玉米—大刍草杂种F_1饲草产量和饲用价值比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以玉米自交系、大刍草及其杂种F1为材料,探讨了玉米与大刍草的可杂交性及其杂种F1的杂种优势,旨在为利用玉米与大刍草杂交选育高产优质饲草品种提供理论依据;另外,对玉米与大刍草杂交选育的一个饲草玉米—玉草2号进行了栽培密度实验研究。试验取得主要结果如下:
     1玉米与大刍草可杂交性、杂种F1减数分裂行为及其花粉育性结果表明,玉米与墨西哥类玉米亚种、小颖类玉米亚种、委委特南戈类玉米亚种、二倍体多年生类玉米种、尼加拉瓜类玉米种、繁茂类玉米种和四倍体多年生类玉米种的杂种F1减数分裂终变期染色体配对构型分别为0.080Ⅰ+9.960Ⅱ、0.267Ⅰ+9.867Ⅱ、0.573Ⅰ+9.713Ⅱ、0.667Ⅰ+9.667Ⅱ、0.747Ⅰ+9.627Ⅱ、0.760Ⅰ+9.620Ⅱ和4.773Ⅰ+5.173Ⅱ+4.960Ⅲ,染色体相对紊乱系数分别为0.004、0.014、0.030、0.034、0.039、0.040和1.899,花粉育性分别为92.51%、90.69%、83.33%、75.46%、67.08%、65.57%和17.66%;玉米与各个大刍草种(亚种)杂交均能结实,结实率差异极显著。结果说明,它们杂种F1花粉育性与减数分裂染色体相对紊乱系数存在密切关系,花粉育性与减数分裂染色体相对紊乱系数反映了玉米与大刍草各种的亲缘关系。本研究首次对玉米与最近发现的尼加拉瓜类玉米种的杂种F1减数分裂过程染色体行为和花粉育性进行报道,由染色体配对构型、染色体相对紊乱系数和花粉育性推测尼加拉瓜类玉米种与繁茂类玉米种亲缘关系最近。
     2杂种优势试验分析表明,玉米与大刍草间杂种F1存在较强的杂种优势。就饲草产量及其产量性状中亲优势而言,以鲜、干草产量优势最大,分别为0.9623和0.8095,倒4叶叶面积、总茎粗和主茎粗优势次之,分别为0.6203、0.3824和0.2941,草长、分蘖和绿叶片优势最小,分别为0.1541、0.1328和0.0560。饲用价值中亲优势方面,饲用成分产量中亲优势高于饲用成分含量。饲草产量和饲用价值综合比较,尼加拉瓜类玉米种和委委特南戈类玉米亚种与栽培玉米亚种组配的杂种F1杂种优势相对较高。研究还发现玉米-大刍草杂种F1抽雄始期早于亲本大刍草。结果说明,通过玉米与大刍草杂交可以提高饲草产量和饲用价值。
     3对14份玉米-大刍草杂种F1单株产量与产量性状分析表明,单株产量与产量性状均存在较大的变异,材料间除主茎粗外,其余性状差异均达到显著或极显著水平。不同性状间变异程度不同,其中单株产量的变异最大,变异系数达47.30%。单株产量与分蘖负相关,与主茎粗显著正相关,与草长、绿叶、总茎粗和倒4叶叶面积极显著正相关。对单株产量直接作用大小依次是草长、分蘖、总茎粗、绿叶、主茎粗和倒4叶叶面积。结果说明,草长是影响杂种F1单株产量的重要性状。
     4对14份玉米-大刍草杂种F1的粗蛋白(CP)、粗脂肪(EE)、酸性木质素(ADL)、酸性洗涤纤维(ADF)、中性洗涤纤维(NDF)和体外干物质消化率(IVDMD)6个饲用价值指标分析表明,各饲用价值性状变异较大,各性状杂种F1间差异均达到极显著水平。不同饲用价值性状变异程度不同,其中EE的变异系数最大,达到30.37%。IVDMD与ADL、ADF和NDF含量呈极显著负相关,与CP和EE含量呈极显著正相关。影响饲草饲用价值的性状依次是NDF、IVDMD、ADF、CP、ADL和EE含量。
     5玉草2号栽培密度试验结果表明,在试验设计的密度下,玉草2号鲜、干草产量均最高,川单14×墨西哥大刍草其次,墨西哥大刍草最低;三种饲草鲜、干草产量随着密度增加呈“低-高-低,,的变化趋势;它们的最适宜栽培密度分别为75000、75000和52500株.hm-2。最适密度下饲用价值比较表明玉草2号和川单14×墨西哥大刍草CP、ADF、NDF和EE 4种饲用成分产量均显著或极显著高于墨西哥大刍草,其CP和EE含量均低于墨西哥大刍草;玉草2号和墨西哥大刍草相对饲用价值(RFV)差异不显著,均显著高于川单14×墨西哥大刍草。茎秆是玉米-墨西哥大刍草杂种主体,叶片是墨西哥大刍草干物质产量构成的主体,三种饲草草产量和饲用价值差异来自其生物学特性的显著差异。
     综上所述,玉米与不同大刍草种(亚种)都能结实。玉米-大刍草杂种F1饲草产量和饲用价值均具有杂种优势,尼加拉瓜类玉米种和委委特南戈类玉米亚种与栽培玉米亚种组配的杂种F1的饲草产量和饲用价值相对较高,是与玉米杂交选育高产优质饲草的最佳父本。玉草2号最适宜栽培密度为75000株.hm-2。
In order to provid theoretical evidence for high yield and high quality forage selected by crossing maize with teosinte, the crossability between maize and teosinte, and heterosis of the maize-teosinte hybrids F1 were explored while the maize-teosinte hybrids and their parents were used as materials. In addition, the effect of plant density on yucao 2 was investigated in the study. The main results were as follows:
     1 The crossability between maize and teosinte, the meiosis and pollen fertility of the maize-teosinte hybrids F1 were investigated. The results shown that the chromosome pariring configuration in meiosis diakinesis per pollen mother cell (PMC) of Z. mays×Z. Mexicana, Z.mays×Z. parviglumis, Z.mays×Z. huehuetenangensis, Z.mays×Z. diploperennis, Z.mays×Z. nicaraguensis, Z. mays×Z. luxurians and Z.mays×Z.perennis was 0.080Ⅰ+9.960Ⅱ,0.267Ⅰ+9.867Ⅱ,0.573Ⅰ+9.713Ⅱ,0.667Ⅰ+9.667Ⅱ, 0.747Ⅰ+9.627Ⅱ,0.760Ⅰ+9.620Ⅱand 4.773Ⅰ+5.173Ⅱ+4.960Ⅲ, respectively. The chromosome relative chaotic coefficient in meiosis of hybrids F1 was 0.004,0.014,0.030,0.034,0.039,0.040 and 1.899, respectively. The pollen fertility of hybrids F1 was 92.51%,90.69%,83.33%,75.46%,67.08%, 65.57%and 17.66%, respectively. The teosinte can be directly crossed with maize, and the hybridization seed rate had highly significant deviation. In conclusion, the information on pollen fertility and chromosome relative chaotic coefficient appearanced a close relationship, which is useful in the assessment of genetic relationships. The meiosis behaviors and pollen fertility of Z. mays-Z. nicaraguensis hybrid was first reported in this study, supposed that Z. nicaraguensis discovered recently was more genetically closer to Z. luxurians than to other teosintes.
     2 The forage yield, yield characters and feeding value heterosis of maize-teosine hybrids were investigated. The results shown that high levels of heterosis were obtained in the hybrids F1 between maize and teosinte based on two years data. For forage yield and yield traits, the fresh matter yield and dry matter yield had the highest heterosis level, the average heterosis was 0.9623 and 0.8095, respectively, and the area of the reciprocal fourth leaf, total stem perimeter and main stem perimeter took second place, the average heterosis was0.6203,0.3824 and 0.2941, respectively, and the grass length, tiller and green leaves had the lowest heterosis, the average heterosis was0.1541,0.1328 and 0.0560, respectively. The heterosis of feeding composition yield characters was higher than feeding composition content characters. The hybrids between maize and Z. nicaraguensis, Z. huehuetenangensis had the relative higher forage yield and feeding value heterosis. Moreover, the research revealed initial tasseling stage of maize-teosinte hybrids F1 were earlier than teosinte. The result indicated that it could improve the forage yield and feeding value by distant hybridization between maize and teosintes.
     3 The fresh yield of single plant and yield traits among 14 maize-teosinte hybrids F1 were investigated The main results were that forage yield and yield traits per plant had significant or highly significant deviation, except for the total stem perimeter, and the coefficient of variation (CV) of fresh yield of single plant was the highest (47.30%). Fresh yield of single plant was negatively associated with tiller, significantly positively associated with main stem perimeter, and highly significantly positively associated with grass length, green leaves, total stem perimeter and area of the reciprocal fourth leaf. The order of direct effect on fresh yield of single plant from large to small was grass length, tiller, total stem perimeter, green leaves and area of the reciprocal fourth leaf. The result indicated that the grass length was an important character for improvement of fresh yield of single plant of maize-teosinte hybrids F1.
     4 The main result of the feeding value traits among 14 maize-teosinte hybrids F1 indicated that all the feeding value traits had highly significant variation, and the CV of EE was the highest (30.37%). The correlation analysis of quality traits among maize-teosinte hybrids F1 showed that in vitro dry matter digestibility (IVDMD) had a highly significant negative correlation with acid detergent lignin (ADL), acid detergent fiber (ADF) and neutral detergent fiber (NDF), but a highly significant positive correlation with crude protein (CP)and ether extract (EE). The order of the traits influencing forage from large to small was NDF, IVDMD, ADF, CP, ADL and EE.
     5 The plant density experiment of yucao 2 main results were as follows:The fresh and dry matter yields of the three forage, which showed the change of "low-high-low" with the increase of planting density, and the optimum plant density was 75000,75000 and 52500 plant·hm-2, respectively. The fresh and dry matter yields were the highest in the Yucao 2 and lowest in Zea mexicana among all planting density. The yields of CP, ADF, NDF and EE in Yucao 2 and chuandan14×Zea Mexicana were higher than in Zea mexicana significantly or high significant, however, the content of CP and EE was the highest in Zea mexicana.The Relative feeding value(RFV) in Yucao 2 had no significance with that in Zea mexicana and were higher than in chuandanl4×Zea mexicana significantly. Main component of dry weight was leaves in Zea mexicana, while stems in Zea mays-Zea mexicana hybrids. In conclusion, the differences of matter yield and feeding value among the three forage derived from the significant differences among their biological characteristics.
     In conclusion, the maize and teosinte were cross-fertile. Both forage yield and feeding value of maize-teosinte hybrids F1 exhibited strong heterosis. The hybrids of Z.mays×Z. nicaraguensis and Z.mays×Z. huehuetenangensis had the relative higher forage yield and feeding value, which indicated that the Z. nicaraguensis and Z. huehuetenangensis were the best pollen parent for maize to select forage breed. The optimum plant density for yu cao 2 was 75000 plant-hm-2.
引文
[1]胡跃高,李志坚,李国辉.论我国绿色饲料产业建设基本战略问题[J].中国农业大学学报,1998,3(5):29-34.
    [2]葛林豫,李迎芳,郑浩.中国生态环境现状分析及未来展望[J].河南科技,2008,(11):10-11
    [3]Galinat W.C.,Pasupuleti C.V. Zea diploperennis: ⅡA review on its significance and potential value for maize improvement[J], maydica,1982,27:213~220.
    [4]刘纪麟.玉米育种学[M].北京:中国农业出版社,2004.
    [5]Doebley, J., and H. H. Iltis. Taxonomy of Zea (Gramineae). Ⅰ. A subgeneric classification with key to taxa[J].Amer. J.Bot.,1980,67:982-993.
    [6]Doebley, J., Molecular systematics of Zea (Gramineae) [J]. Maydica,1990,35:143~150.
    [7]Iltis, H. H. and Benz, B. F. Zea nicaraguensis (Poaceae), a new teosinte from Pacific coastal Nicaragua[J]. Novon,2000,10:382~390.
    [8]唐祈林,王培,卢艳丽等.玉蜀黍属物种间遗传关系的RAPD分析[J].草业学报,2009,18(4):154-160.
    [9]唐祈林,苏月贵,荣廷昭.玉米及其野生近缘材料的分类[J].玉米科学,2009,17(1):1-5.
    [10]田松杰,石云素,宋燕春等.利用AFLP技术研究玉米与其野生近缘种的遗传关系[J].作物学报,2004,30(4):354-359.
    [11]Iltis H H, Doebley J F. Guzman R1 Zea diploperennis (Gramineae):A new teosinte from Mexico [J]. Science,1979,203:186~188.
    [12]郭乐群,张忠,谷明光.二倍体多年生大刍草(Zea Diploperennis)是有价值的新种质资源[J].玉米科学,2000,8(4):12-14.
    [13]Pernilla E.S, Carlos H.L and Arnulf M. Chromosome C-banding of the teosinte Zea nicaraguensis and comparison to other Zea species[J]. Hereditas,2007,144:96-101.
    [14]朱正梅,胡贤女,赵军华.青贮玉米育种的现状、方法及发展潜力[J].安徽农学通报,2007,13(18):133-134.
    [15]宋金昌,范莉,杨宗泽等.饲用墨西哥玉米生长特性及其营养成分含量的研究[J].草业科学,2005,22(4):53-56.
    [16]王永军,王空军,董树亭等.氮肥用量、时期对墨西哥玉米产量及饲用营养品质的影响[J].中国农业科学,2005,38(3):492-497.
    [17]王永军,王空军,董树亭等.留茬高度与刈割时期对墨西哥玉米再生性能的影响[J].中国农业科学,2005,38(8):1555-1561.
    [18]王永军,王空军,董树亭等.留茬高度与刈割时株高对墨西哥玉米产量及饲用品质的影响[J].作物学报,2006,32(1):155-158.
    [19]王永军,王空军,董树亭等.施氮对墨西哥玉米植株硝态氮累积及产量的影响[J].作物学报,2006,32(3):345-350.
    [20]廖伏明,周坤炉,阳和华等.杂交水稻亲本遗传差异及其与杂种优势关系[J].中国水稻科学,1988,12(4):193-199.
    [21]Ali M., Copeland L.O., Elias S. G. et al. Relationship between genetic distance and heterosis for yield and morphological traits in winter canola (Brassica napus L.)[J]. Theor Appl Genet,1995, 91(1):118~121.
    [22]Teklewold Adefris, Heiko C. Becker. Comparison of phenotypic and molecular distances to predict heterosis and F1 performance in Ethiopian mustard (Brassica carinata A. Braun)[J]. Theor Appl Genet,2006,112(4):752~759.
    [23]张锡顺,杨建国,杨若菡等.蓖麻数量性状遗传距离与杂种优势关系的研究[J].中国农业科学,2006,39(3):633-640.
    [24]乔春贵,王玉兰,王庆枉等.吉林爆玉米遗传距离与杂种优势关系的研究[J].遗传,1993,15(6):20-23.
    [25]龙漫远.玉米遗传距离测量方法及其与产量的杂种优势和特殊配合力的关系[J].作物学报,1987,13(3):193-200.
    [26]黄清阳,高之仁,荣廷昭.玉米自交系间遗传距离与产量杂种优势、杂种产量的关系[J].遗传学报,1991,18(3):271-276.
    [27]李荣改,孟祥祯,王玉珍等.水稻遗传距离与杂种优势、杂种产量的关系[J].河北农业大学学报,1993,16(1):13-19.
    [28]郭平仲,张金栋,甘为牛等.距离分析方法与杂种优势[J].遗传学报,1989,1692):97-104.
    [29]侯荷亭,杜志宏,赵根弟.高粱亲本遗传距离与杂种优势和特殊配合力的关系[J].遗传,1995,17(1):30-33.
    [30]许明辉,马继琼,刘广田.烟草品种间同工酶遗传距离与杂种优势关系的研究[J],农业生物技术学报,1999,7(2):117-122.
    [31]王学德,潘家驹.棉花亲本遗传距离与杂种优势间的相关性研究[J].作物学报,1990,16(1):32-38.
    [32]井立军,崔鸿文.茄子遗传距离与杂种优势关系研究[J].西北农业学报,1999,8(2):63-65.
    [33]Schwartz D. Genetic studies on mutant enzymes in maize:synthesis of hybrid enzymes by heterozygotes[J]. Proc.Natl. Acad. Sci.,1960,46:121~1215.
    [34]杨太兴,段章雄,郭乐群等.同工酶与玉米杂种产量优势预测的研究[J].植物学报,1995,37(6):432-436.
    [35]Yu C. Y., Hu S. W., Zhao H. X., et al. Genetic distances revealed by morphological characters, isozymes, proteins and RAPD markers and their relationships with hybrid performance in oilseed rape (Brassica napus L.)[J]. Theor Appl Genet,2005,110(3):511~518.
    [36]宋占权,孟义江,段明革等.玉米酯酶同工酶遗传距离与杂种优势的关系[J].河北农业科学,1999,3(1):16-19.
    [37]李树华,袁汉民,杨生龙.春小麦杂种优势与同工酶酶谱相关性分析[J].西北农业学报,1998,7(2):32-36.
    [38]Betran F.J., Ribaut J. M., Beck D., et al. Genetic Diversity, Specific Combining Ability, and Heterosis in Tropical Maize under Stress and Nonstress Environments[J]. Crop Science,2003, 43(3):797~806.
    [39]朱作峰,孙传清,姜廷波等.水稻品种SSR与RFLP及其与杂种优势的关系比较研究[J].遗传学报,2001,28(8):738-745.
    [40]Smith O. S., Smith J. S. C., Bowen S. L., et al. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis, and RFLPs[J]. Theoretical and Applied Genetics,1990,80(6):833~840.
    [41]张培江,才宏伟,袁平荣等.RFLP标记水稻遗传距离及其杂种优势的关系与杂种优势的关系[J].杂交水稻,2001,16(5):50-54.
    [42]Lanza L. L. B., de Souza C. L. Jr., Ottoboni L. M. M., et al. Genetic distance of inbred lines and prediction of maize single-cross performance using RAPD markers[J]. Theoretical and Applied Genetics,1997,94(8):1023~1030.
    [43]Xiao J., Li J., Yuan L., et al. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers[J]. Theoretical and Applied Genetics,1996, 92(6):637~643.
    [44]胡胜武,于澄宇,赵惠贤等.恢复系和保持系RAPD分子标记与甘蓝型油菜杂种优势关系的研究[J].西北农林科技大学学报(自然科学版),2003,31(6):66-70.
    [45]Liu Z. Q., Pei Y., Pu Z. J. Relationship between hybrid performance and genetic diversity based on RAPD markers in wheat, Triticum aestivum L[J]. Plant Breeding,1998,118(2):119~123.
    [46]Krystkowiak K., Adamski T., Surma M., et al. Relationship between phenotypic and genetic diversity of parental genotypes and the specific combining ability and heterosis effects in wheat (Triticum aestivum L.)[J]. Euphytica,2009,165(3):419~434.
    [47]Wu Y. T., Zhang T. Z., Zhu X. F., et al. Relationship between F1, F2 hybrid yield, heterosis and genetice measured by molecular markers and parent performance in cotton[J]. Agricultural Sciences in china,2002,1 (5):498~507.
    [48]Reif. J.C, Melchinger.A.E, Xia.X.C,etal. Genetic Distance Based on Simple Sequence Repeats and Heterosis in Tropical Maize Populations[J]. Crop Science,2003,43(4):1275~1282.
    [49]Riday H.,Brummer E.C.,Campbell T.A.,etal. Comparisons of genetic and morphological distance with heterosis between Medicago sativa subsp.sativa and subsp.falcata[J]. Euphytica,2003,131: 37~45.
    [50]Dreisigacker.S, Melchinger. A. E, Zhang. P,etal. Hybrid performance and heterosis in spring bread wheat, and their relations to SSR-based genetic distances and coefficients of parentage[J]. Euphytica,2005,144(1):51~59.
    [51]张涛,韩磊,徐建第等.杂交香稻亲本遗传距离与产量杂种优势的相关性研究[J].中国农业科学,2006,39(4):831-835.
    [52]Cheres M. T., Miller J. F., Crane J. M. Genetic distance as a predictor of heterosis and hybrid performancewithin and between heterotic groups in sunflower[J]. Theor Appl Genetics,2000, 100(6):889~894.
    [53]高世斌,荣廷昭,李晚忱等.19个玉米自交系的数量形状和AFLPs的遗传差异比较研究[J].华北农学报,2004,19(2):24-27.
    [54]吴敏生,戴景瑞.AFLP标记与玉米杂种产量、产量杂种优势的预测[J].植物学报,2000,42(6):600-604.
    [55]蔡健,兰伟.利用AFLP分子标记预测水稻杂种优势[J].作物学报,2005,31(4):526~528.
    [56]Meyer R.C., Becher M., Altmann T.,et al. Heterosis of Biomass Production in Arabidopsis. Establishment during Early Development[J]. Plant Physiology,2004.134:1813~1823.
    [57]Pischedda, G and Magoja, J.L.Potential use of diploperennial teosinte germplasm for maize improvement[J].1987, Maize genet.coop.Newsletter,61:65.
    [58]曹墨菊,荣廷昭,唐祈林.栽培玉米与近缘野生材料杂交后代的性状表现[J].西南农业学报,2002,15(2):9-12.
    [59]芦立婷,陈景堂,黄亚群等.玉米自交系×大刍草远缘杂交后代性状变异研究初探[J].西北植物学报,2005,25(9):1751-755.
    [60]唐祈林,杨克诚,郑祖平等.玉米与玉米近缘种可杂交性研究[J].作物学报,2006,32(1):144-146.
    [61]Cohen J.I, Galinat W.C. potential use of alien germplasm for maize improvement[J]. Crop Science, 1984,24(1):1011~1015.
    [62]赖仲铭,牛应泽.利用大当草与玉米杂交(Z. mays X Z. mexicana)创造新种质的研究初报[J].四川农业大学学报,1993,11(4):651-652,644.
    [63]周洪生,邓迎海,李竞雄.玉米(Zea mays L.)×大刍草(Zea diploperennis L.)远缘杂交选育玉米自交系的研究[J].作物学报,1997,23(3):333-337.
    [64]王启柏,宋建成,李常保等.玉米与二倍体多年生大刍草远缘杂交选育玉米杂交种的研究[J].华北农学报,2002,17(增刊):144-147.
    [65]Wang Lingzhi, Xu Changzheng, Qu Mingli,et al. Kernel amino acid composition and protein content of introgression lines from Zea mays ssp.mexicana into cultivated maize [J]. Journal of Cereal Science,2008,48(2):387~393.
    [66]Wang Lingzhi, Yang Aifang, He Chunmei, et al. Creation of new maize germplasm using alien introgressionfrom Zea mays ssp. mexicana[J]. Euphytica,2009,164(3):789~801.
    [67]Magoja, J.L and Palacios. Early expression of herterosis in diploperennial teosinte-maize hybrids[J]. 1987, Maize genet.coop.Newsletter,61:63~64.
    [68]Harjinder S, Bhardwaj B L, Gupta B K. Intheritance of forage quality and other agronomic traits in maize, teosinte and their hybrids[J] crop improve.2004,31(1):25-30.
    [69]Harjinder Singh, B. L. Bhardwaj. heterosis for green fodder yield and forage quality traits in maize X teosinte hybrids[J]. crop improve.2004,31(1):31-36.
    [70]Srinivasan G, Brewbaker J L. Genetic analysis of hybrids between maize and perennial teosinte. I. morphological traits [J]. maydic,1999,44(4):353-369.
    [71]黄致诚,梁英彩,谷明光.“8374”高产优质青饲类玉米的选育栽培和利用[J].中国草食动物,1989,(1):11-12.
    [72]黄致诚,梁英彩,彭家崇等.“8493”青饲类玉米的杂交选育及应用[J].中国草食动物,1992,(1):8-10.
    [73]李冬郁,郭乐群,张忠等.玉米野生近缘种类玉米的研究和利用[J].玉米科学,2001,9(2):11-13.
    [74]唐祈林,荣廷昭,潘光堂.用玉米近缘材料创造玉米新种质[J].中国农业科学,2000,33(增刊):62-66.
    [75]唐祈林,李晚忱,宋运淳等.玉米与四倍体多年生玉米代换种质的选育及其基因组原位杂交鉴定[J].遗传学报,2004,31(4):340-344.
    [76]Qilin Tang, Tingzhao Rong, Yunchun Song, et al. Introgression of perennial teosinte genome into maize and identification of genomic in situ hybridization and microsatellite markers[J]. Crop Science,2005,45:717-721.
    [77]任勇,唐祈林,曹墨菊等.新选育饲草玉米品系饲用营养价值初步研究[J].植物遗传资源学报,2005,6(4):444-447.
    [78]李孟良,郑琳,杨安中等.播期、密度对“双低油菜”菜苔营养成分及菜籽产量的影响[J].草业学报,2008,17(3):137-141.
    [79]Cooksley D G, Goward E A. Effect of plant density and spatial arrangement on the yield of Leucaena leucocephala cv.peru in subcoastal south-eastern queensland[J]. Australian journal of experimental agriculture,1988,28(5),577-585.
    [80]William D W, Kurt D T. Row width and plant density effect on corn forage hybrids[J]. Agronomy Journal,2002,94(2):326-330.
    [81]李宁,瞿志席,李建民等.密度对不同株型的玉米农艺、根系性状及产量的影响[J].玉米科学, 2008,16(5):98-102.
    [82]路海东,雪吉全,马国胜等.粮饲兼用型玉米陕单8806高产栽培技术与生理研究—不同密度与施氮水平的群体生理特性研究[J].草业学报,2007,16(2):118-123.
    [83]陈柔屹,冯云超,唐祈林等.种植密度对玉草1号产量与品质的影响[J].草业科学,2009,26(6):96-100.
    [84]朱恒,蔡瑞国,张敏等.种植密度对饲用春玉米生长于饲草产量的影响[J].河北科技示范学院学报,2009,23(3):18-23.
    [85]Rutger J N, Crowder L V. Effect of high plant density on silage and grain yields of six corn hybrids[J]. Crop science,1967,7:182~184.
    [86]王云,于忠江,张云华等.密度对天农青饲1号高粱-苏丹草杂交种经济性状的影响[J].中国糖料,2005,(32):39-41.
    [87]张吉旺,胡昌浩,王空军等.种植密度对全株玉米饲用营养价值的影响[J].中国农业科学,2005,38(6):1126-1131.
    [88]Rutger J N, Crowder L V. Effect of population and row width on corn silage yields[J]. Agronomy Journal,1967,59:475~476.
    [89]王霞.种植密度对青贮玉米生物产量及部分农艺性状的影响[J].玉米科学,2005,13(2):94-96.
    [90]Graybill. J. S., W. J. cox, and D. J. otis. Yeild and quality of forage maize as influenced by hybrid, planting date, and plant density[J]. Agronomy Journal,1991,83:559~564.
    [91]Cox. W. J. and D. J. R. Chenrney. Row spacing, plant density, and nitrogen effects on corn silage[J]. Agronomy Journal,2001,93(3):597~602
    [92]Cusicanqui, J. A., and J. G. Lauer. Plant density and hybrid influence on corn forage yield and quality[J]. Agronomy Journal,1999,91(6):911~915.
    [93]Mcallan, A. B., and R. H. Phipps. The effect of sample date and plant density on the carbohydrate content of forage maize and the changes that occur on ensiling[J]. Agricultural Scencei,1977,89: 589~597.
    [94]严衍禄,赵龙莲.现代近红外光谱分析的信息处理技术[J].光谱学与光谱分析,2000,20(6):777-780.
    [95]Dardenne, P., Andrieu, J., Barriere, Y. et al. Composition and nutritive value of whole maize plants fed fresh to sheep. Ⅱ. Predictionof the in vivo organic matter digestibility [J]. Ann. Zootech, 1993,42,251-270.
    [96]Roland Welle, Willi Greten, et al. Near-Infrared Spectroscopy on Chopper to Measure Maize Forage Quality Parameters Online[J]. Crop Science,2003,43:1407~1413.
    [97]白琪林,陈绍江等.近红外漫反射光谱法测定玉米秸秆NDF与ADF含量[J].光谱学与光谱分析,2004,24(11):1345-1347.
    [98]白琪林,陈绍江等.近红外漫反射光谱法测定青贮玉米品质性状的研究[J].中国农业科学,2006,39(7):1346-1351.
    [99]白琪林,陈绍江,戴景瑞.我国常用玉米自交系秸秆品质性状及其相关分析[J].作物学报,2007,33(11):1777-1781.
    [100]邰书静,张仁和,史俊通等.不同玉米品种秸秆饲用品质的研究[J].草业学报,2009,18(5):80-85.
    [101]董苏晓,刘贤,韩鲁佳.近红外漫反射光谱法快速测定新鲜青贮饲料化学成分含量[J].中国农业大学学报,2007,12(6):85-88.
    [102]张晓艳,董树亭,王空军.不同类型饲用作物营养成分的比较研究[J].作物学报,2005,31(10):1344-1348.
    [103]刘桂要,杨云贵,曹社会等.玉米秸秆和4种玉米青贮饲料的营养差异性分析[J].西北农林科技大学学报,2009,37(4):76-80,85.
    [104]Rohweder D A, Barnes R F, Jorgensen N. Proposed hay grading standards based on laboratory analyses for evaluating quality[J]. Animal Science,1978, (47):747~759.
    [105]Moore J E, Undersander D J. Relative forage quality:An alternative to relative feed value and quality index[A]. In:Proceedings 13th annual florida ruminant nutrition symposium[C].2002, 16-32.
    [106]任勇,陈柔屹,唐祈林等.新型饲草玉米生长动态及收割期的研究[J].作物学报,2007,33(8):1360-1365.
    [107]Vidya C, Oommen S k. Correlation and path analysis in yard-long bean[J]. Journal of tropical agriculture,2002,40:48-50.
    [108]何文铸,刘永红,杨勤等.影响青贮玉米生物产量关键指标的筛选及其遗传研究[J].玉米科学,2009,17(2):29-33.
    [109]Damgi O P, Paroda R S. Correlation and path coefficient analysis in fodder cowpea (Vigna Sinensis Endl.)[J]. Experimental agriculture,1973,10:23-31.
    [110]韩路,贾志宽,韩清芳等.影响苜蓿产草量相关性状的通径分析[J].西北农业学报,2003,12(1):15-20.
    [111]Patel D A, Patel J S, Bhatt M M, et al. Correlation and path analysis in forage maize (Zea mays L.)[J]. Research on crops,2005,6(3):502-504.
    [112]陈柔屹,程江,郑常林等.玉草1号产量构成因素和最适密度研究[J].种子,2009,28(7):80-82.
    [113]Beltran O R B, Salvador F, Rubio H, et al. Nutritive value and forage yield of corn hybrids for silage[J]. Cuban journal of agricultural science,2006,40(1):87-92.
    [114]Fonseca C E L, Viands D R, Hansen J L, et al.Associations among forage quality traits, vigor, and disease resitance in alfalfa[J]. Corp science,1999,39:1271-1276.
    [115]张子军,冯永祥,吕艳东.东北寒地早粳稻品质相关及主成分分析[J].中国农业大学学报,2008,13(5):35-39.
    [116]Iptas S, Acar A A. Effects of hybrid and row spacing on maize forage yield and quality [J]. plant soil environment,2006,52(11):515-522.
    [117]程云辉,丁成龙,周卫星等.几种青贮玉米及高丹草品种的生产性能比较[J].江苏农业科学,2006,(6):323-324.
    [118]张春,王晓丽,于海清等.拟鹅观草属与鹅观草属和披碱草属属间及种间杂种的细胞学研究[J].草业学报,2009,18(3):86-93.
    [119]Kimber G. Genome analysis in the genus Triticum[A]. In:Saksmoto S. Proceedings of the 6th international wheat genetics, symposium[C].Japan, Kyoto:Kyoto University,1983.23-28.
    [120]Bao-Rong Lu, Ma. Elizabeth B. Naredo,Amita B. Juliano, et al. Taxonomic status of Oryza glumaepatula Steud. Ⅲ. Assessment of genomic affinity among AA genome species from the New World, Asia, and Australia[J]. Genetic Resources and Corp Evolution.1998,45(3):215-223.
    [121]詹秋文,朱立猛,吴娟娟等.苏丹草高粱及其杂种的细胞遗传学研究[J].作物学报,2008,34(7):1206-1212.
    [122]李再云,吴建国,石淑温等.甘蓝型油菜与诸葛菜属间杂种的减数分裂观察[J].遗传学报,1997,24(4):373-379.
    [123]Molina M.Del C, Naranjo. Cytogenetic studies in the genus Zea 1. Evidence for five as the basic chromosome number[J]. Theoretical and Applied Genetics,1987,73(4):542-550.
    [124]Naranjo C A, Poggio L, Molina M Del C, et al. Increase in multivalent frequency in F1 hybrids of Zea diploperennis×Zea perennis by colchicine treatment[J]. hereditas,1994,120:241-244.
    [125]Tang Q L, Feng Y C, Han X L, et al. Study on Haploid Inducing and Its Meiotic Abnormality in Maize[J]. Agricultural Sciences in China,2009,8(10):1159-1165.
    [126]段桃利.玉米与其近缘种属杂交花粉管行为研究[学位论文].四川省雅安市,四川农业大学,2008年.
    [127]段桃利,牟锦毅,唐祈林等.玉米与摩擦禾、薏苡的杂交不亲和性[J].作物学报,2008,34(9):1656-1661.
    [128]张海琴,凡星,黄燕等.披碱草与新麦草属间杂种的细胞遗传学研究[J].西北植物学报,2008,28(3):0485-0489.
    [129]唐祈林,吕桂华,.杨秀燕等.玉米×四倍体多年生玉米杂种F2非整倍体研究[J].中国农业科学,2008,41(8):2480-2484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700