交联聚乙烯中电树枝的生长特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着交联聚乙烯(XLPE)电缆越来越广泛的应用于输电系统,XLPE电缆的绝缘击穿特性严重影响了电力输电系统的稳定运行。电树枝是高电场作用下固体绝缘失效的主要原因之一,因此研究XLPE电缆绝缘中电树枝的生长特性和生长机理对提高电力输电系统的安全可靠性有重要意义。本文结合国内外研究的现状,对XLPE电缆绝缘中电树枝的生长特性进行了实验研究和理论分析。
     本文采用了显微摄影系统,对不同电压、频率和电极间距条件下电树枝的生长过程进行了实时观测实验,并从实验图像中计算得到了电树枝径向最大长度、空间分形维数、生长速度时间序列分形维数等实验数据。根据实验结果,分别从电树枝生长实验现象、电树枝生长空间特性、电树枝生长时间特性三个方向出发,对电树枝的生长特性进行了研究。
     针对电树枝的发展过程的三个阶段:起始、发展、击穿,分别分析了电树枝的实验现象。并分析了不同条件和不同形态下的电树枝的生长速度、空间分形维数和时间序列分形维数变化规律。分析结果表明,电压、频率和电极间距对电树枝的生长特性的影响有明显的规律性。不同形态电树枝有着相同的起始结构。随着电压的增大和电极间距的减小,起始时间值增大,分散性降低。而频率对起始时间影响较小。实验中主要观测到两类击穿,电树枝发展到接近地电极时发生的击穿和加压后的立即击穿。后者发生在电压较大时,且击穿前都有相似的电树枝横向生长结构。频率、电极间距和电压对电树枝发展过程有明显的影响规律。当保持频率4kHz不变,随着电压的升高,电树枝形态从稀疏枝状转为稠密枝状再转为丛林状,对应的分形维数和生长速度不断增大。当保持电压不变,随着频率的升高,电树枝形态从稀疏枝状转为较稠密枝状再转为藤枝状,分形维数逐渐变大,生长速度逐渐变快。
     利用电场驱动模型分别对高频电压下交联聚乙烯中电树枝的形态特性和空间生长速度特性进行了研究。对电树枝形态特性的的分析结果表明,局部电场强度和频率对电树枝形态的影响有明显的规律性。丛林状电树枝只在较高电压下形成,而且针尖附近小区域内的局部电场强度是形成丛林状电树枝的重要影响因素。纯藤枝状电树枝只在较高频率下出现,而且这个频率随着电压的升高而增大。双结构电树枝的结构转换位置的电场强度在不同的电压和电极间距下基本保持不变,但是随着频率的升高而明显增大。对电压、频率和电极间距对电树枝空间生长速度特性的影响进行了分析。根据电树枝生长速度值的大小,把电树枝生长速度曲线分为了三个区域,并求出了区域分界线对应的局部电场强度值,近似认为该值即为电场强度临界值Ec。结果表明,生长速度区域分界线的位置的变化趋势与局部电场强度的变化趋势相一致。随着电压的增大、频率的增大和电极间距的减小,电树枝生长速度的缓慢生长区域明显变小。电场强度临界值Ec随着电压的变大有小幅度的增长,而频率和电极间距对Ec值影响较小。
     基于电树枝生长动力学模型对电树枝生长时间特性进行了研究。在现有的动力学模型基础上,基于电树枝的生长机理,考虑了频率的影响作用,对模型进行了改进,建立了电树枝生长时间和外加电应力、频率之间的联系。基于改进的电树枝生长时间计算模型,引入了一个新的参数:能量阈值,表征了微孔形成的难易程度,该参数可以通过实验结果计算得到。计算结果显示不同形态下和不同外施条件下的能量阈值变化有明显的规律性。不同频率下的能量阈值随频率的变化关系的计算结果与理论值相近,说明了改进的电树枝生长时间计算模型中对频率影响因素的考虑是合理的。根据所有电树枝每个时间点的实验结果,采用随电树枝生长动态变化的局部电场强度计算公式,根据能量阈值计算公式计算了能量阈值和对应的电树枝尖端局部电场强度,并拟合得到了能量阈值定义式中的未知参数,从而得到了电树枝生长时间计算模型中的关键参数。根据该模型,可以由频率、电压、电极间距、电树枝长度和分形维数计算得到电树枝的生长时间。
Since the XLPE cables are widely used in power system, the dielectric breakdown characteristics of XLPE cables are of great concern for the security and stability of power system. Electrical treeing is one of the major breakdown mechanisms for solid dielectrics subjected to high electrical stresses, so it's of great importance to study the electrical treeing characteristics and mechanisms in XLPE cable insulation for the improvement of safety and reliability of power system. In this paper, based on the current research works, the electrical treeing characteristics in XLPE cable insulation are experimentally and theoretically studied.
     Treeing process in XLPE samples subjected to various voltages, frequencies and pin-plane spacings are uninterrupted recorded by an online microphotograph system. The radial extent length and spatial fractal dimension of electrical tree structures, and the time series fractal dimension of tree growth rate are computed from the experimental results. The investigations of treeing characteristics are divided into three parts:electrical treeing phenomenon, spatial characteristics of electrical treeing and time characteristics of electrical treeing.
     The phenomenon in the three steps of electrical treeing:initiation, propagation and breaking down are separately described and analyzed. Tree growth rate and fractal dimension under different voltages, frequencies and distances between electroces are found out. It can be concluded that the influences of voltage, frequency and pin-plane spacing on treeing characteristics are full of regularity. Trees in different structures have the similar initiation structure. With the larger voltage and shorter pin-plane spacing, the time for initiation was longer and less dispersed. The influence of frequency on initiation is relatively small. Two types of breakdown were observed in experiments:the breakdown happened when the tree was closely to the plane and the breakdown happened right after the voltage was applied. The latter type of breakdown was observed when the voltage was higher, and the trees have the similar lateral propagation structure before breakdown. The influences of voltage, frequency and pin-plane spacing on tree propagation are full of regularity. Under the same frequency, with the increasing voltage, the tree structures changed from sparse branch-type to dense branch-type and then to bush-type, and the corresponding fractal dimension and growth rate increased. Under the same voltage, with the increasing frequency, the tree structures changed from sparse branch-type to dense branch-type and then to vine-type, and the corresponding fractal dimension and growth rate increased..
     Based on FDTG (Field Driven Tree Growth) model, the structure characteristics and spatial growth rate characteristics of electrical trees are investigated. It can be found in the structure analysis that the local electric field and frequency regularly affect the tree structure. Bush-like trees only formed under higher voltages, and the electric field in a very small zone near the needle tip is an important influencing factor for the formation of bush-like trees. Pure vine-like trees formed only under high frequencies, and the lowest frequencies that pure-vine-like trees appear increased with voltage. For double-structure trees, the local electric field at the transition location almost stayed constant under different voltages and pin-plane spacings, but obviously increased with frequency. During the spatial growth rate analysis, the growth rate curves were divided into three regions according to the values, and the local electric field at the dividing line were computed, which can be seen as the critical electric field EC.It can be concluded that the change tendency of dividing lines is coincident with the change tendency of local electric field. Higher voltage, higher frequency and smaller pin-plane spacing all could result in the narrower region of slowly growth. The critical electric fields Ec increased slightly with voltage, and stay almost the same with frequency and pin-plane spacing.
     Based on electrical treeing kinetic model, the time characteristics of electrical trees are investigated. According to the influencing mechanics of frequency on electrical treeing process and the existing electrical treeing kinetic model, an improved electrical tree growing time model has been built, in which tree growth time depends on electric field and frequency. A new parameter:energy threshold, which is derived from the improved electrical tree growing time model, was introduced and computed from the experimental results. Calculating results of energy threshold regularly change with different conditions and structures. The change trend of energy threshold under different frequencies according to the model are similar to the calculating results from the experiments, which means the consideration of frequency in the improved model is correct. According to the experimental results of all time points in all of the electrical trees, using the dynamic electric field calculating equation, the energy threshold and the corresponding local electrical field are calculated, and two important parameter of the growth time calculating model are calculated by curve fitting. Finally according to the improved growth time calculating model, electrical tree growth time can be calculated from frequency, voltage, pin-plane spacing, tree growth length and fractal dimension.
引文
[1]巫松桢,谢大容.电气绝缘材料科学与工程.西安:西安交通大学出版社,1996
    [2]马丽婵,郑晓泉,谢安生.交联聚乙烯电缆中电树枝的研究现状.绝缘材料,2007,40(5):49-52
    [3]谢安生,李盛涛,郑晓泉等.高频电压下交联聚乙烯电缆绝缘中电树枝生长的动力学模型.物理学报,2008,57(6):3828-3833
    [4]陈少卿,谭诗田,王闯.聚合物材料中电树枝的研究.绝缘材料,2007,40(6):57-61
    [5]G. C. Montanari, G. Mazzanti, L. Simoni. Progress in electrothermal life modeling of electrical insulation during the last decades. IEEE Transactions on Dielectrics and Electrical Insulation,2002,9 (5):730-745
    [6]雷清泉.工程电介质的最新进展.北京:科学出版社,1999
    [7]叶开颜.交联聚乙烯电力电缆电树枝化的影响因素及机理研究.重庆大学硕士学位论文.重庆:重庆大学,2008,5
    [8]L. A. Dissado. Understanding Electrical Trees in Solids:From Experiment to Theory. IEEE Transactions on Dielectrics and Electrical Insulation,2002,9 (4): 483-497
    [9]G. Chen, C. H. Tham. Electrical Treeing Characteristics in XLPE Power Cable Insulation in Frequency Range between 20 and 500 Hz. IEEE Transactions on Dielectrics and Electrical Insulation,2009,16 (1):179-188
    [10]谢安生,郑晓泉,李盛涛.XLPE电缆绝缘中的电树枝结构及其生长特性.高电压技术,2007,33(6):168-173
    [11]周远翔,邢晓亮,聂琼等.高频下电树老化引起的高密度聚乙烯击穿现象.高电压技术,2007,33(12):14-18
    [12]郑晓泉,G Chen, A E Davis. XLPE电缆绝缘中电树枝生长的阶段性特性实验 研究.电工电能新技术,2003,22(3):24-27
    [13]郑晓泉,冯小倩,王以田.聚合物电树枝种类及其影响因素.绝缘材料,2003,(5),25-28
    [14]郑晓泉,G Chen.机械应力与电压频率对XLPE电缆电树的影响.高电压技术,2003,29(4):6-8
    [15]周远翔,聂琼,邢晓亮.频率对高密度聚乙烯电树老化特性的影响.高电压技术,2008,34(2):220-224
    [16]周远翔,王一男,邢晓亮等.频率对聚乙烯电树起始的影响特性研究.高电压技术,2007,33(4):138-142
    [17]周湶,叶迪,安文斗等.基于不同电极系统的电树枝生长特性研究.高压电器,2010,46(2):12-15
    [18]R.Huuva, V.Englund, S.M.Gubanski. A versatile method to study electrical treeing in polymeric materials. IEEE Transactions on Dielectrics and Electrical Insulation, 2009,16 (1):171-178
    [19]刘玲.交联聚乙烯电力电缆生长及其局部放电混沌特性分析.重庆大学硕士学位论文.重庆:重庆大学,2008,5
    [20]Champion J V, Dodd S J, Alison J M. The correlation between the partial discharge behavior and the spatial and temporal development of electrical trees grown in an epoxy resin. J.Appl. Phys,1996,29 (10):2689-2695
    [21]陈小林,黄宏新,成永红.XLPE绝缘老化中的单次放电波形统计分析.高电压技术,2007,33(8):10-13
    [22]N. van Schaik, T. Czaszejko. Conditions of discharge-free operation of XLPE insulated power cable systems. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15 (4):1120-1130
    [23]Densley J, Kalicki T, Nadolny Z, et al. Characteristics of PD pulses in electrical trees and interfaces in extruded cables. IEEE Transactions on dielectrics and electrical insulation,2001,8 (1):48-57
    [24]王洪新,张水平,程树康等.XLPE电树老化过程中的局放特性.高电压技术,2003,29(6):22-24,29
    [25]周远翔,王宁华,王云杉等.固体电介质空间电荷研究进展.电工技术学报,2008,23(9):16-25
    [26]廖瑞金,陆云才,杨丽君等.聚合物中空间电荷陷阱深度的模拟计算.绝缘材料,2006,39(6):51-55
    [27]郑飞虎,张冶文,肖春.聚合物电介质的击穿与空间电荷的关系.材料科学与工程学报,2006,24(2):316-321
    [28]陈少卿,陈霞,王霞等.聚合物中空间电荷的研究.绝缘材料,2007,40(4):48-52
    [29]Tanaka T. Space charge injected via interfaces and tree initiation in polymers. IEEE Transactions on dielectrics and electrical insulation,2001,8(5): 733-743
    [30]尹毅,肖登明,屠德民.空间电荷在评估绝缘聚合物电老化程度中的应用研究.中国电机工程学报,2002,22(1):43-48
    [31]Mammeric M, Laurent C, Salon J. Influence of space charge build up on the transition to electrical treeing in PE under AC voltage. IEEE Transactions on Dielectrics and Electrical Insulation,1995,2 (1):27-35
    [32]H.Kawamura, M.Nawata. DC electrical treeing phenomena and space charge. IEEE Transactions on Dielectrics and Electrical Insulation,1998,5 (5):741-747
    [33]党志敏,亢婕,屠德民.EAA改性XLPE中空间电荷和电树、水树的关系.中国电机工程学报,2001,21(7):5-8
    [34]张冶文,夏钟福,李英等.固体电介质中空间电荷分布与极化分布的测量方法及其比较.电工技术学报,1999,14(3):39-43
    [35]尹毅,韩社教,屠德民.固体绝缘中空间电荷测量装置的研制和应用.中国电 机工程学报,2000,20(8):1-5
    [36]A.S.Vaughan, I.L.Hosierl, S.J.Dodd. On the structure and chemistry of electrical trees in polyethylene. J.Appl. Phys,2006,39:962-978
    [37]Champion J V, Dodd S J. The effect of material composition and temperature on electrical tree growth in epoxy resins. Dielectric Materials, Measurement and Applications Conference,2000:30-34
    [38]David E, Parpal J. Influence of internalmechanical stress and strain on electrical performance of polyethylene. IEEE Transactions on Dielectrics and Electrical Insulation,1996,3 (2):248-257
    [39]李盛涛,郑小泉.聚合物电树枝化.北京:机械工业出版社,2006
    [40]张秀阁,贺景亮,关根志等.交联聚乙烯电树枝老化实验研究.武汉水利电力大学学报,1999,32(3):63-66
    [41]M. D. Noskov, A. S. Malinovski, M. Sack, et al. Numerical investigation of insulation conduction effect on electrical treeing. Conference on Electrical Insulation and Dielectric Phenomena,1999:597-600
    [42]Densley John. Ageing Mechanisms and Diagnostics for Power Cables-an Overview. IEEE Electrical Insulation Magazine,2001,17 (1):14-22
    [43]贾欣,刘英,曹晓珑.XLPE电缆缺陷尺寸分布对电树枝起始的影响.高电压技术,2003,29(10):7-8,43
    [44]Shimizu N, Tanaka T. Effect of liquid impregnation on electrical tree initiation in XLPE. IEEE Transactions on dielectrics and electrical insulation,2001,8 (2): 239-243
    [45]A. R. Leighton, R.D. Naybour, L Warren. Light emission and electrical tree initiation in highly streessed XLPE and the effect of DC prestressing. IEEE International Conference on Conduction and Breakdown in Solid Dielectrics,1998: 273-278
    [46]罗晓光,周远翔,梁曦东.聚乙烯熔点对电树起始电压的影响.高电压技术,2002,28(6):4-6
    [47]Ginzo Katsuta, Takao Itaya, Thoru Nakatsuka, et al. DC and impulse treeing characteristics in insulating material for HVDC cable. Proceedings of the 5'h International Conference on Properties and Applications of Dielectric Materials, 1997:422-425
    [48]Yasuo Sekii, Hiroshi Kawanami, Mitsugu Saito, et al. DC tree and grounded DC tree in XLPE. Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2005:523-526
    [49]Xiaohong Zhang, Qingjuan Hu, Junguo Ciao, et al. Effect of DC voltage on dielectric properties of low-voltage cable with XLPE insulation. Proceedings of 2005 International Symposium on Electrical Insulating materials, Kitakyushu, Japan,2005:624-627
    [50]Mildrid Selsjord, Erling Ildstad. Electrical treeing caused by rapid DC-voltage grounding of XLPE cable Insulation. Conference Record of the 2006 IEEE International Symposium on Electrical Insulation,2006:502-506
    [51]Yasuo Sekii, Kenichi Maruta, Toshio Okada. The effect of inclusions in XLPE insulations on electrical trees generated by AC and grounded DC voltage. IEEE International Conference on Conduction and Breakdown in Solid Dielectrics, Viislterh, Sweden,1998:317-320
    [52]L Cisse, G Teyssedre, D Mary, et al. Influence of frequency, electrode material and superimposed DC on AC electroluminescence in polymer films. IEEE Trans. on Dielectrics and Electrical Insulation,2002,9 (1):124-129
    [53]R.Sarathi, K.Sridhar. Investigation in to growth of electrical trees in XLPE cables under transient voltages. IEEE International Conference on Conduction and Breakdown in Solid Dielectric, Viislteds, Sweden,1998:329-332
    [54]K.Osawa, K.Urano, Y.Ehara. The influence of instantaneous value and dv/dt of applied voltage upon electrical treeing deterioration. Conference on Electrical Insulation and Dielectric Phenomena, Minneapolis,1997:321-324
    [55]Lshibashi A, Kawai T, Nakagawa S H, et al.A Study of treeing phenomena in the development of insulation for 500kV XLPE cables. IEEE Transactions on Dielectrics and Electrical Insulation,1998,15 (5):695-706
    [56]王志钧,吴炯.500kV XLPE电缆绝缘中树枝化现象的述评.电线电缆,2001,(2):16-19
    [57]杨展如.分形物理学.上海:上海科技教育出版社,1996
    [58]J. C. Fothergill, L. A. Dissado, P. J. J. Sweeney. A discharge-avalanche theory for the propagation of electrical trees. IEEE transactions on dielectrics and electrical insulation,1994,1 (3):474-486
    [59]郑晓泉,G Chen, A E Davis.交联聚乙烯电缆绝缘中的双结构电树枝特性及其形态发展规律.中国电机工程学报,2006,26(3):79-85
    [60]H.Z.Ding, B.R.Varlow. Thermodynamic model for electrical tree propagation kinetics in combined electrical and mechanical stresses. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12 (1):81-89
    [61]D.S.Kang, J.H.Sun, H.S.Lee. The relationship between electrical characteristics and electrical tree degradation in XLPE insulation. Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials, Xi'an, China, 2000:546-549
    [62]G. Chen, C.H.Tham. Electrical Treeing Characteristics in XLPE Power Cable Insulation in Frequency Range between 20 and 500 Hz. IEEE Transactions on Dielectrics and Electrical Insulation,2009,16 (1):179-188
    [63]F Noto, N Yoshimura. Voltage and frequency dependence of tree growth in polyethylene. IEEE Conf. Electr. Insul. Dielectr. Phenomena,1974,94(4):206-217
    [64]Ieda M, Nawata M. A consideration of treeing in polymers. IEEE Conf. Electr. Insul. Dielectr. Phenomena,1972,143-150
    [65]Densley R J. An investigation into the growth of electrical trees in XLPE cable insulation. IEEE Trans. Electr. Insul.,1979,14:148-158
    [66]S. Bahadoorsingh, S. M. Rowland. The Role of Power Quality in Electrical Treeing of Epoxy Resin. Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2007:221-224
    [67]F. Guastavino, L. Centurioni, A. Dardano. Electrical treeing inception and growth in XLPE in presence of harmonics.2004 Inrernotioiml Conference on Solid Dielectrics, Toalouse, France,2004
    [68]R. Sarathi, Supriyo Das, C. Venkataseshaiah. Investigations of growth of electrical trees in XLPE cable insulation under different voltage profiies. Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2003:666-669
    [69]F.Guastavino, G.Coletti,, A.Dardano, et al. Life prediction of XLPE subjected to distorted voltages in presence of bush-like electrical treeing. Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2006:724-727
    [70]Bahadoorsingh S, Rowland S M. Investigating the impact of harmonics on the breakdown of epoxy resin through electrical tree growth. IEEE Trans. Dielectr. Electr. Insul.,2010,17:1576-1584
    [71]谢安生,郑晓泉,李盛涛.XLPE电缆绝缘中的电树枝结构及其生长特性.高电压技术,2007,33(6):168-173
    [72]郑晓泉,谢安生,李盛涛.发展在XLPE电缆绝缘内外侧的电树枝.物理学报,2007,56(9):5494-5501
    [73]郑晓泉,G Chen, A E Davis.交联聚乙烯电缆绝缘中的电树枝与绝缘结构亚微观缺陷.电工技术学报,2006,21(11):28-33
    [74]郑晓泉,G Chen, A E Davis.结晶状态对XLPE电缆绝缘中电树枝的影响.高 电压技术,2003,29(11):5-7
    [75]王以田,郑晓泉,G Chen等.聚合物聚集态和残存应力对交联聚乙烯中电树枝的影响.电工技术学报,2004,19(7):44-48
    [76]贾志东,乐波,蒋雄伟等.分形几何在电介质科学中的应用.高电压技术,1999,25(3):1-4
    [77]K. Kudo. Fractal Analysis of Electrical Trees[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1998,5 (5):713-727
    [78]L.Pietronero, A.Erzan, C.Evertsz. Theory of fractal growth. physical review letters, 1988,61 (7):861-864
    [79]Zhao Y, Aughan A S, Champion J V, et al. The structure of electrical trees in semi-crystalline polymers. Dielectric Materials, Measurements and Applications Conference,2000
    [80]Uehara H, Kudo K. The 3-D fractal analysis of electrical trees using a serial sectioning method and a CT method. Proceedings of the IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics,1998:309-312
    [81]郑晓泉,G Chen.机械应力与电压频率对XLPE电缆电树的影响.高电压技术,2003,29(4):6-8
    [82]谢安生,李盛涛,郑晓泉等.外施电压频率对XLPE电缆绝缘中电树枝生长特性的影响.电工电能新技术,2006,25(3):33-37
    [83]周远翔,聂琼,邢晓亮.频率对高密度聚乙烯电树老化特性的影响.高电压技术,2008,34(2):220-224
    [84]周远翔,王一男,邢晓亮等.频率对聚乙烯电树起始的影响特性研究.高电压技术,2007,33(4):138-142
    [85]Xiaoquan Zheng, George Chen. Propagation mechanism of electrical tree in XLPE cable Insulation by investigating a double electrical Tree. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15 (3):800-807
    [86]郑晓泉,G Chen, A E Davis.交联聚乙烯电缆绝缘中的导电和非导电型电树枝.中国电机工程学报,2004,24(3):140-144
    [87]Xiaoquan Zheng, George Chen. Propagation mechanism of electrical tree in XLPE cable Insulation by investigating a double electrical Tree. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15 (3):800-807
    [88]J.V.Champion, S.J.Dodd. Simulation of partial discharges in conducting and non-conducting electrical tree structures. J. Appl. Phys,2001,34:1235-1242
    [89]蒋雄伟,贾志东,谢恒.绝缘材料老化寿命模型的研究进展.高电压技术,2000,26(3): 44-46
    [90]朱鹤孙,丁洪志.绝缘固体电介质击穿理论研究进展.自然科学进展,1998,8(3):262-269
    [91]佟来生,吴广宁,刘曦等.基于连续高压脉冲方波的绝缘老化寿命模型.电工技术学报,2006,21(8):44-47
    [92]L.A.Dissado, S.J.Dodd, J.V.Champion. Propagation of electrical tree structures in solid polymeric insulation. IEEE Transactions on Dielectrics and Electrical Insulation,1997,4 (3):259-279
    [93]Kai Wu, L.A.Dissado. Model for Electrical Tree Initiation in Epoxy Resin. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12 (4):655-668
    [94]L.A.Dissado, J.C.Fothergill, N.Wise. A deterministic model for branched structures in the electrical breakdown of solid polymeric dielectrics. J. Appl. Phys,2000,33:109-112
    [95]S.J.Dodd. A deterministic model for the growth of non-conducting electrical tree structures. J. Appl. Phys,2003,36:129-141
    [96]L. A. Dissado. Deterministic chaos in dielectric breakdown. Symp. on Electrical Insulating Materials,1996:1-10
    [97]L.A.Dissado. Predicting electrical breakdown in polymeric insulators from deterministic mechanisms to failure statistics. IEEE transactions on dielectrics and electrical insulation,2002,9 (5):860-875
    [98]H. Uehara, K. Kudo. Temporal propagation characteristics of simulation tree considering growth probability. Proceedings of 2005 International Symposium on Electrical Insulating Materials, Kitakyushu, Japan,2005:17-20
    [99]J V Champion, S J Dodd. An approach to the modelling of partial discharges in electrical trees. J.Appl. Phys,1998,31:2305-2314
    [100]Suwarno, Y.Suzuoki, T.Mizutani. Model for Electrical Treeing Discharges and Computer Simulation. Proceedings of The 6th International Conference on Properties and Applications of Dielectric Materials, Xi'an, China,2000:260-263
    [101]M.D.Noskov, A. S. Malinovski, M. Sack, A. J. Schwab. Self-consistent modeling of electrical tree propagation and PD activity. IEEE Transactions on Dielectrics and Electrical Insulation,2000,7 (6):725-733
    [102]L.A.Dissado. Theoretical basis for the statistics of dielectric breakdown. J. Appl. Phys,1990,23:1582-1591
    [103]E.J.Garboczi. Linear dielectric-breakdown electrostatics. Physical Review B,1998, 38 (13):9005-9010
    [104]L.A.Dissado, G. Mazzanti, G. C. Montanari. The role of trapped space charges in the electrical aging of insulating materials. IEEE Transactions on Dielectrics and Electrical Insulation,1997,4 (5):496-506
    [105]L.A.Dissado, A Thabet. Simulation of electrical ageing in insulating polymers using a quantitative physical model. J.Appl. Phys,2008,41:1-5
    [106]G. Mazzanti, G. C. Montanari, L. A. Dissado. A Space-charge life model for a.c electrical aging of polymers. IEEE Transactions on Dielectrics and Electrical Insulation,1999,6 (6):864-875
    [107]Dissado L A, Sweeney P J J. Physical model for breakdown structures in solid dielectrical. Phys. Rev.,1993,48 (12):16261-16268
    [108]E. S. Cooper, L. A. Dissado, J.C.Fothergill. Application of thermoelectric aging models to polymeric insulation in cable geometry. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12 (1):1-10
    [109]Ding Hongzhi, Xing Xiusan, Zhu Hesun. A kinetic model of time-dependent I dielectric breakdown for polymers. J. Appl. Phys,1994,27:591-595
    [110]H.Z.Ding, B.R.Varlow. Electrical tree growth retardantion and acceleration model. Proceedings of the 7th International Conference on Propenies and Applications of Dielectric Materials, Nagoya,2003:423-426
    [111]Ding H.Z, Varlow B R. A new model for propagation of electrical tree structures in polymeric insulation. Annual Report Conference on Electrical Insulation and Dielectrical Phenomena, Manchester,2002:934-937
    [112]Niemeyer L, Pietronero L, Wiesmann H.J. Fractal dimension of dielectric breakdown. Phys Rev Lett,1984,52(12):1033-1036
    [113]Wiesmann H. J., Zeller H. R. A fractal model of dielectric breakdown and prebreakdown in solid dielectrics. J. Appl. Phys,1986,60:1770-1773
    [114]Noskov, Kukhta, Lopatin. Simulation of the electrical discharge development in inhomogeneous insulators. Journal of Physics:Applied Physics,1995,28: 1187-1194
    [115]E.David. Conparison between experimental results and fractal growth model for electrical treeing in polythylene. IEEE 5th International Conference on Conduction and Breakdown in Solid Dielectrics,1995:199-203
    [116]林家齐,雷宇,雷清泉.电介质中放电图形的计算机模拟.电工技术学报,1997,12(2): 53-57
    [117]谷琛,严萍,邵涛.基于分形理论的电介质放电仿真计算.高电压技术,2006,32(1): 1-4
    [118]黄萍.长空气间隙放电发展路径随机模型研究.华中科技大学硕士学位论文.武 汉:华中科技大学,2009,6
    [119]J. Zhao, Z. Xu, G. Chen, et al. Numeric description of space charge in polyethylene under ac electric fields. Journal of Applied Physics,2010,108:124107-124113
    [120]A. See, J. C. Fothergill, L. A. Dissado, et al. Measurement of space-charge distributions in solid insulators under rapidly varying voltage using the high-voltage, high-speed pulsed electro-acoustic(PEA) apparatus. Measurement Science and Technology,2001,12:1227-1234
    [121]Mason J H. Breakdown of solid dielectrics in divergent fields. Proc. IEE.,1955, 102-110
    [122]Champion J V, Dodd S J, Stevens G C. Analysis and modelling of electrical tree growth in synthetic resins over a wide range of stressing voltage[J]. J. Phys. D:Appl. Phys.,1994,27:1020-1030

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700