射频高气压混合气体放电数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高气压射频放电是产生等离子体的一种普遍的技术手段,长期以来被广泛的应用在材料表面改性、刻蚀和薄膜沉积等技术领域中。由于氩气、氮气和氧气成本低廉,因此常被用来作为气体放电的工作气体。相对于纯单一气体的高气压射频放电,高气压混合气体射频放电的产生机理和放电现象更为复杂。此外,在高气压混合气体放电中的各种放电参数,特别是气体压强、驱动频率、混合气体比例等对放电技术有着至关重要的影响,掌握这种影响可以提高高气压混合气体放电的工艺性能。为此,本文采用数值模拟的方法对混合气体高气压射频放电过程进行了研究。
     本文工作主要分两部分来研究高气压下的混合气体放电现象。第一部分工作基于一维流体模型对采用诱导等离子体放电方法的高气压氮气射频放电进行了数值模拟研究,具体研究包括两个方面:(a)研究了高气压氮气注入时间和初始诱导氩等离子体的压强对高气压氮气射频放电特性的影响;(b)研究了驱动频率对带有诱导氩等离子体的高气压氮气射频放电的影响;第二部分的工作主要数值研究了大气压氮气和氧气混合气体射频放电现象,具体包括两个方面:(a)研究了不同混合比例气体对射频大气压氮气和氧气混合气体放电特性的影响。(b)研究了在固定氮氧混合比例下的大气压射频混合气体放电初期的等离子体特性。
     本文共分六章,每章内容如下:
     第一章为绪论,主要介绍高气压放电和混合气体放电的研究历史与现状。
     第二章,基于一维流体模型利用有限差分法对相应的方程组进行离散,并且运用Fortran编程语言对模型进行编程计算,从而得到在200Torr气压下等离子体中的粒子密度、相应电子温度以及电场的空间分布。分别考虑了氮气的注入时间和初始诱导氩等离子体的压强对高气压氮气射频放电特性的影响。模拟结果显示,采用诱导氩等离子体放电方法可以在相对较低的条件下产生高气压放电等离子体。研究结果还表明,随着氮气注入时间的增加,等离子体密度先增加后趋于不变,电子温度先减少后趋于不变。随着初始诱导氩等离子体压强的增加,等离子体密度增加,电子温度下降。
     第三章,基于一维流体模型继续研究了驱动频率对带有诱导氩等离子体的高气压氮气射频放电特性的影响。研究表明:当驱动频率从20MHz增加到100MHz时,电子密度、离子密度和中性粒子密度随着驱动频率的增加而增加。在此过程中,虽然电流密度发生了变化,但研究分析表明在整个过程中放电都处于稳定的α放电模式。随着驱动频率的增加,等离子体的电势、鞘层区域的电场强度和电子温度、等离子体区的长度增加,鞘层的厚度减小,等离子体区的电子温度有微小的下降。研究结果还表明在放电过程中,电子的产生率贯穿整个放电空间并且在鞘层区域出现峰值,这也进一步说明了放电是处于稳定的α模式放电。
     第四章,由于氧气和氮气是空气的主要组成成分,因此研究大气压氮气和氧气的混合气体放电的特性对研究大气压空气放电有一定的帮助。本章利用一维流体模型,采用模拟方法研究了氧气所占比例对大气压氮氧混合气体射频放电的影响。研究结果表明随着氧气所占比例由4%增加到20%,电子和N4+离子的密度先减小后增加,O2+离子和。-离子密度增加,电子温度增加。当混合气体中氧气所占比例小于12%时,主要的负粒子是电子;当氧气所占比例大于12%时,主要的负粒子是O-离子。
     第五章,基于一维流体模型,在这一章中对大气压氮氧混合气体放电做了进一步的研究,利用流体数值模拟的方法研究了包括13种反应粒子(例如:e,N2+,N4+,O2,O-, O+,NO+,N2(A1∑u+),N2(a1∑-u),O2(a1△g),O,N,NO)和73种反应过程的固定混合比例的大气压氮氧混合气体射频放电初期等离子体的特性。研究结果表明:在放电初期,负离子增加的速度要远大于其它的正离子增加的速度,电子增加的速度最慢,电子密度经历了先减小后缓慢增加的过程。在放电初期,主要的负粒子是O-离子,它比电子密度高3个数量级。研究结果还表明:电极间距对等离子体的特性有重要的影响,随着放电电极间距的增加,电子密度、N4+离子密度、O2+离子密度和O-离子密度增加。
     最后,对全文进行总结并给出创新点和展望。
High pressure RF discharge is a main technology for producing plasma, it is also widely used to modify the surface properties of materials, etch and film deposition and other technology fields. Since argon, oxygen and nitrogen are cheap, they are usually used as working gas in discharge. Compared with the pure gas discharge, the mechanism and phenomena of mixture gases discharge at high pressure are more complicated. Besides, the parameters of high pressure RF discharge, particularly gas pressure, driven frequency and mixture ratio have important relationships with the discharge. To get these relationships can help to improve the plasma technology. This dissertation used a numerical simulation to study the mixture gases RF discharge at high pressure.
     In this dissertation we have mainly studied for two aspects. First of all, based on a fluid model, induced plasma discharge approach has been adopted to numerically study nitrogen discharge at high pressure. It includes as the followings:(a) the effect of the time of adding nitrogen gas and initial induced argon plasma pressure on nitrogen discharge characteristics at high pressure has been studied;(b) the effect of RF frequency on nitrogen discharge with induced argon plasma in high pressure has also been studied; Secondly, in the dissertation we also have studied mixture gases atmospheric pressure RF discharge, including the effect of the concentration of O2in N2on nitrogen and oxygen atmosphere discharge and investigating the characteristics of nitrogen and oxygen RF atmospheric pressure discharge with fixed mixture gases ratio and the effect of gap distance on the plasma characteristics.
     There are six chapters in this dissertation. The contents in each chapter are as follows:
     Chapter1is the introduction. It introduces the history and present conditions of high pressure discharge and mixture gases discharge.
     In chapter2, one-dimensional fluid model under drift/diffusion approximation was introduced. The model was solved by a finite difference model. A code by FORTRAN language has been developed to simulate the model. The electron density, ions densities, neutral particles densities, electron temperature and electric filed in spatial at200Torr are obtained. In this chapter we investigate the effect of the time of adding nitrogen gas and initial induced argon plasma pressure on discharge characteristics. The simulation results show that when the induced argon plasma exists, the nitrogen plasma in the relatively low conditions can be obtained. And during the process of the gas pressure increasing from1Torr to200Torr, the instability doesn't appear. Moreover the results also show that the slower rate of varying gas pressure, the plasma density is higher and the electron temperature is smaller; with the initial induced argon plasma pressure increasing, the charged particle densities increase, and electron temperature decreases.
     In chapter3, based on one-dimensional plasma fluid model, the effect of the drive frequency on RF nitrogen discharge at high pressure with argon induced plasma has been further investigated. The numerical results show that through modulating the driven frequency, the discharge can obtain higher plasma density. Moreover, as the driven frequency increasing, the plasma voltage increases, the electric-field in sheath increases, the length of the plasma increases, the thickness of sheath decreases; the electron temperature in sheath increases obviously and has a small reduction in bulk plasma; the electron production rate is across the whole gap and has peak value in sheath. The discharge is in a mode.
     In chapter4, the nitrogen gas and oxygen gas are the main components of air; therefore it is important to investigate the nitrogen and oxygen mixture gas discharge at atmospheric pressure. In this chapter, we studied the effect of the concentration of O2in N2on nitrogen and oxygen mixture gases atmosphere discharge. The numerical results show that when the concentration of O2in N2is less than12%, as the amount of O2grows, the electron density and N4+density decrease; the main negative particle is electron. And when the concentration of O2in N2is greater than12%, the electron density and N4+density increase with the increasing of oxygen; the main negative particle is O-. Moreover, O-density, O2density, electron temperature and the mixture gases electronegativity are increasing with the growth of O2in range of20%O2.
     In chapter5, a one-dimensional fluid model is used for studying atmosphere discharge in mixture of nitrogen and oxygen. In the model, some particles, such as e, N2, N4+,O2+,O-, O+, NO+, N2(A1∑n+), N2(a+1∑-"), O2(a1△g),O, N, NO, are taken into account, as well as their73main reactions. The model is solved numerically and the evolutions of the spatial distributions of the particle densities are obtained. It shows that the density of negative ion increases more quickly than densities of positive ions and the densities of positive ions increase more quickly than electron density. The main charged particle is O-, whose density is much higher than other ions and electron. Discharge gap distance has effect on discharge properties. As the gap distance increasing the particles densities increase with it.
     Finally, a brief summary ends this thesis.
引文
[1]武占成,张希君,胡有志.气体放电[M].北京:国防工业出版社.2012.
    [2]Kanazawa Kogoma M., Moriwaki T. and Okazaki S. Stable glow plasma at atmospheric pressure [J]. J. Phys. D:Appl. Phys.,1988,21:838-840.
    [3]Jeong J. Y., Babayan S.E., Schutze A., etal. Etching polyimide with a nonequibrium atmospheric-pressure plasma jet [J]. J. Vac. Sci. Technol. A. Vac. Surf. Films,1999,17:2581-2585.
    [4]Sawada Y., Ogawa S., Kogoma M. Synthesis of plasma-polymerized tetraethoxysilane and hexamethyldisiloxane films prepared by atmospheric pressure glow discharge [J]. J. Phys. D:Appl. Phys.,1995, 28:1661-1669.
    [5]Gherardi N., Martin S. and Massines F. A new approach to SiO deposit using a N-SiH-NO glow dielectric barrier-controlled discharge at atmospheric pressure [J]. J. Phys.D:Appl. Phys.,2000,33:104-108.
    [6]Gouda.G., Massines F. A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure [J]. J. Phys.D:Appl. Phys.,1998,31:3411-3420.
    [7]江超.高气压辉光放电理论与实践[D].武汉:华中科技大学物理电子学,2006.
    [8]丁芳.高气压直流辉光等离子体放电物理及应用[D].合肥:中国科技大学等离子体物理专业,2010.
    [9]Ding F., Meng L., Zhu X. D., Si C. Formation throuth interface reaction between C60 and Si in plasma envieroment [J]. Plasma Science and Technology,2007,9:67-70.
    [10]Ding F., Zhu X.D., Zhan R. J., Ni T. L., etal. Branched carbon treelike structures grown in direct current plasma [J]. Applied Physics Letter, 2009,95:121501.
    [11]姜志刚.高气压直流辉光放电及其等离子体化学气相沉积金刚石厚膜的生长特性与应用研究[D].长春:吉林大学凝聚态物理专业,2004.
    [12]Yuan Xiaohui, Raja L. L. Computational study of capacitively coupled high-pressure glow discharges in helium [J]. IEEE Transactions on Plasma Science,2003,31 (4):495-503.
    [13]石峰.高气压超短纳秒脉冲气体放电的数值模拟[D].大连:大连理工大学等离子体物理专业,2008.
    [14]石红.氩气大气压介质阻挡放电时间非线性行为研究[D].大连:大连理工大学等离子体物理专业,2009.
    [15]Shang Wanli, Wang Dezhen, and Yuantao Zhang. Radio frequency atmospheric pressure glow discharge in alfa and gamma modes between two coaxial electrodes [J]. Physics of Plasmas,2008,15:093503.
    [16]Cernogorat G, Hochardt L, Touzeaut M, etal. Population of N2(A 3∑u+) metastable states in a pure nitrogen glow discharge [J]. J. Phys. B:At. Mol. Phys.,1981,14:2977-2987.
    [17]Moon S. Y., Han J. W., Choe W. Control of radio-frequency atmospheric pressure argon plasma characteristics by helium gas mixing[J]. Physics of Plasmas,2006,13(1):013504.
    [18]Shi J. J., Kong, M. G. Protein destruction by a helium atmospheric pressure glow discharge:Capability and mechanisms [J]. Journal of Applied Physics,2007,101(7):074701-9.
    [19]Li Shou-Zhe, Wu Qi, Zhang Jialiang, etal. Development of an atmospheric-pressure homogenous and cold Ar/02 plasma source operating in glow discharge [J]. Physics of Plasmas,2010,17:063506.
    [20]Ohyung Kwon, Bae Hyun Sook, Whang Ki-Woong. Discharge characteristics of He-Ne-Xe gas mixture with varying Xe contents and at varying sustain electrode gap lengths in the plasma display panel [J]. Journal of Applied Physics,2009,106(6):063311-6.
    [21]Yuan Xiaohui and Raja L. L. Role of trace impurities in large-volume noble gas atmospheric-pressure glow discharges [J]. Applied Physics Letters,2002,81(5):814-16.
    [22]Boeuf J. P. Plasma display panels:physics, recent developments and key issues. [J]. J. Phys. D:Appl. Phys,2003,36:R53-R79.
    [23]Hua-Bo Wang, Sun Wen-Ting, Li He-Ping, etal. Discharge characteristics of atmospheric-pressure radio-frequency glow discharges with argon/nitrogen [J]. Applied Physics Letters,2006,89(16):161504-1-3.
    [24]Shon J. W., Kushner M. J. EXCITATION MECHANISMS AND GAIN MODELING OF THE HIGH-PRESSURE ATOMIC AR LASER IN HE/AR MIXTURES [J]. Journal of Applied Physics,1994,75(4):1883-1890.
    [25]Wang S. Discharge comparison of nonequilibrium atmospheric pressure Ar/02 and He/02 plasma jets [J]. Applied Physics Letters,2003, 83(16):3272-3274.
    [26]Deng Xutao, Shi Jianjun, and Kong Michael G. Physical Mechanisms of Inactivation of Bacillus subtilis Spores Using Cold Atmospheric Plasmas [J]. IEEE TRANSAXTIONS ON PLSMASMA SCIENCE,34(4):1310-1316.
    [27]Perni Stefano, Shama Gilbert, Hobman, J. L, etal. Probing bactericidal mechanisms induced by cold atmospheric plasmas with Escherichia coli mutants [J]. Applied Physics Letters,2007,90(7):073902-073902-3.
    [28]Laroussi M., Sayler G. S., Glascock B. B., etal. Images of biological samples undergoing sterilization by a glow discharge at atmospheric pressure [J]. IEEE Transactions on Plasma Science,1999,27(1):34-35.
    [29]Kieft I. E., Kurdi M., and Stoffels E. Reattachment and Apoptosis After Plasma-Needle Treatment of Cultrued cells. [J]. IEEE Trans. Plasma Sci. 2006,34(4):1331-1336.
    [30]Laroussi M., Tendero C., Lu X.P., etal. Inactivation of Bacteria by the plasma pencil. [J]. Plasma Proc. Polym.,2006,3 ((6-7)):470-473.
    [31]Uchida Satoshi, Akiyama Toshiyuki, Kajiyama Hiroshi, Shinoda Tsutae. Effect of high Xe-concentration in a plasma display panel with a SrCaO cold cathode [J]. Journal of Applied Physics,2010,107(10):103311-7.
    [32]迈克尔.A.力伯曼,阿伦.J.里登伯格.等离子体放电原理与材料处理[M].北京科学出版.2007.
    [33]Moravej M, Yang X, Hicks Rf, Penelon J. A radio-frequency nonequilibrium atmospheric pressure plasma operating with argon and oxygen [J]. Journal of Applied Physics,2006,99(9):093305-6.
    [34]Majumdar Abhijit, Singh, etal. Dielectric barrier discharge plasma treatment on E. coli:Influence of CH4/N2,O2, N2/O2, N2, and Ar gases [J]. Journal of Applied Physics,2009,106(8):084701-084701.
    [35]Moravej M., X. Yang, M. Barankin, J. Penelon, etal. Properties of an atmospheric pressure radio-frequency argon and nitrogen plasma [J]. Plasma Sources Science & Technology,2006,15(2):204-210.
    [36]李和平,李果,王森,包玉成.裸露金属电极大气压射频辉光放电研究进展[J].综述文章,2009,1000-7857:05-0081-06.
    [37]Li He-Ping, Sun Wen-Ting, Wang Hua-Bo, etal. Electrical Features of Radio-frequency, Atmosphericpressure, Bare-metallic-electrode Glow Discharges [J]. Plasma Chem Plasma Process,2007,27:529-545.
    [38]赵永莉.变气压直流辉光放电的数值模拟[D].大连:大连理工大学凝聚态物理专业,2008.
    [39]Yu Qian(余虔), Deng Yong-Feng (邓永锋), Liu Yue(刘悦, Han Xian-Wei (韩 先伟).Numerical Study on Characteristics of Argon Radio-Frequency Glow Discharge with Varying gas Pressure [J]. CHIN. PHYS. LETT.,2008, 25(7)-.2569-2572.
    [40]Bogaerts A., Gijbels R., Goedheer W. J. HYBRID MONTE-CARLO FLUID MODEL OF A DIRECT-CURRENT GLOW-DISCHARGE [J]. Journal of Applied Physics,1995, 78(4):2233-2241.
    [41]Yong-HoOh, Choi Nak-Heon, Choi Duk-In. A numerical simulation of RF glow discharge containing an electronegative gas composition [J]. Journal of Applied Physics,1990,67(7):3264-8.
    [42]Gogol ides E., Sawin H. H. CONTINUUM MODELING OF RADIOFREQUENCY GLOW-DISCHARGES 1. THEORY AND RESULTS FOR ELECTROPOSITIVE AND ELECTRONEGATIVE GASES [J]. Journal of Applied Physics,1992, 72(9).-3971-3987.
    [43]David B., Graves, Klavs A. and Jensen F. A Continuum Model of DC and RF Discharges[J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE,1986, PS-14(2):78-90.
    [44]Balcon N., Hagelaar, G. J. M. Boeuf, J. P. Numerical Model of an Argon Atmospheric Pressure RF Discharge [J]. IEEE Transactions on Plasma Science,2008,36(5):2782-2787.
    [45]Economou Dimitris P., Lymberopoulou and Demetre J. Fluid simulations of glow discharges:Effect of metastable atoms in argon [J]. J. Appl.Phys.,1993,73(8):3668-3679.
    [46]Ward A. L. Effect of space charge in cold-cathode gas discharges [J]. Phys. Rev.,1958,112(6):1852-1857.
    [47]Lowke J. J., D. K. Davies. PROPERTIES OF ELECTRIC-DISCHARGES SUSTAINED BY A UNIFORM SOURCE OF IONIZATION [J]. Journal of Applied Physics,1977, 48(12):4991-5000.
    [48]Bayle P., Cornebois B. Propagation of electron shock waves In electrical breakdown [J]. Phys. Rev. A,1985,31 (2):1046-1058.
    [49]Boeuf J. P. Modeling of a two dimensional DC glow discharge [J]. ESCAMPIG 86. Eighth European Sectional Conference on the Atomic and Molecular Physics of Ionized Gases (papers in summary form only received), 1986:142-3.
    [50]黄俊卿.直流辉光放电正柱区及阴极鞘层区的模拟[D].大连:大连理工大学应用化学系,2001.
    [51]Rhallabi A., Catherine Y. COMPUTER-SIMULATION OF A CARBON-DEPOSITION PLASMA IN CH4 [J]. IEEE Transactions on Plasma Science,1991, 19(2):270-277.
    [52]吕少波,蔺增,巴德纯,王庆.射频辉光放电CH4等离子体以为流体动力学模拟[J].计算物理,2011,28(3):3219-340.
    [53]Masi M, Cavallotti C, Carra S. Different approaches for methane plasmas modelin [J]. Chemical Engineering Science,1988,53(22):3875-3886.
    [54]Gordiets B. F., Ferreira C.M., Guerra V. L., etal. Kinetic model of low-pressure N2-02 flowing glow discharge [J]. IEEE Transactions on Plasma Science,1995,23(4):750-768.
    [55]殷燕.氧气、氮气及混合气体直流放电的蒙特卡罗模拟[D].石家庄:河北大学光学专业,2003.
    [56]Settaouti L., Settaouti. Monte Carlo simulation of radio-frequency plasma in N2 [J]. Int. J. Numer. Model.,2011,24:99-110.
    [57]Date A., Kitamori, K., Sakai, Y., Tagashira, H. SELF-CONSISTENT MONTE-CARLO MODELING OF RF PLASMA IN A HELIUM-LIKE MODEL GAS [J]. Journal of Physics D-Applied Physics,1992,25(3):442-452.
    [58]Kline L. E. Mote Carlo study of ionization zone electron kinetics in negative pin-plane coronas in atmospheric a [J]. J. Appl. Phys.,1985, 58(10):3715-3719.
    [59]Boeuf J. P., Marode, E. A MONTE-CARLO ANALYSIS OF AN ELECTRON SWARM IN A NONUNIFORM FIELD-THE CATHODE REGION OF A GLOW-DISCHARGE IN HELIUM [J]. Journal of Physics D-Applied Physics,1982,15(11):2169-2187.
    [60]Bi Zhen-Hua, Dai Zhong-Ling, Xu Xiang, etal. Numerical results for the Ar and CF4 mixture gas in a dual frequency capacitively coupled plasma using a hybrid model [J]. PHYSICS OF PLASMAS,2009,16:043510-043510-8.
    [61]Wang Qi, Sun Jizhong, Zhang Jianhong, etal. Numerical simulation of atmospheric-pressure helium discharge driven by combined radio frequency and trapezoidal pulse sources [J]. Physics of Plasmas,2010, 17:053506-053506-6.
    [62]Passchier J. D. P., Goedheer W. J. A two dimensional fliud model for an argon rf discharge [J]. J. Appl.Phys.,1993,74(6):3744-3751.
    [63]Bogaerts A., Gijbels R. and Goedheer W. J. Two-Dimensional Model of a Direct Current Glow Discharge:Description of the Electrons, Argon Ions, and Fast Argon Atoms [J]. Anal. Chem.,1996,68:2296-2303.
    [64]Farouk Tanvir, Farouk Bakhtier, Alexander Gutsol and Alexander Fridman. Atmospheric pressure radio frequency glow discharges in argon:effects of external matching circuit parameters [J]. Plasma Sources Sci. Technol.,2008,17:035015(15).
    [65]Han Weiqiang, Redlich Philipp, Ernst Frank, and Ruhle. Manfred Synthesis of GaN-carbon composite nanotubes and GaN nanorods by arc discharge in nitrogen atmosphere [J]. APPLIED PHYSICS LETTERS,2000, 76:652-654.
    [66]王艳辉,王德真.介质阻挡均匀大气压氮气放电特性研究[J].物理学报,2006,55(11):5923-5929.
    [67]Massines F, Gherardi N, Naud'E N and S'Egur P. Glow and Townsend dielectric barrier discharge in various atmosphere [J]. Plasma Phys. Control. Fusion,2005,47:B577-B588.
    [68]Takaki K., Hosokawa M., Sasaki T., Mukaigawa S. etal. Production of atmospheric-pressure glow discharge in nitrogen using needle-array electrode [J]. APPLIED PHYSICS LETTERS,2005,86:151501-151501-3.
    [69]Kogoma M, Okazaki S. Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure [J]. Journal of Physics D:Applied Physics,1994,27(9):1985-1987.
    [70]Moslehi Mm, Fu Cy, Saraswat K. Low-temperature direct nitridation of silicon in nitrogen plasma generated by microwave discharge [J]. United States Patent 1987,4:715-937.
    [71]Lebedev Ya, Tatarinova V and Epstein I L. Modeling of the electrode microwave discharge in nitrogen [J]. Plasma Sources Science and Technology,2007,16(4):726.
    [72]Matveyeva A, Silakov V. P. Theoretical study of the role of ultraviolet radiation of the non-equilibrium plasma in the dynamics of the microwave discharge in molecular nitrogen [J]. Plasma Sources Sci. Technol.,1999, 8:162-178.
    [73]Wu C. Kunhardt E. E. Formation and propagation of streamers in N2 and N2-SF6 mixtures [J]. PPHYSICAL REVIEW A,1988,37(11):4396-4406.
    [74]Moseley J. T., Snuggs R.M., Martin D. W., etal. Mobilities, Diffusion Coefficients and Reaction Rates of Mass^Indentified NItroten Ions in Nitrogen [J]. PHYSICAL REVIEW,1969,178:240-250.
    [75]Richards Albert D., Thompson Brian E., Sawin Herbert H. Continuum modeling of argon radio frequency glow discharges [J]. Applied Physics Letter,,1986,50((9)):492-494.
    [76]尤左伟.N2-02双频容性耦合等离子体的流体力学模拟[D].大连:大连理工大学等离子体物理专业,2009.
    [77]Deng yongfeng, Han xianwei, Rehman Shafiq Ur, Liu Yue. Modeling characteristics of nonequilibrium processes during breakdown of capacitive rf argon glow discharge [J]. Physics of Plasmas,2008, 15(5):053507-1-8.
    [78]高飞,毛明,丁振峰等.射频感应耦合Ar-N2等离子体物理特性的Langmuir探针测量及理论研究[J].物理学报,2008,57(8):5124-5129.
    [79]Shi J.J., Deng X. T., Hall R., etal. Three modes in a radio frequency atmospheric pressure glow discharge [J]. J. Appl. Phys.,2003, 94:6303-6310.
    [80]Lisovskii V. A. Features of the alpha-gamma transition in a low-pressure rf argon discharge [J]. Technical Physics,1998,43(5):526-534.
    [81]Vidaud P., Durranis. M. A., etal. Alfa and gamma RF capacitance discharges in N2 at intermediate pressures [J]. J. Phys.D:Appl.Phys.,1988, 21:57-66.
    [82]Yang X., Moravej M., Nowling G. R., etal. Comparision of an atmospheric pressure radio-frequency discharge operating in the alfa and gama modes [J]. Plasma Sources Sci. Technol.,2005,14:314-320.
    [83]Park J., I., Henins H. W., Herrmann G. S., etal. Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source [J]. Journal of Applied Physics,2001,89(1):20-28.
    [84]尚万里.大气压射频辉光放电模式转换机制的流体力学模拟[D].大连:大连理工大学等离子体物理,2009.
    [85]Zhuang J., Sun J. Z., Wang D. Z., etal. Modeling of high frequency atmospheric pressure Ar/SiH4/H2 glow discharge [J]. Thin Solid Films, 2001,519(20):7014-7019.
    [86]Liu Da Wei, Felipe Iza, Michael G. Kong. Evolution of Atmospheric-Pressure RF Plasmas as the Excitation Frequency Increases [J]. Plasma Processes and Polymers,2009,6(6-7):446-450.
    [87]Zhang Yuan-Tao, Cui Shao-Yan. Frequency effects on the electron density and α-γ mode transition in atmospheric radio frequency discharges [J]. Physics of Plasmas,2011,18(8):083509.
    [88]Sun Wen-Ting, Tian-Ran Liang, Hua-Bo Wang, He-Ping Li, Cheng-Yu Bao. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes [J]. Plasma Sources Science & Technology,2007, 16(2):290-296.
    [89]Paula K C, Ishigaki T, Mostaghimi J. Noequilibrated simulations of pulse modulated Ar-H2 and Ar-N2 thermal plasmas at atmospheric pressure [J]. J. Appl. Phys.,2003,93:8867-8875.
    [90]Lim Jin-Pyo, Uhm Han S., Li Shou-Zhe. Influence of oxygen in atmospheric-pressure argon plasma jet on sterilization of Bacillus atrophaeous spores [J]. Phys. Plasmas,2007,14:093504-6.
    [91]Deng X. T., Shi J. J. Effects of microbial loading and sporulation temperature on atmospheric plasma inactivation of Bacillus subtilis spores [J]. APPLIED PHYSICS LETTERS,2005,87:153901-3.
    [92]Eliasso Baldur. Nonequilibrium Volume Plasma Chemical Processing [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE,19(6):1063-1077.
    [93]Matsuda A, Takai M, Nishimoto T. Solar Energy Matrials & Solar Cells [J]. Control of plasma chemistry for preparing highly stablilized amorphous silicon at high growth rate,2003,78:3-26.
    [94]Li Shou-Zhe, Huang Wen-Tong, and Wang Dezhen. The effect of gas flow on argon plasma discharge generated with a single-electrode configuration at atmospheric pressure [J]. PHYSICS OF PLASMAS,2009, 16:093510-6.
    [95]Li Shou-Zhe, Huang Wen-Tong, Zhang Jia-Liang, Wang De-Zhen. Discharge characteristics of an atmospheric-pressure argon plasma column generated with a single-electrode configuration [J]. Phys. Plasmas,2009, 16(7):073503-6.
    [96]Laimer J, Herberts. Glow discharges Observed in Capacitive Radio-Frequncey Atmospheric-Pressure Plasma Jets [J]. Plasma Process Polym.,2006,3:573-586.
    [97]Shi Feng, Wang Dezhen, Ren Chunsheng. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases [J]. Phys. Plasmas,2008,15(6):063503-4.
    [98]Charles H. Kruger, Christophe 0. Laux, Lan Yu, Denis M. etal. Nonequilibrium discharges in air and nitrogen plasmas at atmospheric pressure [J]. Pure Appl. Chem.,2002,74(3):337-347.
    [99]Gudmundsson J T, Marakhtanova M, Patel K K, etal. On the plasma parameters of a planar inductive oxygen discharge [J]. J. Phys. D:Appl. Phys.,2000,33:1323-1331.
    [100]Brandenburg R, Maiorov V A, Golubovskii Yu B, etal. Diffuse barrier discharges in nitrogen with small admixtures of oxygen:discharge mechanism and transition to the filamentary regime [J]. J. Phys. D:Appl. Phys.,2005,38:2187-2197.
    [101]Varney Robert N. Dift Velocity of Ions in Oxygen, Nitrogen, and Carbon Monoxide [J]. PHYSICAL REVIEW,1953,89(4):708-712.
    [102]Snuggs R. M., Volz D. J., Schummers J. H., etal. Mobilities and Longitudinal Diffusion Coefficients of Mass Identified Potassium Ions and Positive and Negative Oxygen Ions in Oxygen [J]. Physical Review A, 1971,3(1):477-481.
    [103]Golubovskii Yu B, Maiorov V A, Behnke J and Behnke J F. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen [J]. J. Phys. D:Appl. Phys. 2002,35:751-761.
    [104]Panousis E, Papageorghiou L, Spyrou N, etal. Numerical modeling of an atmospheric pressure dielectric barrier discharge in nitrogen: electrical and kinetic description [J]. J. Phys. D:Appl. Phys.,2007, 40:4168-4180.
    [105]Golubovskii Yu B., Maiorov V. A., Behnke J. F., etal. Study of the homogeneous glow-like discharge in nitrogen at atmospheric pressure [J]. Journal of Physics D:Applied Physics,2004,37(9):1346-1356.
    [106]Roth J. R., Sherman D. M., Gadri R. B., etal. A remote exposure reaxtor for plasma processing and sterilization by plasma active species at one atmosphere [J]. IEEE Trans. Plasma Sci.,2000,28:56-63.
    [107]Okazaki S., Kogoma M., Uehara M., Kimura Y. Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50Hz source [J]. J. Phys. D:Appl. Phys.,1993,26:889-892.
    [108]Ren Chun-Sheng, Ma Teng-Cai, Wang De-Zhen, Zhang Jia-Liang, etal. Stable and diffuse atmospheric pressure glow plasma in a multipoint-to-plane configuration in air [J]. IEEE Trans. Plasma Sci., 2005,33(1):210-211.
    [109]Boeuf Jean-Pierre, Cao Jing, Callegari Thierry, etal. Discharge characteristics in plasma display cell at high frequency. [J]. Chinese Physics B,2004,13(11):1907-1912.
    [110]Cai Li-Bin,g Wang Jian-Guo. Numerical simulation of outgassing in the breakdown on dielectric surface irradiated by high power microwave. [J]. Acta Physica Sinica,2011,60(2):025217.
    [111]He Li-Ming, Ding Wei, Wang Feng, etal. Evolution of H2/02 mixture plasma under different initial temperatures. [J]. Acta Physica Sinica,2010, 59(4):2617-2621.
    [112]Tachibana K., Mizokami K., Kosugi N. etal. Three-dimensional diagnostics of excited atoms in micoplasma for plasma display panels. [J]. IEEE Trans. Plasma Sci.,2003,31(1):68-73.
    [113]Wang Q., Koleva I., Donnelly V. M., etal. Spatially resolved diagnostics of atmospheric pressure direct current helium micoplasma. [J]. J.Phys. D:Appl. Phys,2005,38(1690-1697).
    [114]Ouyang J. T., Callegaril T., Caillier B., etal. Large gap plasma display cell with auxiliary electrodes:Macro-cell experiments and two-dimensional modeling. [J]. J. Phys. D:Appl. Phys,2003, 36:1959-1966.
    [115]Rhee J. K., Kim D. B., Moon S. Y., etal. Charge of the argon-based atmospheric pressure large area plasma characteristics by the helium and oxygen gas mixing. [J]. Thin Solid Films,2007,515(12):4909-4912.
    [116]Macheret S.0., Shneider M. N., Miles R. B. Modeling of air plasma generation by repetitive high-voltage nanosecond pulses [J]. IEEE Transactions on Plasma Science,2002,30(3):1301-1314.
    [117]Pancheshnyi S V, Starikovskii Yu. Two-dimensional numerical modeling o f the cathode-directed streamer development in a long gap at high voltage [J]. J. Phys. D:Appl. Phys.,2003,36:2683-2691.
    [118]Nahomy J, Ferreira C M, Gordiets B, etal. Experimental and theoretical investigation of a N2-02 DC flowing glow discharge [J]. J. Phys. D:Appl. Phys.,1995,28:738-747.
    [119]Gordiets B. F., Ferreira C.M., Guerra V. L., etal. Kinetic model of a low-pressure N2-02 flowing glow discharge [J]. IEEE Trans. Plasma Sci. 1995,23:750-768.
    [120]赵盼盼,董丽芳,尹增谦等.有源等离子体在开放大气环境下的反应扩散过程研究[J].物理学报,2011,60:025206-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700