H., Dominguez W.2011. Lactic Acid Bacteria:Genomics, Genetic Engineering. Encyclopedia of Dairy Sciences (Second Edition), pp.67-77.
    Oh H., Wee Y.-J., Yun J.-S, Han S. H., S.W. Jung, Ryu H.-W.2005. Lactic acid production from agricultural resources as cheap raw materials. Bioresource Technology,96, pp. 1492-1498.
    Okano K., Tanaka T., Ogino C., Fukuda H., Kondo A.2010. Biotechnological production of enantiomeric pure lactic acid from renewable resources:recent achievements, perspectives, and limits. Applied and Environmental Microbiology,85, pp.413-423.
    Palmqvist E., Barbel H.-H.2000. Fermentation of lignocellulosic hydrolysates. I:inhibition and detoxification. Bioresource Technology,74, pp.17-24.
    Pandey A.,C. Soccol R., Selvakumar P., Soccol V.T., Krieger N., Fontana J.D.1999. Recent developments in microbial inulinases. Applied Biochemistry and Biotechnology,81, pp.35-52.
    Paola B., Carla S.D., Danilo P.2008. Metabolically engineered yeasts:'Potential'industrial applications. Molecular Microbiology and Biotechnology,15, pp.31-40.
    Park E.Y., Naruse K., Kato T.2011. Improvement of cellulase production in cultures of Acremonium cellulolyticus using pretreated waste milk pack with cellulase targeting for biorefinery. Bioresource Technology,102, pp.6120-6127.
    Pederson C.S.1949. The genus Pediococcus. Bacteriological Reviews,13, pp.224-232.
    Pendey A., Soccol C.R., Selvakumar P., Soccol V.T., Krieger N., Fontana J.D.1999. Recent developments in microbial inulinases (its production, properties, and industrial applications). Applied Biochemistry and Biotechnology,81, pp.35-52.
    Peng F., Peng P., Xu F., Sun R.-C.2012. Fractional purification and bioconversion of hemicelluloses. Biotechnology Advances,30, pp.879-903.
    Plessas S., Bosnea L., Psarianos C., Koutinas A.A., Marchant R., Banat I.M.2008. Lactic acid production by mixed cultures of Kluyveromyces marxianus, Lactobacillus delbrueckii ssp. bulgaricus and Lactobacillus helveticus. Bioresource Technology,99, pp.5951-5955.
    Raccach M.1987. Pediococci and biotechnology. Critical Reviews in Microbiology,14, pp.291-309.
    Reddy G., Altaf Md., Naveena B.J., Venkateshwar M., Vijay Kumar E.2008. Amylolytic bacterial lactic acid fermentation-A review. Biotechnology Advances,26, pp.22-34.
    Ren J.2010. Biodegradable Poly(Lactic Acid):Synthesis, Modification, Processing and Applications. (?) Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2010.
    Rojan P. J., Anisha G.S., Nampoothiri K.M., Pandey A.2009. Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnology Advances,27, pp.145-152.
    Romani A., Yanez, R., Garrote, G., Alonso, J.L.,2008. SSF production of lactic acid from cellulosic biosludges. Bioresour. Technol.99, pp.4247-4254.
    Saito K., Hasa Y., Abe H.2012. Production of lactic acid from xylose and wheat straw by Rhizopus oryzae. Bioscience and Bioengineering,114, pp.166-169.
    Secchi N., Giunta D., Pretti L., Garcia M.R., Roggio T., Mannazzu I. Catzeddu P.2012. Bioconversion of ovine scotta into lactic acid with pure and mixed cultures of lactic acid bacteria. Industrial Microbiology and Biotechnology,39, pp.175-181.
    Sengun I.Y., Nielsen D.S.., Karapinar M., Jakobsen M.2009. Identification of lactic acid bacteria isolated from Tarhana, a traditional Turkish fermented food. International Journal of Food Microbiology,135, pp.105-111.
    Shi Z.M., Wei P.L., Zhu X.C., Cai J., Huang L., Xu Z.N.2012. Efficient production of 1-lactic acid from hydrolysate of Jerusalem artichoke with immobilized cells of Lactococcus lactis in fibrous bed bioreactors. Enzyme and Microbial Technology.51, pp.263-268.
    Shkil H., Stoica L., Dmytruk K., Smutok O., Gonchar M., Sibirny A., Schuhmann W.2009. Bioelectrochemical detection of L-lactate respiration using genetically modified Hansenula polymorpha yeast cells overexpressing flavocytochrome b2. Bioelectrochemistry,76, pp.175-179.
    Simha B. V., Sood S.K., Kumariya R., Garsa A. K.2012. Simple and rapid purification of pediocin PA-1 from Pediococcus pentosaceous NCDC 273 suitable for industrial application. Microbiological Research,167, pp.544-549.
    Simpson P.J, Stanton C., Fitzgerald G.F., Ross R.P.2002. Genomic diversity within the genus Pediococcus as revealed by randomly amplified polymorphic DNA PCR and pulsed-field gel electrophoresis. Applied and Environmental Microbiology,68, pp.765-771.
    Singh R.S., Bhermi H.K.2008. Production of extracellular exoinulinase from Kluyveromyces marxianus YS-1 using root tubers of Asparagus officinalis. Bioresource Technology,99, pp.7418-7423.
    Sreenath H.K., Moldes A.B., Koegel R.G., Straub R.J.2001. Lactic acid production by simultaneous saccharification and fermentation of alfalfa fiber. Bioscience and Bioengineering,92. pp.518-523.
    Stiles M.E., Holzapfel W.H.1997. Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology,36, pp.1-29.
    Su Z.Q., Bu L.X., Zhao D.Q., Sun R.C., Jiang J.X.2012. Processing of Lespedeza stalks by pretreatment with low severity steam and post-treatment with alkaline peroxide. Industrial Crops and Products,36. pp.1-8.
    Sun F.-H, Li J., Yuan Y.-H., Yan Z.-Y., Liu X.-F.2011. Effect of biological pretreatment with Trametes hirsuta yj9 on enzymatic hydrolysis of corn stover. International Biodeterioration & Biodegradation.65. pp.7931-938.
    Suzuki T., Sakamoto T.. Sugiyama M., Ishida N., Kambe H., Obata S., Kaneko Y., Takahashi H., Harashima S.2013. Disruption of multiple genes whose deletion causes lactic-acid resistance improves lactic-acid resistance and productivity in Saccharomyces cerevisiae. Bioscience and Bioengineering,115, pp.467-474.
    Szambelan K., Nowak J., Jelen H.2005. The composition of Jerusalem artichoke (Helianthus tuberosus L.) spirits obtained from fermentation with bacteria and yeasts. Engineering in Life Sciences,5, pp.68-71.
    Talukder Md.M.R., Das P., Wu J.C.2012. Microalgae(Nannochloropsis salina) biomass to lactic acid and lipid. Biochemical Engineering Journal.68, pp.109-113.
    Tamakawa H., Ikushima S., Yoshida S.2012. Efficient production of L-lactic acid from xylose by a recombinant Candida utilis strain. Journal of Bioscience and Bioengineering,113, pp.73-75.
    Tejayadi S., Cheryan M.1995. Lactic acid from cheese whey permeate. Productivity and economics of a continuous membrane bioreactor. Applied Microbiology and Biotechnology,43, pp.242-248.
    Thakker A., Jarvis J., Buggy M., Sahed A.2008. A novel approach to materials selection strategy case study:wave energy extraction impulse turbine blade. Materials & Design, 29, pp.1973-1980.
    Tokuhiro K., Ishida N., Kondo A., Takahashi H.2008. Lactic fermentation of cellobiose by a yeast strain displaying β-glucosidase on the cell surface. Applied Microbiology and Biotechnology,79, pp.481-488.
    Valli M., Sauer M., Branduardi P., Borth N., Porro D., Mattanovich D.2006. Improvement of lactic acid Production in Saccharomyces cerevisiae by cell sorting for high intracellular pH. Applied and Environmental microbiology,72. pp.5492-5499.
    Vandamme E.J., Derycke D.G.1983. Microbial inulinases:fermentation process, properties, and applications. Advances in Applied Microbiology,29, pp.139-176.
    Venkata S.P. B., Alvin R. W., Nehru C., Petre I. M. C. Igathinathaneb Shahab S., David R. S. 2009. Direct mechanical energy measures of hammer mill comminution of switchgrass, wheat straw, and corn stover and analysis of their particle size distributions. Powder Technology,193, pp.32-45.
    Venkatesh K.V.1997. Simultaneous saccharification and fermentation of cellulose to lactic acid. Bioresource Technology,62, pp.91-98.
    Vetrovsky T., Baldrian P.2013. The Variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. Public Library of Science one, 8, pp. e57923.
    Waldemar Izdebski.2009. Jerusalem artichoke-potential and possibilities of use in power industry. TEKA Kom. Mot. Energ. Roln.-OL PAN.,9, pp.93-98.
    Wang L., Zhao B., Liu B., Yang C.Y., Yu B., Li Q.G., Ma C.Q., Xu P., Ma Y.H.2010a. Efficient production of L-lactic acid from cassava powder by Lactobacillus rhamnosus. Bioresource Technology,101, pp.7895-7901.
    Wang L., Zhao B., Liu B., Yu B., Ma C.Q., Su F., Hua D.L., Li Q.G., Ma Y.H., Xu P.2010b. Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. Strain. Bioresource Technology,101, pp.7908-7915.
    Wang L.M., Xue Z.W., Zhao B., Yu B., Xu P., Ma Y.H.2013. Jerusalem artichoke powder:A useful material in producing high-optical-purity L-lactate using an efficient sugar-utilizing thermophilic Bacillus coagulans strain. Bioresource Technology,130, pp.174-180.
    Wang L.P., Darin R., Gu T.Y., Murray M.-Y.2005. Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnology Advances,23, pp.115-129.
    Watanabe M., Makino M., Kaku N., Koyama M., Nakamura K., Sasano K.2013. Fermentative L-(+)-lactic acid production from non-sterilized rice washing drainage containing rice bran by a newly isolated lactic acid bacteria without any additions of nutrients. Bioscience and Bioengineering,115 (4), pp.449-452.
    Wee Y.J., Kim J.N., Ryu H.W.2006. Biotechnological production of lactic acid and its recent applications. Food Technology and Biotechnology,44, pp.163-172.
    Wee Y.-J., Ryu H.-W.2009. Lactic acid production by Lactobacillus sp. RKY2 in a cell- recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials. Bioresource Technology.100. pp.4262-4270.
    Wendy F., Ilenys M. P.-D.2012. Role of selected oxidative yeasts and bacteria in cucumber secondary fermentation associated with spoilage of the fermented fruit. Food Microbiology,32, pp.338-344.
    William E. Kaar, Mark T. Holtzapple.,2000. Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass and Bioenergy,18 pp.189-199.
    Xu J.L., Jay J. C.2011. Pretreatment of switchgrass for sugar production with the combination of sodium hydroxide and lime. Bioresource Technology,102, pp.3861-3868.
    Yadav A.K., Chaudhari A.B., Kothari R.M.2011. Bioconversion of renewable resources into lactic acid:an industrial view. Critical Reviews in Biotechnology,31, pp.1-19.
    Yanez R., Moldes A.B., Alonso J.L.2003. Production of D(-)-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnology Letters,25, pp.1161-1164.
    Ye L. D., Zhou X. D., Hudari M. S. B., Li Z., Wu J.C.2013. Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresource Technology,132, pp.38-44.
    Ye L.D., Zhou X.D.. Mohammad S.B.H.H., Li Z., Wu J.C.2013. Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresource Technology,132, pp.38-44.
    Yun J.S., Wee Y.J., Kim J.N., Ryu H.W.2004. Fermentative production of DL-lactic acid from amylase-treated rice and wheat brans hydrolyzate by a novel lactic acid bacterium, Lactobacillus sp. Biotechnology Letters,26, pp.845-848.
    Zhang J., Chu D.Q., Huang J., Yu Z.C., Dai G.C., Bao J.2010a. Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor. Biotechnology and Bioengineering,105, pp.718-728
    Zhang J., Fang Z.H, Deng H.B, Zhang X.X, Bao J.2013c. Cost analysis of cassava cellulose utilization scenarios for ethanol production on flowsheet simulation platform. Bioresource Technology,134, pp.298-306.
    Zhang J., Wang X., Chu D., He Y., Bao J.2011a. Dry pretreatment of lignocellulose with extremely low steam and water usage for bioethanol production. Bioresource Technology,102. pp.4480-4488.
    Zhang J., Zhu Z.N., Wang X.F., Wang N., Wang W.. Bao J.2010b. Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus Amorphotheca resinae ZN1 and the consequent ethanol fermentation. Biotechnology for Biofuels,3, pp.26.
    Zhang Q., Zhang P.F., Pei Z.J., Wang D.H.2013a. Relationships between cellulosic biomass particle size and enzymatic hydrolysis sugar yield:Analysis of inconsistent reports in the literature. Renewable Energy,60, pp.127-136.
    Zhang S., Jin F.M., Hu J.J., Huo Z.B.2011b. Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions. Bioresource Technology,102, pp.1998-2003.
    Zhang Y. Z., Fu X. G., Chen H. Z.2012. Pretreatment based on two-step steam explosion combined with an intermediate separation of fiber cells-Optimization of fermentation of corn straw hydrolysates. Bioresource Technology,121, pp.100-104.
    Zhang Y.P., Zhao W., Yang R., Mohammed A. A., Hua X., Zhang W.B., Zhang Y.Q.2013b. Preparation and functional properties of protein from heat-denatured soybean meal assisted by steam flash-explosion with dilute acid soaking. Food Engineering,119, pp. 56-64.
    Zhao K., Qiao Q.A, Chu D.Q, Gu H.Q, Dao T.H, Zhang J., Bao J.2013. Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2. Bioresource Technology, 135, pp.481-489.
    Zhao M, Mu W., Jiang B., Zhou L., Zhang T., Lu Z., Jin Z., Yang R.2011. Purification and characterization of inulin fructotransferase (DFA Ⅲ-forming) from Arthrobacteraurescens SK 8.001. Bioresource Technology,102, pp.1757-1764.
    Zhou S.D., Shanmugam K.T., Ingram L.O.2003. Functional replacement of the Escherichia coli D-(-)-lactate dehydrogenase gene (ldhA) with the L-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici. Applied and Environmental Microbiology,69, pp. 2237-2244.
    Zhu J.Y., Pan X.J., Wang G.S., Gleisner R.2009. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresource Technology,100, pp. 2411-2412.
    Zimbardi F., Viola E., Nanna F., Larocca E., Cardinale M., Barisano D.2007. Acid impregnation and steam explosion of corn stover in batch precesses. Industrial Crops and Products,26, pp.195-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700