洞庭湖流域水循环中稳定同位素的变化特征及其影响机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当代,水稳定同位素已成功应用于水循环机理研究,如水汽来源、降雨径流关系、干旱半干旱区的水资源评价、地表水与地下水的相互作用、地下水起源及测年、湖泊蒸发量及换水周期、水体污染物的来源、地热资源以及气候变化和人类活动对水循环的影响。应用氢氧稳定同位素示踪技术研究水循环机理时,有两个必要前提:一是需了解参与水循环过程的不同水体中D和18O组成的变化特征,二是需揭示影响同位素变化的机制。本文以洞庭湖流域作为研究区域,于2010至2012年在流域内多地进行了降水事件、地表径流(河水)以及地下径流(井水、泉水)的长时间取样,采用液态水同位素分析仪测定了上述水样的氢、氧同位素,同时结合同期卫星反演同位素资料以及模拟资料,对流域水循环过程不同水体(水汽、降水、地表径流以及地下径流)同位素的变化特征以及影响机制进行了研究。研究发现:1)亚洲季风区大气水汽δD在夏季风盛行期间明显要高于冬季风盛行期间,陆地上的这种变化要比海洋上明显。2)流域内降水同位素、过量氘具有明显的季节变化,表现出冬春高、夏秋低的特征。3)对日尺度上降水同位素与降水量、相对湿度、可降水量以及气温的关系统计表明,全年中,降水同位素表现出降水量效应、湿度效应以及反温度效应。另外,我们发现月尺度下降水同位素与上述气象要素的相关性较日尺度都大幅下降。4)日尺度下水汽、降水中δD显示冬春波动要大于夏秋。这可能受冬春较夏秋气温变化大,水汽来源复杂的影响。5)我们认为降雪样与降雨样分别生成的大气水线存在差异的原因不能完全归于降雨过程中同位素云下二次蒸发引起的同位素分馏较降雪明显,还应包括凝华、凝结过程中,凝华同位素分馏效应比要大于凝结。6)通过2010、2011、2012年各年的夏季水汽通量与同期流域降水同位素的分析,我们看到当西南季风输送的印度洋远源水汽较强时,流域内降水同位素为低值,当东南季风输送的太平洋近源水汽较强时,流域内降水同位素为高值。这又一次验证了环流效应的可信性。7)通过比较GNIP长沙观测站实测的,ECHAM4、GissE、 MUGCM三个模式模拟的降水同位素,发现三个模式模拟的降水δ’8O、过量氘以及大气水线的能力有着较大差异:MUGCM模拟月降水δ18O随时间变化的效果最好,ECHAM4模拟大气水线的效果最好,ECHAM4模拟过量氘的能力最强。8)流域内河水、井水、泉水一年中变化幅度要比降水小许多。流域内河水同位素表现出夏秋低、冬春高的季节变化特点,这与降水同位素的季节变化特点一致,这也从同位素角度证实了流域河流补给以降水为主。另外,埋藏深的井水同位素季节性变化非常小且富集明显(长沙井水只是代表了浅层地下水),这说明它们经历了强烈蒸发且有稳定的补给源。
Currently, stable water isotopes have been successfully applied to the water cycle mechanism research, such as moisture sources, rainfall-runoff relationship, evaluation of water resources in the arid and semi-arid regions, the interaction of surface water and groundwater, groundwater origin and age, lake evaporation and water change cycle, the source of water pollutants, geothermal resources and climate change and human activities on the water cycle. Application of hydroxide stable isotope tracer technique to study the water cycle mechanism, there are two essential premises:Firstly, we need to understand variations of stable water isotope composition in different water bodies that involved in the water cycle. Secondly, we need to reveal the mechanisms that affect the isotopic variation. We choose the Dongting Lake Basin as the study area. During the period of2010to2012, we have collected event precipitation, surface runoff (river water), and underground runoff (well water, spring water) samples. After that, we measured all the samples' hydrogen and oxygen isotope with liquid water isotope analyzer. In addition, water vapor HDO that retrieved from Aura satellite and simulated stable isotopes by GCMs have been used in this study. Variations of stable water isotopes in different water as well as the impact mechanism were studied. We found that:1) Atmospheric water vapor δD in the Asia monsoon region during summer monsoon is significantly higher than during the winter monsoon, and this to be more obvious over the land than the ocean.2) Precipitation stable isotopes, deuterium excess have obviously seasonal variation, showing high values in winter and spring, and low in summer and autumn.3) On daily scale, correlations of precipitation stable isotopes with precipitation amount, relative humidity, precipitable water and temperature were statisticed:precipitation isotope showed precipitation amount effect, humidity effect and anti-temperature effect in the entire year. In addition, we found that the correlation of precipitation stable isotopes with the above meteorological elements in monthly scale drop significantly than that in daily scale.4) On daily scale, the fluctuation of both water vapor and precipitation8D in winter and spring to be more significant than in summer and fall. We thought that it is mainly affected by significant temperature variation and complex moisture sources in winter and spring, when compared with summer and fall.5) The differnce of MWLs generated from snow samples and rainfall samples should not be entirely attributed to the secondary evaporation that under cloud, we believed that the ratio of fractionation effect for sublimation greater than condensation should be taken in mind.6)Considering water vapor flux in summer with precipitation stable isotope during the same period in2010,2011and2012, when the moisture, transported by southwest monsoon, which from the Indian Ocean, named as the far source moisture, is strong, precipitation isotopes shows low values in the Dongting Lake Basin, when the moisture, transported by southeast monsoon, from the Pacific Ocean, named as the near source moisture, precipitation isotopes shows high values in the Basin. Once again, we verified the credibility of the isotope circulation effect.7) Comparing monthly precipitation isotopes observed by GNIP with them simulated by ECHAM4, GissE and MUGCM, we found that the ability of simulating δ18O, deuterium excess and MWL are different, MUGCM is the best for δ18O, ECHAM4is the best for MWL and ECHAM4is best for deuterium excess.8) Considering the variation extent of isotopes in different water bodies, precipitation is the largest. River water isotopes in the Basin show low values in summer and fall, higth in winter and spring, which is consistent with the characteristics of the seasonal variation of precipitation isotopes, this confirmed that surface runoff is mainly recharged by precipitation in the Basin. Isotopes in well water that buried deep are with very small variations in time and significantly enriched, which shows that they have experienced a significant evaporation history and have a stable water supply.
引文
[1]黄秉维,郑度,赵名茶.现代自然地理[M].北京:科学出版社,1999,70-93.
    [2]Kushner P J, Held I M, Delworth T L. Southern Hemisphere Atmospheric Circulation Response to Global Warming[J]. J.Clim.,2001,14:2238-2249,doi.
    [3]Lu J, Vecchi G A, Reichler T. Expansion of the Hadley cell under global warming[J]. Geophys. Res. Lett,2007,34(6),doi:10.1029/2006g1028443.
    [4]Yasunari T, Seki Y. Role of the Asian Monsoon on the Interannual Variability of the Global Climate System [J]. Journal of the Meteorological Society of Japan JMSJAU,1992,70:177-189,doi.
    [5]黄荣辉,黄刚,任保华.东亚夏季风的研究进展及其需进一步研究的问题[J].大气科学,1999,23(2):129-141.
    [6]王斌.认识和预报亚洲季风气候:前沿突破点和展望[J].气象学报,2008,66(5):653-669.
    [7]祝燕德.贯彻落实国务院3号文件,预防和减轻自然灾害,为促进湖南经济社会发展服务[J].湖南气象,2006,23(1):6-9.
    [8]宋献方,夏军,于静洁,等.应用环境同位素技术研究华北典型流域水循环机理的展望[J].地理科学进展,200221(6):527-537.
    [9]翟远征,王金生,滕彦国,等.北京市不同水体中D和18O组成的变化及其区域水循环指示意义[J].资源科学,2011,33(1):92-97.
    [10]Gilfillan E S. The Isotopic Composition of Sea Water[J]. Journal of the American Chemical Society, 1934,56 (2):406-408,doi:10.1021/ja01317a037.
    [11]Dansgaard W. The abundance of 18O in atmospheric water and water vapour[J]. Tellus,1953,5(4): 461-469,doi.
    [12]Dansgaard W. Stable isotopes in precipitation [J]. Tellus,1964,16(4):436-468,doi: 10.1111/j.2153-3490.1964.tb00181.x.
    [13]Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature,1999,399(6735):429-436,doi:10.1038/20859.
    [14]Bottomleya D J, Craiga D, Johnstona L M. Neutralization of acid runoff by groundwater discharge to streams in Canadian Precambrian Shield watersheds [J]. Journal of Hydrology, 1984,75(1-4):1-26 doi:10.1016/0022-1694(84)90044-1.
    [15]Dincer T, Payne B R, Florkowski T, et al. Snowmelt runoff from measurements of tritium and oxygen-18[J]. Water Resour.Res.,1970,6(4):110-124,doi:10.1029/WR006i001p00110
    [16]Dincer T, Al-Mugrin A, Zimmermann U. Study of the infiltration and recharge through the sand dunes in arid zones with special reference to the stable isotopes and thermonuclear tritium [J]. Journal of Hydrology,1974,23(1-2):79-109 doi.
    [17]Mathieu R, Bariac T. An Isotopic Study (2H and 18O) of Water Movements in Clayey Soils Under a Semiarid Climate [J]. Water Resour.Res.,1996,32(4):779-789,doi:10.1029/96WR00074
    [18]Taylor C B, Wilson D D, Brown L J, et al. Sources and flow of north Canterbury plains groundwater, New Zealand [J]. Journal of Hydrology,1989,106(3-4):311-340 doi.
    [19]Maoszewski P, Zuber A. Determining the turnover time of ground water systems with the aid of environmental tracers:1 Models and their applicability[J]. Journal of Hydrology,1982,57(3-4): 207-231,doi:10.1016/0022-1694(82)90147-0.
    [20]Hoffmann G. A model of the Earth's Dole effect[J]. Global Biogeochemical Cycles,2004,18(1),doi: 10.1029/2003gb002059.
    [21]Farquhar G D, Lloyd J, Taylor J A, et al. Vegetation effects on the isotope composition of oxygen in atmospheric CO2[J]. Nature,1993,363:439-443,doi:10.1038/363439a0.
    [22]B.Taylor C. Vertical distribution of deuterium in atmospheric water vapour:problems in application to assess atmospheric condensation models[J]. Tellus 1984.36B:67-72,doi: 10.1111/j.1600-0889.1984.tb00053.x.
    [23]Zakharov V, Imasu R, Gribanov K G, et al. Latitudinal distribution of the deuterium to hydrogen ratio in the atmospheric water vapor retrieved from IMG/ADEOS data[J]. Geophys. Res. Lett, 2004,31(12),doi:10.1029/2004g1019433.
    [24]Frankenberg C, Yoshimura K, Warneke T, et al. Dynamic Processes Governing Lower-Tropospheric HDO/H2O Ratios as Observed from Space and Ground[J]. Science, 2009,325(5946):1374-1377,doi:10.1126/science.1173791.
    [25]章申,于维新,张青莲.我国西藏南部珠穆朗玛峰地区冰雪中氘和重氧的分布[J].中国科学,1973(4):430-433.
    [26]沈承德,卫克勤.天然水中的氖及其测定技术简介[J].地球与环境,1975(9):1-4.
    [27]沈承德,卫克勤.天然水中氖测定应用简介(续)[J].地球与环境,1975(10):16-21.
    [28]林瑞芬,卫克勤,王洪波.天然水中氖的测定方法[J].地球化学,1979(4):347-352.
    [29]卫克勤,林瑞芬,王志祥.北京地区降水中的氘、氧18、氚含量[J].中国科学(B辑),1982(8):754-757.
    [30]卫克勤,林瑞芬,王志祥,等.Distritution of Tritium in Natural Water in China[J]. Chinese Science Bulletin,1980,25(4):337-342.
    [31]姚檀栋,L.G.Tompson.敦德冰芯记录与过去5ka温度变化[J].中国科学(D辑),1992,10:1089-1093.
    [32]章新平,姚檀栋.青藏高原现代降水中dδ18O/dT的变化[J].冰川冻土,1995,17(4):308-314.
    [33]田立德,姚檀栋,M.Stievenard, et al.中国西部降水中8D的初步研究[J].冰川冻土,1998,20(2):32-37.
    [34]王宁练,张世彪,蒲健辰,等.黑河上游河水中818O季节变化特征及其影响因素研究[J].冰川冻土,2008,30(6).
    [35]柳鉴容,宋献方,袁国富,等.我国南部夏季季风降水水汽来源的稳定同位素证据[J].自然资源学报,2007,22(6):1004-1012.
    [36]章新平,刘晶淼,中尾正义,等.我国西南地区降水中过量氘指示水汽来源[J].冰川冻土,2009,31(4):613-619.
    [37]章新平,孙维贞,刘晶淼.西南水汽通道上昆明站降水中的稳定同位素[J].长江流域资源与环境,2005,14(5):665-669.
    [38]陈锦芳,曹建平,黄奕普.厦门沿岸地区大气降水中氢-氧稳定同位素组成及其影响因素[J].海洋学研究,2010,28(1):11-17.
    [391张琳,陈立,刘君,等.香港地区大气降水的D和18O同位素研究[J].生态环境学报,2009,18(2):572-577.
    [40]柳鉴容,宋献方,袁国富,等.中国东部季风区大气降水δ18O的特征及水汽来源[J].科学通报,2009,54(22):3521-3531.
    [41]章新平,刘晶淼,孙维贞,等.中国西南地区降水中氧稳定同位素比率与相关气象要素之间关系的研究[J].中国科学(D辑),2006,36(9):850-859.
    [42]薛积彬,钟巍,赵引娟.珠江三角洲地区降水中818O的变化特征及与ENSO的关系[J].地理科学,2007,27(6):825-830.
    [43]梁燕,孔兴功,汪永进.湖北神农架石笋年纹层与氧碳同位素关系[J].中国岩溶,2008,27(4):371-376.
    [44]吴江滢,汪永进,程海,等.葫芦洞石笋记录的19.9-17.1kaBP东亚夏季风增强事件[J].中国 科学(D辑),200939(1):61-69.
    [45]孙双峰,黄建辉,林光辉,等.稳定同位素技术在植物水分利用研究中的应用[J].生态学报,2005,25(9):2362-2371.
    [46]余武生,姚檀栋,田立德,等.那曲河流域季风结束前后大气水汽中δ18O变化特征[J].科学通报,2006,51(2):194-199.
    [47]尹常亮,姚檀栋,田立德,等.德令哈大气水汽中δ180的时间变化特征[J].中国科学(D辑),2008,38(6):723-731.
    [48]Wen X-F, Sun X-M, Zhang S-C, et al. Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere[J]. Journal of Hydrology,2008,349(3-4):489-500,doi: 10.1016/j.jhydrol.2007.11.021.
    [49]Wen X-F, Zhang S-C, Sun X-M, et al. Water vapor and precipitation isotope ratios in Beijing, China[J]. J. Geophys. Res.,2010,115(D1),doi:10.1029/2009jd012408.
    [50]顾慰祖.集水区降雨径流晌应的环境同位素实验研究[J].水科学进展,1992,3(4):246-254.
    [51]陆宝宏,孙婷婷,许宝华,等.长江干流径流同位素同步监测[J].河海大学学报(自然科学版),2009,37(4):378-381.
    [52]高品,田立德,刘勇勤,等.青藏高原南部羊卓雍错流域稳定同位素水文循环研究[J].科学通报,2009,54(16):2758-2765.
    [53]田立德,姚檀栋,沈永平,等.青藏高原那曲河流域降水及河流水体中氧稳定同位素研究[J].水科学进展,2002,13(2):206-210.
    [54]刘忠方,田立德,姚檀栋,等.雅鲁藏布江流域河水中氧稳定同位素的时空变化[J].冰川冻土,2008,30(1):20-27.
    [55]张应华,仵彦卿.黑河流域不同水体中δ180的变化[J].水科学进展,2007,18(6):864-870.
    [56]王宁练,张世彪,贺建桥,等.祁连山中段黑河上游山区地表径流水资源主要形成区域的同位素示踪研究[J].科学通报,2009,54(15):2148-2152.
    [57]章新平,刘晶淼,田立德,等.亚洲降水中δ18O沿不同水汽输送路径的变化[J].地理学报,2004,59(5):699-708.
    [58]吴华武.湘江中下游地区不同水体中稳定同位素变化特征研究.长沙:湖南师范大学,2012.
    [59]吴华武,章新平,关华德,等.不同水汽来源对湖南长沙地区降水中δD,δ18O的影响[J].自然资源学报,2012,27(8):1404-1414.
    [60]吴华武,章新平,孙广禄,等.湖南长沙地区大气降水中稳定同位素特征变化[J].长江流域资源与环境,2012,21(5):540-546.
    [61]周淑贞.气象学与气候学[M].北京:高等教育出版社,1997,61.
    [62]Hoefs J. Stable isotope geochemistry [M]. Springer,2009
    [63]Angert A, Lee J-E, Yakir D A N. Seasonal variations in the isotopic composition of near-surface water vapour in the eastern Mediterranean[J]. Tellus,2008,60(4):674-684,doi: 10.1111/j.1600-0889.2008.00357.x.
    [64]Gat J R. Oxygen and hydrogen isotopes in the hydrological cycle[J]. Annu. Rev. Earth Planet. Sci., 1996,24:225-262,doi:10.1146/annurev.earth.24.1.225.
    [65]Jacob H, Sonntag C. An 8-year record of the seasonal variation of 2H and 18O in atmospheric water vapour and precipitation at Heidelberg, Germany[J]. Tellus,1991,43(3):291-300,doi: 10.1034/j.1600-0889.1991.t01-2-00003.x.
    [66]Yakir D, Sternberg L d S L. The use of stable isotopes to study ecosystem gas exchange[J]. Oecologia,2000,123(3):297-311.doi:10.1007/s004420051016.
    [67]袁国富,张娜,孙晓敏,等,利用原位连续测定水汽δ180值和Keeling Plot方法区分麦田蒸散 组分[J].植物生态学报,2010,34(2):170-178.
    [68]Lee X, Smith R, Williams J. Water vapour 18O/16O isotope ratio in surface air in New England, USA[J]. Tellus,2006,58(4):293-304,doi.
    [69]White J W C, Gedzelman S D. The isotopic composition of atmospheric water vapor and the concurrent meteorological situation[J]. J. Geophys. Res.,1984,89(D3):4937-4939,doi: 10.1029/JD089iD03p04937
    [70]Gat J R, Klein B, Kushnir Y, et al. Isotope composition of air moisture over the Mediterranean Sea: an index of the air-sea interaction pattern[J]. Tellus,2003,55(5):953-965,doi: 10.1034/j.1600-0889.2003.00081.x.
    [71]Lawrence J R, Gedzelman S D, Zhang X, et al. Stable isotope ratios of rain and vapor in 1995 hurricanes[J]. J. Geophys. Res.,1998,103(D10):11381-11400,doi:10.1029/97JD03627
    [72]章新平,张新主,关华德,等.山TES反演的大气水汽中6D的时空分布特征[J].气象学报,2012,70(6):1367-1380.
    [73]Imasu R, Ogawa T, Shimoda H. Meridional distribution feature of minor constituents as observed by IMG sensor aboard ADEOS satellite[J]. Advances in Space Research,2000,25(5): 959-962,doi.
    [74]Payne V H, Noone D, Dudhia A, et al. Global satellite measurements of HDO and implications for understanding the transport of water vapour into the stratosphere[J]. Q. J. R. Meteorol. Soc., 2007,133(627):1459-1471,doi:10.1002/qj.127.
    [75]Steinwagner J, Milz M, Clarmann T v, et al. HDO measurements with MIPAS[J]. Atmos. Chem. Phys.,2007,7:931-970,doi:10.5194/acp-7-2601-2007.
    [76]Worden J, Bowman K, Noone D, et al. Tropospheric Emission Spectrometer observations of the tropospheric HDO/H2O ratio:Estimation approach and characterization[J]. J. Geophys. Res., 2006,111 (D16),doi:10.1029/2005jd006606.
    [77]Worden J, Noone D, Galewsky J, et al. Estimate of bias in Aura TES HDO/H2O profiles from comparison of TES and in situ HDO/H2O measurements at the Mauna Loa observatory [J]. Atmos. Chem. Phys,2011,11(9):4491-4503,doi:10.5194/acp-11-4491-2011.
    [78]Brown D, Worden J, Noone D. Comparison of atmospheric hydrology over convective continental regions using water vapor isotope measurements from space[J]. J. Geophys. Res., 2008,113(D15124),doi:10.1029/2007jd009676.
    [79]Risi C, Bony S, Vimeux F, et al. Understanding the Sahelian water budget through the isotopic composition of water vapor and precipitation[J]. J. Geophys. Res.,2010,115(D24),doi: 10.1029/2010jd014690.
    [80]Worden J, Noone D, Bowman K, et al. Importance of rain evaporation and continental convection in the tropical water cycle[J]. Nature,2007,445(7127):528-532,doi:10.1038/nature05508.
    [81]Yoshimura K, Frankenberg C, Lee J, et al. Comparison of an isotopic atmospheric general circulation model with new quasi-global satellite measurements of water vapor isotopologues[J]. J. Geophys. Res.,2011,116(D19),doi:10.1029/2011jd016035.
    [82]Lee J, Worden J, Noone D, et al. Relating tropical ocean clouds to moist processes using water vapor isotope measurements[J]. Atmos. Chem. Phys.,2011,11(2):741-752,doi: 10.5194/acp-11-741-2011.
    [83]Webster C R, Heymsfield2 A J. Water Isotope Ratios D/H,18O/16O, 17O/16O in and out of Clouds Map Dehydration Pathways[J]. Science,2003,302:1742-1745,doi:10.1126/science.1089496.
    [84]黄一民,章新平,吴华武,等.基于TES数据的亚洲大气水汽中δD的空间分布特征研究[J]. 长江流域资源与环境,2012,21(7):879-884.
    [85]Rozanski K, Sonntag C. Vertical distribution of deuterium in atmospheric water vapour[J]. Tellus, 1982,34(2):135-141,doi:10.1111/j.2153-3490.1982.tb01800.x.
    [86]布拉塞G,索洛蒙S.中层大气化学和物理学[M].黄润恒,译.北京:气象出版社,1988.
    [87]Xinping Z, Nakawo M, Tandong Y, et al. Variations of stable isotopic compositions in precipitation on the Tibetan Plateau and its adjacent regions[J]. Science in China(D),2002,45(6): 481-493,doi.
    [88]章新平,孙治安,关华德,等.东亚水循环中水稳定同位素的GCM模拟和相互比较[J].冰川冻土,2011,33(6):1274-1285.
    [89]田红.中国夏季降水的水汽通道特征及其影响因子分析[J].热带气象学报,2004,20(4):401-408.
    [90]Jouzel J, Russell G L, Suozzo R J, et al. Simulations of the HDO and H218O Atmospheric Cycles Using the NASA GISS General Circulation Model:The Seasonal Cycle for Present-Day Conditions [J]. J. Geophys. Res.,1987,92:14739-14760,doi:10.1029/JD092iD12p14739.
    [91]刘忠方,田立德,姚檀栋,等.水汽输送对雅鲁藏布江流域降水中稳定同位素的影响[J].地理科学进展,2007,22(8):842-850.
    [92]Tian L, Yao T, Schuster P F, et al. Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau[J]. J. Geophys. Res.,2003,108(D9),doi:10.1029/2002jd002173.
    [93]刘忠方,田立德,姚檀栋,等.雅鲁藏布江流域降水中δ180的时空变化[J].地理学报,2007,62(5):510-517.
    [94]Araguas L A-, Froehlich K, Rozanski K. Stable isotope composition of precipitation over southeast Asia[J]. J. Geophys. Res.,1998,103(D22):28721-28742,doi:10.1029/98JD02582.
    [95]Craig H. Isotopic Variations in Meteoric Waters[J]. Science 1961,133 (3465):1702-1703 doi: 10.1126/science.133.3465.1702
    [96]田立德,姚檀栋,White J W C, et al.喜马拉雅山中段高过量氘与西风带水汽输送有关[J].科学通报,2005,50(7):669-672.
    [97]田立德,姚檀栋,孙维贞.青藏高原南北降水中δD和δ18O关系及水汽循环[J].中国科学(D辑),2001,31(1):214-220.
    [98]庞洪喜,何元庆,张忠林.新德里季风降水中过量氘与季风水汽来源[J].冰川冻土,2005,27(6):876-880.
    [99]Worden J, Kulawik S, Frankenberg C, et al. Profiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical resolution from Aura TES radiances[J]. Atmos. Meas. Tech, 2012,5(2):397-411,doi:10.5194/amt-5-397-2012.
    [100]Worden J, Shepard D. Earth Observing System(EOS) Tropospheric Emission Spectrometer(TES) Data Validation Report(Version F06_08,F06_09 data)[R]. Herman R., Osterman G., Pasadena: Jet Propulsion Laboratory California Institute of Technology,2012.
    [101]章新平,姚檀栋,刘晶淼,等.不同时间尺度下的稳定同位素变化[J].冰川冻土,2003,25(4):428-432.
    [102]谭明,南素兰.中国季风区降水氧同位素年际变化的“环流效应”初探[J].第四纪研究,2010,30(3):620-622.
    [103]Rindsberger M, Jaffe S, Rahamim S, et al. Patterns of the isotopic composition of precipitation in time and space:data from the Israeli storm water collection program[J]. Tellus,1990,42B: 263-271,doi:10.1034/j.1600-0889.1990.t01-2-00005.x.
    [104]Lawrence R J, Gedzelman D S. Low stable isotope ratios of tropical cyclone rains[J]. Geophys. Res. Lett,1996,23(5):527-530,doi:10.1029/96GL00425.
    [105]Yamanaka T, Shimada J, Hamada Y, et al. Hydrogen and oxygen isotopes in precipitation in the northern part of the North China Plain:climatology and inter-storm variability[J]. Hydrol. Process,2004,18(12):2211-2222,doi:10.1002/hyp.5525.
    [106]章新平,姚檀栋,田立德,等.湿度效应及其对降水中G18O季节分布的影响[J].冰川冻土,2004 26(4):420-425.
    [107]薛积彬,钟巍,赵引娟.广州大气降水中δ18O与气象要素及季风活动之间的关系[J].冰川冻土,2008,30(5):761-768.
    [108]涂林玲,王华,冯玉梅.桂林地区大气降水的D和18O同位素的研究[J].中国岩溶,2004,23(4):304-309.
    [109]卫克勤,林瑞芬.论季风气候对我国雨水同位素组成的影响[J].地球化学,1994,23(1):33-41.
    [110]姚檀栋,段克勤,田立德,等.达索普冰芯积累量记录和过去400a来印度夏季风降水变化[J].中国科学(D辑),2000,30(6):619-627.
    [111]庞洪喜,何元庆,张忠林,等.季风降水中818O与季风水汽来源[J].科学通报,2005,50(20):2263-2266.
    [112]章新平,姚檀栋.青藏高原东北地区现代降水中δD与δ18O的关系研究[J].冰川冻土,1996,18(4):360-365.
    [113]章新平,姚檀栋.我国降水中δ18O的分布特点[J].地理学报,1998,53(4):356-364.
    [114]武亚遵,万军伟,林云.湖北宜昌西陵峡地区大气降雨氢氧同位素特征分析[J].地质科技情报,2011,30(3):93-97.
    [115]刘进达,赵迎吕,刘恩凯,等.中国大气降水稳定同位素时-空分布规律探讨[J].勘察科学技术,1997:34-39.
    [116]Xie L, Wei G, Deng W, et al. Daily δ18O and δD of precipitations from 2007 to 2009 in Guangzhou, South China:Implications for changes of moisture sources[J]. Journal of Hydrology,2011,400(3-4):477-489,doi:10.1016/j.jhydrol.2011.02.002.
    [117]王仕琴,宋献方,肖国强,等.基于氢氧同位素的华北平原降水入渗过程[J].水科学进展,2009,20(4):495-501.
    [118]王锐,刘文兆,宋献方.长武塬区大气降水中氢氧同位素特征分析[J].水土保持学报,2008,22(3):56-59.
    [119]章新平,姚檀栋.大气降水中氧同位素分馏过程的数学模拟[J].冰川冻土,1994,16(2):156-165.
    [120]孟玉川,刘国东.长江流域降水稳定同位素的云下二次蒸发效应[J].水科学进展,2010,21(3):327-334.
    [121]章新平,刘品森,姚檀栋,等.中纬度地区混合云中稳定同位素分馏的数学模拟-以乌鲁木齐降水为例[J].气象学报,2003,61(1):95-105.
    [122]顾慰祖,陆家驹,谢民,等.乌兰布和沙漠北部地下水资源的环境同位素探讨[J].水科学进展,200213(3):326-332.
    [123]Stewart M K. Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops:Applications to atmospheric processes and evaporation of lakes[J]. J. Geophys. Res.,1975,80(9):1133-1146,doi:10.1029/JC080i009p01133.
    [124]田立德,姚檀栋,余武生,等.青藏高原水汽输送与冰芯中稳定同位素记录[J].第四纪研究,2006,26(22):145-154.
    [125]Roeckner E, Oberhuber J M, Bacher A, et al. ENSO variability and atmospheric response in a global coupled atmosphere-ocean GCM[J]. Clim Dyn,1996,12(11):737-754,doi: 10.1007/s003820050140
    [126]Rasch P J, Williamson D L. Computational assessment of moisture transport in global models of the atmosphere [J]. Royal Meteorological Society 1990 116 (495):1071-1090,doi.
    [127]Hoffmann G, Werner M, Heimann M. Water isotope module of the ECHAM atmospheric general circulation model:A study on timescales from days to several years[J]. J. Geophys. Res., 1998,103(D14):16871,doi:10.1029/98jd00423.
    [128]Joussaume S, Sadourny R, Jouzel J. A general circulation model of water isotope cycles in the atmosphere[J]. Nature,1984,311:24-29,doi.
    [129]Schmidt G A, Hoffmann G, Shindell D T, et al. Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere-troposphere water exchange [J]. J. Geophys. Res.,2005,110(D21314),doi:10.1029/2005JD005790.
    [130]Schmidt G A, Ruedy R, Hansen J E, et al. Present-Day Atmospheric Simulations Using GISS ModelE Comparison to In Situ.Satellite, and Reanalysis Data[J]. J.Clim.,2006,19: 153-192,doi:http://dx.doi.org/10.1175/JCLI3612.1.
    [131]Bourke W, McAvaney B, Pur K, et al. Global modelling of atmospheric flow by spectral methods.In:Chang J ed.Methods in Computational Physics(General Circulation Models of the Atmosphere) Academic Press. Washiongton D C,1977:267-324
    [132]Bryant M, William B, Kamal P. A Global Spectral Model for Simulation of the General Circulation[J]. Journal of Atmospheric Sciences,1978,35(9):1557-1583,doi: 10.1175/1520-0469(1978)035<1557:AGSMFS>2.0.CO;2.
    [133]Brown J. The Response of Stable Isotopes in Precipitation and Surface Ocean to Tropical Climate Variability. Melbourne:University of Melbourne 2003
    [134]章新平,孙治安,张新主,等.东亚降水中δ18O的GCM模拟及其与GNIP实测值的比较[J].第四纪研究,2012,32(1):67-80.
    [135]徐彦伟,康世昌,周石研,等.青藏高原纳木错流域夏、秋季大气降水中δ18O与水汽来源及温度的关系[J].地理科学,2007,27(5):718-723.
    [136]余武生,姚檀栋,田立德,等.慕士塔格地区夏季降水中δ180与温度及水汽输送的关系[J].中国科学(D辑),2006,36(1):23-30.
    [137]谭明.环流效应:中国季风区石笋氧同位素短尺度变化的气候意义--古气候记录与现代气候研究的一次对话[J].第四纪研究,2009,29(5):851-862.
    [138]谭明.信风驱动的中国季风区石笋δ18O[J].第四纪研究,2011,31(6):1-12.
    [139]章新平,杨大庆,刘晶淼.北美洲降水中稳定同位素的时空分布以及与ENSO的关系[J].冰川冻土,2006,28(1):29-36.
    [140]龚道溢,工绍武.近百年ENSO事件对全球陆地和中国降水的影响[J].科学通报,1999,44(3):315-320.
    [141]林学椿,于淑秋.厄尔尼诺与我国汛期降水[J].气象学报,1993,51(4):434-441.
    [142]龚道溢,王绍武.ENSO对中国四季降水的影响[J].自然灾害学报,1998,7(4):44-52.
    [143]罗维均,王世杰.贵州凉风洞大气降水-土壤水-滴水的δ18O信号传递及其意义[J].科学通报,2008,53(17):2071-2078.
    [144]杨淇越,吴锦奎,丁永建,等.锡林河流域地表水和浅层地下水的稳定同位素研究[J].冰川冻土,2009,31(5):850-856.
    [145]尹观,范晓,郭建强,等.四川九寨沟水循环系统的同位素示踪[J].地理学报,2000,55(4):487-494.
    [146]宋献方,李发东,于静洁,等.基于氢氧同位素与水化学的潮白河流域地下水水循环特征[J]. 地理研究,2007,26(1):11-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700