表生含钾矿物~(40)Ar/~(39)Ar年代学研究及其古气候意义探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于中国西北部地区干旱化的时间及原因,国内外的科学家进行了大量的研究,但是现在还存在激烈的争论。黄钾铁矾等含钾硫酸盐矿物通常形成于干旱-半干旱气候条件下,并保存于极端干旱气候条件下,因此对这类矿物进行~(40)Ar/~(39)Ar定年,不仅可以得到大陆化学风化的时间序列,还可以反演区域的古气候特征。本文通过对吐哈盆地两个矿床氧化带:红山铜金矿床和彩华沟铜—硫多金属矿床中表生含钾硫酸盐矿物~(40)Ar/~(39)Ar定年的研究,探索和验证了风化矿物黄钾铁矾、斜钾铁矾等用于~(40)Ar/~(39)Ar定年研究的适用性和可行性,建立了样品的前处理流程和实验测试流程。结合这类矿物的形成条件和环境,分析了吐哈盆地的古气候和古环境,为建立全球气候变化与中国西北部吐哈盆地干旱环境演化的联系提供了年代学证据。主要取得以下认识:
     建立了样品的前处理流程和实验测试流程:首先在双目镜下对样品进行观察,以了解其矿物组成和共生关系、以及是否有原生矿物(如伊利石、斜长石等)的混染。将样品破碎到0.2-2mm,在双目镜下挑选2-3g的矿物颗粒。在进行~(40)Ar/~(39)Ar同位素分析之前先进行X衍射分析、扫描电镜分析,以检查样品的纯净度、组成、粒度大小和结晶度。样品经过X衍射分析、扫描电镜分析确定所挑选的样品纯净后,从中挑选大约20-30mg的矿物,将其与中子通量监测标准样品一起进行快中子进行照射。经过一段时间的放置在用于~(40)Ar/~(39)Ar分析。在~(40)Ar/~(39)Ar分析上增加了-130℃的冷阱来消除水汽和氧化硫的影响。
     根据扩散理论,应用阶段加热的方法对一种新的含钾矿物斜钾铁矾进行Ar的扩散特性研究,在此基础上,应用简单的内生长—扩散模型模拟了可能的高地表温度和矿物颗粒大小对样品年龄的影响。实验结果表明斜钾铁矾中Ar的扩散频率因子logD_0/a~2=13.71/s,活化能E_a=71.30kcal/mol,封闭温度Tc为294℃(假设冷却速率为10℃/Myr),活化能和封闭温度较高。而且,模拟结果表明斜钾铁矾形成后,在外界环境下温度和矿物颗粒大小对年龄也几乎没有影响。在误差范围内重复性测试结果基本一致,约3.3Ma,进一步证明斜钾铁矾适用于~(40)Ar/~(39)Ar定年。
     对一个黄钾铁矾样品的三个子样品进行了~(40)Ar/~(39)Ar定年:每个子样品的坪年龄与反等时线年龄、概率分布年龄基本一致及这三个子样品年龄的重现性再次证实了~(40)Ar/~(39)Ar定年技术可以对表生含钾硫酸盐矿物进行年龄测定,并且其年龄是其真实的沉淀时的年龄。通过测得的红山铜金矿床的风化矿物的年龄,可以看出硫酸盐矿物从上到下生成年代逐渐变新。根据风化剖面的高程与对应位置风化矿物的年龄的关系就可以计算出风化前锋的拓展速率。这样计算得到氧化带中中新世到早上新世期间风化前锋的平均拓展速率约为2.3m/Ma,这也代表了该地区的最大剥蚀速率,如此低的剥蚀速率有利于氧化带的保存。
     通过对中国新疆吐哈盆地的两个硫化物矿床氧化带(红山铜金矿床和彩华沟铜—硫多金属矿床氧化带)中含钾硫酸盐矿物进行~(40)Ar/~(39)Ar定年,得到了高精度的年龄,范围在30.3Ma到3.3Ma。结合其他学者测得的K-Ar年龄,我们认为在中国西北部地区,在渐新世以来经历了较长时间的风化作用和表生氧化作用,但是各个时期的强度是不同的。对得到的矿物年龄做的一个概率分布图,并通过与全球深海氧同位素的对比表明吐哈盆地干旱化的时间与全球气候的两次降温相一致。吐哈盆地可能在渐新世早期就已经出现干旱半干旱气候;在中新世,10.5-7.3Ma年龄出现的概率达到最大,表明这期间一直盛行干旱-半干旱气候条件,之后气候开始逐渐向极端干旱气候开始转变,是全球气候变冷和区域隆升共同作用的结果。4-3.3Ma斜钾铁矾的出现代表了4-3.3Ma之后的一次干旱化增强事件,可能反映了由北极冰盖的快速增长导致的全球变冷引起的干旱化在这一时段的增强。综合来说,我们认为新生代吐哈盆地的干旱化主要受全球气候的影响,青藏高原的隆升和天山山脉的隆升起了较小的作用。
     需要进一步开展的工作:继续进行系统的野外采样,争取采集被开挖出来的完整的氧化带剖面,以确保获得比较完整的年龄数据库。由于采集的黄钾铁矾样品中的K部分会被Na替代,造成含钾量较低,如何能寻找到含钾量高的黄钾铁矾是一个难点。对于原生矿物的混染,进一步尝试用HF对黄钾铁矾进行前处理分离得到纯净的矿物。
The debate continues over whether global cooling or uplift of the Tibetanplateau can explain the timing and reason for aridification of Northwestern China,although many studies on this issue have been conducted at home and abroad. TheK-bearing sulfate minerals (jarosite, yavapaiite) are usually precipitated in arid tosemiarid conditions and preserved in hyperarid conditions. Therefore, direct andprecise~(40)Ar/~(39)Ar dating on these K-bearing sulfate minerals can provide importantconstraints not only on the timing and continental weathering and supergeneenrichments, but also on regional paleoclimatic evolution. This thesis presents theresults of~(40)Ar/~(39)Ar dating of supergene K-bearing sulfate minerals sampled from twoweathering profiles: the Hongshan Cu-Au deposit and Caihuagou Cu-sulfidepolymetallic deposit, Tu-Ha basin, Xinjiang. The dating experiment procedures wereestablished to explore and verify the~(40)Ar/~(39)Ar dating applicability and feasibility ofthe supergene K-bearing minerals. The~(40)Ar/~(39)Ar dating of supergene K-bearingminerals, combined with the conditions of the formation of these minerals, this workanalyzed the coupling relationship between the global cooling and evolution of thearidification in Northwest China. The main conclusions are drawn as follows:
     The dating experiment procedures were established:The samples are inspectedunder binocular to determine the mineralogy and paragenesis of the sample. Inaddition, optical microscopy was used to determine whether this sample contains theprimary minerals (such as ledikite, felspar, and quartz) contamination. Afterpetrographic examination, suitable samples were crushed;2-3g grains werehandpicked under a binocular microscope. Then the handpicked yavapaiite grainswere characterized by X-ray powder diffraction analysis (XRD) and scanning electronmicroscopy (SEM) to identify the habits of the phases present and to detect anypossible intergrown minerals before~(40)Ar/~(39)Ar isotopic analysis. For the~(40)Ar/~(39)Argeochronology, about200mg pure grains (grain size1mm-0.5mm) were wrapped inAl foil, sealed in silica glass tube with ZBH biotite standards, and irradiated. Thesamples were analyzed by the incremental heating~(40)Ar/~(39)Ar method. The necessaryuse of a cryocooling device operated at-130℃made it possible to separate the othergases, especially H2O, SO3.
     According to diffusion theory,~(40)Ar/~(39)Ar incremental heating experiments for s new sulfate mineral to determine the apparent Ar diffusivity. Then a simple model ofdiffusive loss and radiogenic in-growth was constructed to evaluate the effects ofextreme high ambient temperature and the grain size on the Ar age. The experimentalresults show that the diffusion parameters as follows: the activation energy Eais76.17kcal/mol and the frequency factor logD0/a2is15.07/s, the corresponding closuretemperature Tcis294℃(assuming a cooling rate of10℃/Ma), and the activationenergy and closure temperature are very high. The simulation results show that thehigh ambient temperature and the grain size have no effect on the Ar age afteryavapaiite was precipitated. Furthermore, the reproducibility of the age attests to thesuitability of supergene yavapaiite for K-Ar and~(40)Ar/~(39)Ar dating.
     Three aliquots of a single-hand jarosite specimen were analyzed by the~(40)Ar/~(39)Armethod. For each sample, the isochron age and ideogram are generallyindistinguishable from the plateau age. The results indicate that the three aliquots of asingle-hand jarosite obtained are reproducible, attesting to the suitability of supergenejarosite to~(40)Ar/~(39)Ar geochronology, and the results are the true mineral precipitation.According to the ages obtained from the Hongshan Cu-Au deposit, older supergeneminerals occur at the top, whereas more recently precipitated supergene minerals arepresent at the bottom of the profile. The downward advance of the weathering frontdocuments very low maximum denudation rates of2.3m/Ma from the mid-Miocene toearly Pliocene. The low apparent denudation rates reflect the dominantly depositionalenvironment of the Tu-Ha basin.
     ~(40)Ar/~(39)Ar dating of supergene K-bearing sulfate minerals sampled from twoweathering profiles: the Hongshan Cu-Au deposit and Caihuagou Cu-sulfidepolymetallic deposit, Tu-Ha basin, Xinjiang, yields ages from30.3Ma to3.2Ma.Combined with results from other scientist, these data imply a prolonged history ofweathering and supergene oxidation, but the weathering intensities of each period aredifferent. Comparison of the probability distribution of supergene ages obtained frompreviously published results and this study with the global deep-sea oxygen isotoperecords indicates that the aridification of the Tu-Ha basin coincides with the trends inglobal cooling. The arid-semiarid climate might have emerged in early Oligocene inthe Tu-Ha basin; In Miocene, the probability reached a maximum at10.5-7.3Ma,suggesting a prevalence of regionally arid-semiarid conditions during this period.After this period the rapid decrease in probability of ages might reflect the initiation of the transition to hyperarid, which may be the result from the combined effects ofboth global cooling and regional uplift. The age4-3.3Ma from yavapaiite mineralsrepresents an enhanced aridity after4-3.3Ma, which likely resulted from the increaseof global cooling induced by the Northern Hemisphere glaciation induced. So, thearidification of the Tu-Ha basin was forced by global cooling during the Cenozoic,and the uplift of the Tibet plateau and Tian Shan might have played a minor role incontrolling the drought climate in the Tu-Ha basin.
     Some pieces of work are required to be further advanced: To collect moresamples from deposits of which the whole weathering profile is excavated to obtain anintegrated age database. Since the K in jarosite samples will be substituted by Na,resulting in a low potassium content, so a difficult is how to find the jarosite sampleswhich contain high potassium content. For the mixture of primary minerals withjarosite minerals,further attempts should be made to use hydrofluoric acid (HF) toremove primary contaminants without incongruently dissolving jarosite.
引文
安芷生,张培震,王二七等(2006).中新世以来我国季风—干旱环境演化与青藏高原的生长.26(5):678—693.
    陈文寄,李大明(1991). K—Ar和40Ar/39Ar法.《年轻地址体系的年代测定》.陈文寄,彭贵.北京:地震出版社.
    何为,郑德文,李大明等.2009.东天山地区风化矿物黄钾铁矾的K—Ar测年及其环境意义[J].地震地质,31(3),415—423.
    韩照信,栾丽君,王朝友.(2004).康古尔塔格金矿床氧化带矿物初步研究及意义.西安科技大学学报,24(3):324—327.
    李吉均,方小敏(1998).青藏高原隆起与环境变化研究.科学通报.43(015):1568—1574.
    李吉均,方小敏,朱俊杰(1995).临夏盆地新生代地层古地磁年代与模式序列[M].北京,科学出版社:41—54.
    李吉均,方小敏,马海州,等(1996).晚新生代黄河上游地貌演化与青藏高原隆起.中国科学(D).26(4):316—322.
    李吉均,文世宣,张青松(1979).青藏高原隆起的时代,幅度和形式的探讨.中国科学(D).6:608—616.
    李锡林(1966).硫化矿床氧化带研究(中国科学院地质研究所).北京:科学出版社.147—151.
    刘东生,郑绵平(1998).亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性.第四纪研究(3):194—204.
    马玉贞,李吉均(1998).临夏地区30.6—5.0Ma红层孢粉植物群与气候演化记录.科学通报.43(3):301—304.
    芮宗瑶,王福同(2001).新疆东天山斑岩铜矿带的新进展.中国地质.28(2):11—16.
    潘保田,李吉均(1995).青藏高原;全球气候变化的驱动机与放大器Ⅱ.青藏高原隆起的基本过程.兰州大学学报:自然科学版.31(4):160—167.
    潘保田,李吉均(1996).青藏高原:全球气候变化的驱动机与放大器: Ⅲ.青藏高原隆起对气候变化的影响.兰州大学学报:自然科学版.32(1):108—115.
    潘裕生(1999).青藏高原的形成与隆升.地学前缘.6(3):153—163.
    秦克章,方同辉(2002).东天山板块构造分区,演化与成矿地质背景研究.新疆地质.20(4):302—308.
    秦克章,方同辉,王书来等.(2001).土哈盆地边缘古生代“天窗”卡拉塔格铜金矿化区的发现及其找矿潜力.中国地质,28(3):16—23.
    邱华宁,彭良(1997).40Ar/39Ar年代学与流体包裹体定年.合肥:中国科学技术大学出版社.
    三金柱,惠卫东,秦克章,等.(2007).新疆哈密图拉尔根全岩矿化岩浆铜—镍—钴矿床地质特征及找矿方向.矿床地质,26(3):307—316.
    施雅风,李吉均(1999).晚新生代青藏高原的隆升与东亚环境变化.地理学报.54(1):10—21.
    施雅风,刘东生(1964).希夏邦马峰地区科学考察初步报告.科学通报(10):928—938.
    施雅风,汤懋苍(1998).青藏高原二期隆升与亚洲季风孕育关系探讨.中国科学(D).28(3):263—271.
    宋春晖(2006).青藏高原北缘新生代沉积演化与高原构造隆升过程.兰州大学博士学位论文,1—326.
    宋林山,汪立今,邓刚,等.(2008).新疆东天山天宇铜镍硫化物矿床地质特征初探.金属矿山,(3):114—117.
    宋叔和.1955.祁连山一带黄铁矿型铜矿的特征与成矿规律[J].地质学报,35(1):1—23.
    宋友桂,方小敏(2000).六盘山东麓朝那剖面红粘土年代及其构造意义.第四纪研究.20(5):457—463.
    孙承兴,王世杰,刘秀明等(2000).风化壳剖面的定年研究.矿物岩石地球化学通报.19(1):54—59.
    孙赫,秦克章,李金祥等(2006).东天山图拉尔根铜镍钴硫化物矿床岩相,岩石地球化学特征及其形成的构造背景.中国地质.33(3):606—617.
    孙有斌,安芷生(2001).最近7Ma黄土高原风尘通量记录的亚洲内陆干旱化的历史和变率.中国科学(D).31(9):769—776.
    涂光炽,李锡林(1963).干旱和极端干旱气候条件下硫化物矿床氧化带发育特征(以西北五个矿床为例说明).地质学报.43(4):361—377.
    万景林,王瑜,李齐等.(2001).阿尔金山北段晚新生代山体抬升的裂变径迹证据.矿物岩石地球化学通报.20(4):222—224.
    王松山(1983).我国K—Ar法标准样40Ar—40K和40Ar—39Ar年龄测定及放射成因40Ar的析出特征.地质科学.4:315—323.
    王松山,C. UG (1992).氩—氩定年法国际标准物质BSP—1角闪石的研制.岩石学报.8(2):103—127.
    王松山,桑海清(1997).Ar—Ar等时线的局限及Cl—Ar等时线的潜力.地球学报.18(增刊):272—274.
    王学求(2002).大型矿集区地球化学调查与评价——以东天山为例.中国地质大学博士后研究工作报告.1—49.
    温春齐,徐新煌,茅燕石.(2002).小热泉子铜矿床成矿过程分析.矿物岩石,22(3):29—32.
    吴雪晶.(2006).东天山马头滩金矿成矿地质特征.新疆地质,25(3):267—273.
    许英霞,秦克章,丁奎首等.2008.东天山红山高硫型浅成低温铜金矿床:中生代成矿与新生代氧化的K—Ar、Ar—Ar年代学证据及其古构造和古气候意义[J].岩石学报,24(10):2371—2383.
    熊明,李国武,丁奎首,等.(2004).叶绿矾族矿物晶体结构研究新成果,粉末衍射论文集,成都.
    徐仁,陶君容,孙湘君(1973).希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义.植物学报.15(1):103—119.
    袁万明,保增宽,董金泉等(2007).新疆土屋—延东斑岩铜矿区成矿时代与构造活动的裂变径迹分析.中国科学D辑.37(10):1330—1337.
    张连昌,姬金生(1998).东天山马头滩韧性剪切带型金矿地质特征及成因.西安工程学院学报.20(4):15—19.
    张培震,郑德文,尹功明等.(2006).有关青藏高原东北缘晚新生代扩展与隆升的讨论.第四纪研究.26(1):5—13.
    郑德文,张培震,万景林等.(2003).青藏高原东北边缘晚新生代构造变形的时序—临夏盆地碎屑颗粒磷灰石裂变径迹记录.中国科学(D).33(增刊):190—198.
    郑德文,张培震,万景林等.(2006).构造,气候与砾岩——以积石山和临夏盆地为例.第四纪研究.26(1):63—69.
    郑德文,张培震,万景林等.(2005).六盘山盆地热历史的裂变径迹证据.地球物理学报.48(1):157—164.
    郑度,姚檀栋(2006).青藏高原隆升及其环境效应.地球科学进展.21(5):451—458.
    钟大赉,丁林(1996).青藏高原的隆起过程及其机制探讨.中国科学(D).26(4):289—295.朱杰辰(1987). K—Ar法同位素地质年龄测定标准样——ZBH—黑云母的矿物特征.矿物学报.7(4):359—365.
    庄道泽.(2003).新疆东天山地区土屋、延东铜矿地球化学特征与异常查证方法.地质与勘探,39(5):67—71.
    An Z, Kutzbach J E, Prell W L, et al.(2001). Evolution of Asian monsoons andphased uplift of the Himalaya—Tibetan Plateau since Late Miocene times,Nature.411:62–66.
    An Z, Sumin W, Xihao W, et al.(1999). Eolian evidence from the Chinese LoessPlateau: The onset of the Late Cenozoic great glaciation in the NorthernHemisphere and Qinghai—Xizang Plateau uplift forcing, Springer.42:258—271.
    An Z, Yongsong H, Weiguo L, et al.(2005). Multiple expansions of C4plant biomassin East Asia since7Ma coupled with strengthened monsoon circulation.Geology.33(9):705—708.
    Alpers C N and Brimhall G H (1988). Middle Miocene climatic change in theAtacama Desert, northern Chile:Evidence from supergene mineralization at LaEscondida, Geological Society of America Bulletin.100:1640—1656.
    Arancibia G, Matthews S J and Pérez de Arce C (2006). K—Ar and40Ar/39Argeochronology of supergene processes in the Atacama Desert, northern Chile:tectonic and climatic relations. Journal of the Geological Society.163(1):107—118.
    Arehart G B, Kesler S E, O'Neil J R, et al.(1992a). Evidence for the supergene originof alunite in sediment—hosted micron gold deposits, Nevada, Econ. Geol.87:263—270.
    Arehart G B and Oneil J R (1992b). Western US continental climate record since30Ma as recorded in alunite: Comparison with the marine record, Geol. Soc. Am.Abstr. Programs.24:268.
    Ashley R P and Silberman M L (1976). Direct dating of mineralization at Goldfield,Nevada, by potassium—argon and fission—track methods, Econ. Geol.71:904—924.
    Arno M, Iron oxide from jarosite and similar compounds (1984) Patent no.DD215999, Germany.
    Baksi A K, York D and Watkins N D (1967). Age of the Steens Mountaingeomagnetic polarity transition. Journal of Geophysical Research.72(24):6299—6308.
    Berry L G. Powder Diffraction File (Sers6). Philadelphia: Joint Committee onPowder Diffraction Standards.3.1974
    Bierman P and Turner J (1995).10Be and26Al evidence for exceptionally low rates ofAustralian bedrock erosion and the likely existence of pre—Pleistocenelandscapes, Quat. Res.44:378—382.
    Bird M I (1988). An isotopic study of the Australian regolith. PhD thesis.,Canberra:Aust. Natl. Univ:266pp.
    Bird M I and Chivas A R (1989). Stable—isotope geochronology of the Australianregolith. G. C. A.53(12):3239—3256.
    Bird M I and Chivas A R (1993). Geomorphic and palaeoclimatic implications of anoxygen—isotope chronology for Australian deeply weathered profiles,Australian Journal of Earth Sciences.40:345—358.
    Bird M I, Chivas A R and McDougall I (1990). An isotopic study of surficial alunitein Australia.2. Potassium—argon geochronology, Chem. Geol.80:133—145.
    Bouzari F and Clark A H (2002). Anatomy, evolution, and metallogenic significanceof the supergene orebody of the Cerro Colorado porphyry copper deposit, Iregion, northern Chile. Economic Geology.97(8):1701—1740.
    Brophy G P, Scott E S and Snellgrove R A (1962). Sulfate studies.II. Solid solutionbetween alunite and jarosite. Am. Mineral.47:112–126.
    Carmo I O and Vasconcelos P (2004). Geochronological evidence for pervasiveMiocene weathering, Minas Gerais, Brazil. Earth Surface Processes andLandforms.29(11).
    Carmo I O and Vasconcelos P M (2006).40Ar/39Ar geochronology constraints onlate Miocene weathering rates in Minas Gerais. Earth and Planetary ScienceLetters.241:80–94.
    Cerling T E, Harris J M, MacFadden B J, et al.(1997). Global vegetation changethrough the Miocene/Pliocene boundary. Nature.389:153—158.
    Chukhrov F V, Yermilova L P and Shanin L L (1969). Age of alunite from certaindeposits, Trans. Acad. Sci.USSR Dokl. Earth Sci. Sect.:49–51.
    Clark A H, Tosdal R M, Farrar E, et al.(1990). Geomorphologic environment and ageof supergene enrichment of the Cuajone, Quellaveco, and Toquepala porphyrycopper deposits, southeastern Peru. Economic Geology.85(7):1604—1628.
    Clark M K, Schoenbohm L M, Royden L H, et al.(2004). Surface uplift, tectonics,and erosion of eastern Tibet from large—scale drainage patterns. Tectonics.23:TC1006, doi:1010.1029/2002TC001402.
    Clark M K, House M A, Royden L H, et al.(2005). Late Cenozoic uplift ofsoutheastern Tibet. Geological Society of America.33(6):525—528.
    Cochran J R (1990). Himalayan uplift, sea level, and the record of Bengal Fansedimentation at the ODP Leg116sites. Proceedings of the Ocean DrillingPrograms, Scientific Results.116:397–414.
    Coleman M and Hodges K (1995). Evidence for Tibetan plateau uplift before14Myrago from a new minimum age for east–west extension. Nature.374:49—52.
    Cook S S (1994). The geologic history of supergene enrichment in the porphyrycopper deposits of southwestern North America: Unpublished Ph. D, dissertation,Tucson, University of Arizona:163pp.
    Crowley T J and North G R (1991). Paleoclimatology. London/New York, OxfordUniversity. Press349pp.
    Dalrymple G B, Alexander E C, Lanphere M A, et al.(1981). Irradiation of samplesfor40Ar/39Ar dating using the Geological Survey TRIGA reactor, U. S. Geol.Surv., Prof. Paper:1176.
    Dalrymple G B and Lanphere M A (1971).40Ar/39Ar technique of K/Ar dating: acomparison with the conventional techniques. Earth and Planetary ScienceLetters.12:300—308.
    Dammer D, Chivas A R and McDougall I (1996). Isotopic dating of supergenemanganese oxides from the Groote Eylandt deposit, Northern Territory, Australia,Eco. Geol.91:386—401.
    Dammer D, McDougall I and Chivas A R (1999). Timing of Weathering—InducedAlteration of Manganese Deposits in Western Australia: Evidence from K/Arand40Ar/39Ar Dating, Econ. Geol.94:87—108.
    Dettman D L, Fang X, Garzione C N, et al.(2003). Uplift—driven climate change at12Ma: a long δ18O record from the NE margin of the Tibetan plateau. Earth andPlanetary Science Letters.214(1—2):267—277.
    Dewey J F, Cande S and Pitman W C (1989). Tectonic evolution of the India/Eurasiacollision zone. Eclogae Geologicae Helvetiae.82(3):717–734.
    Ding Z L, Xiong S F, Sun J M, et al.(1999). Pedostratigraphy and paleomagnetism ofa7.0Ma eolian loess—red clay sequence at Lingtai. Palaeogeography,Palaeoclimatology, Palaeoecology.152:49–66.
    Dodson M H (1973). Closure temperature in cooling geochronological andpetrological systems. Contributions to Mineralogy and Petrology.40:259—274.
    Donghuai S, Shaw J, Zhisheng A, et al.(1998). Magnetostratigraphy andpaleoclimatic interpretation of a continuous7.2Ma Late Cenozoic eoliansediments from the Chinese Loess Plateau. Geophysical Research Letters.25(1):85—88.70
    Dunai T J, Lopez G A G and Juez—Larre J (2005). Oligocene—Miocene age ofaridity in the Atacama Desert revealed by exposure dating of erosion—sensitivelandforms. Geology.33(4):321—324.
    Drouet, Navrotsky A. Synthesis, characterisation and thermochemistry ofK—Na—H3O jarosites. Geochim. Cosmochim. Acta.,2003:2063—2076
    England P and Houseman G (1989). Extension during continental convergence, withapplication to the Tibetan Plateau. Journal of Geophysical Research.94:17561—17579.
    Fechtig, et al. The diffusion of argon in potassium bearing solids, inPotassium—Argon Dating, compiled by O.A.Schaeffer and J. Zahringer, pp.68—106, Springer—Verlag, New York,1966
    Frakes L A (1979). Climates throughout geologic time. Amsterdam/Lausanne/NewYork, Elsevier.
    Garzione C N, Ikari M J, Basu A R.2005. Source of Oligocene to Pliocenesedimentary rocks in the Linxia basin in northeastern Tibet from Nd isotopes:implication for tectonic forcing of climate [J]. GSA Bulletin,117(9/10):1—11.
    Graeber E J, Rosenzweig A. The crystal structures of yavapaiite KFe(SO4)2, andGoldichite KFe(SO4)2·4H2O. The American Mineralogist,1971,56:1917—1933
    Grasty R L and Mitchell J G (1966). Single sample potassium—argon ages using theomegatron. Earth and Planetary Science Letters.1(3):121—122.
    Guo Z T, Ruddiman W F, Hao Q Z, et al.(2002). Onset of Asian desertification by22Myr ago inferred from loess deposits in China. Nature.416:159—163.
    Gustafson L B, Hunt J P.1975. The porphyry copper deposit at El Salvado Chile [J].Economic Geology,70:857—912.
    Harrison T, Copeland P, Kidd W S F, et al.(1992). Raising Tibet. Science.255:1663—1670.
    Hautmann S and Lippolt H J (2000).40Ar/39Ar dating of central European K–Mnoxides—a chronological framework of supergene alteration processes during theNeogene, chemical Geology.170:37—80.
    Henocque O, Mouélé F, Ruffet G, et al.(1999). Paleogene ages of a lateritic pisoliticcrust determined by Mn—oxides dating, Geochemistry of the Earth's suface:45—48.
    Henocque O, Ruffet G, Colin F, et al.(1998).40Ar/39Ar dating of West Africanlateritic cryptomelanes, Geochim. Cosmochim. Avta.62:2739—2756.
    Hutton O C. Yavapaiite, an anhydrous potassium, ferric sulphate from Jerome,Arizona. Am. Mineral,1959,44:1105—1114
    Itaya T, Arribas A and Okada T (1996). Argon release systematics of hypogene andsupergene alunite based on progressive heating experiments from100to1000℃.Geochim. Cosmochim. Acta.60(22):4525—4535.
    Jenny H (1941). Factors of Soil Formation, A System of Quantitative Pedology. NewYork, McGraw—Hill:281pp.
    Jiang H C, Mao X, Xu H Y et al (2010).4Ma coarsening of sediments from Baikal,Chinese Loess Plateau and South China Sea and implications for the onset of NHglaction. Palaeogeography, Palaeoclimatology, Palaeoecology,298:210—209
    Kennrtt J P.1977. Cenozoic evolution of Antarctic Glaciation, the circum—antarcticocean, and their impact on global paleoceanography [J]. J Geophys. Res.,82(27):3843—3860.
    Kind R, Yuan X, Saul J, et al.(2002). Seismic images of crust and upper mantlebeneath Tibet: evidence for Eurasian plate subduction. Science.298:1219—1221.
    Kirby E, Reiners P W, Krol M A, et al.(2002). Late Cenozoic evolution of the easternmargin of the Tibetan Plateau: Inferences from40Ar/39Ar and (U—Th)/Hethermochronology. Tectonics.21(1):1—19.
    Kirsten T, Deubner J, Horn P, et al.(1972). Rare gas record of Apollo14and15samples. Geochim. Cosmochim. Acta. Suppl.3(Proceeding of the Third LunarScience Conference):1865—1889.
    Kulp J L, Adler H H. Thermal study of jarosite. Am. J. Sci,1950,248(1950):475—487.
    Lamb S and Davis P (2003). Cenozoic climate change as a possible cause for the riseof the Andes. Nature.425:792—797.
    Larsen H C.1994. Seven million years of gaciation in Greenland [J]. Science264:952—955.
    Leckie R M, Webb PN,1983. Late oligocene—early Miocene glacial record of theRoss Sea, Antarctica: Evidence from DSDP Site270, Geology [J].11(10):578—582.
    Li J, Shi Y F and Li B Y (1995). Uplift of Qinghai—Xizang (Tibet) plateau andglobal change. Lanzhou, Lanzhou University Press1—207.
    Li J W, Vasconcelos P, Duzgoren—Aydin N, et al.(2007a). Neogene weathering andsupergene manganese enrichment in subtropical South China: An40Ar/39Arapproach and paleoclimatic significance. Earth and Planetary Science Letters.256(3—4):389—402.
    Li J W, Vasconcelos P, Zhang W, et al.(2007b). Timing and duration of supergenemineralization at the Xinrong manganese deposit, western Guangdong Province,South China: cryptomelane40Ar/39Ar dating, Mineralium Deposita.42:361—383.
    Lovera O M, Heizler M T and Harrison T M (1993). Argon diffusion domains inK—feldspar II: Kinetic properties of MH—10. Contributions to Mineralogy andPetrology.113:381—393.
    Lovera O M, Richter F M and Harrison T M (1989). The40Ar/39Arthermochronometry for slowly cooled samples having a distribution of diffusiondomain sizes. Journal of Geophysical Research.94:17917—17935.
    Lovera O M, Richter F M and Harrison T M (1991). Diffusion domains determinedby39Ar released during step heating. Journal of Geophysical Research.96:2057—2069.
    McDougall I and Harrison T M (1999). Geochronology and Thermochronology by the40Ar/39Ar Method, Oxford University Press, USA:269pp.
    McDougall I and Roksandic Z (1974). Total fusion40Ar/39Ar ages using HIFARreactor. Geol. Soc. Aust. J.21:81—89.
    Merrihue C and Turner G (1966). Potassium—argon dating by activation with fastneutrons. Journal of Geophysical Research.71:2852—2857.
    Merrihue C M (1965). Trace—element determinations and potassium—argon datingby mass spectroscopy of neutron—irradiated samples. Trans. Am. Geophys. Un.46:125.
    Meyer B, Tapponnier P, Bourjot L, et al.(1998). Crustal thickening inGansu—Qinghai, lithospheric mantle subduction, and oblique, strike—slipcontrolled growth of the Tibet plateau. Geophysical Journal International.135:1—47.
    Mitchell J G (1968). The argon—40/argon—39method for potassium—argon agedetermination. Geochimca. Cosmochimica. Acta.32(7):781—790.
    Molnar P (2005). Mio—Pliocene growth of the Tibetan Plateau and evolution of EastAsian climate. Palaeontologia Electronica.8(1):1–23.
    Molnar P and England P (1990). Late Cenozoic uplift of mountain ranges and globalclimate change: chicken or egg? Nature.346:29—34.
    Molnar P, England P and Martinod J (1993). Mantle dynamics, uplift of the Tibetanplateau, and the Indian monsoon: Review of Geophysics.31(4):357–396.
    Molnar P and Tapponnier P (1975). Cenozoic tectonics of Asia: Effects of acontinental collision. Science.189:419–426.
    Mote T I, Becker T A, Renne P, et al.(2001). Chronology of exotic mineralization atEl Salvador, Chile, by40Ar/39Ar dating of copper wad and supergene alunite.Economic Geology.96(2):351—366.
    Mulch A and Chamberlain C P (2006). The rise and growth of Tibet. Nature.439:670—671.
    Mussett A E and Dalrymple G B (1968). An investigation of the source of air Arcontamination in K—Ar dating. Earth and Planetary Science Letters.4:422—426.
    Nahon D B (1986). Evolution of iron crusts in tropical landscapes. In Rates ofChemical Weathering of Rocks and Minerals, New York: Academic.9:169—191.
    Nickel E H.1983. An unusual pyrite—sulphur—jarosite assemblage from Arkaroola,South Australia. Mineralgocial magazine,48:139—142.
    Ozisik M N,. Boundary value problems of heat conduction. Dover Publications, NewYor,1989,504
    Pearson P N and Palmer M R (2000). Atmospheric carbon dioxide concentrationsover the past60million years.Nature.406:695—699.
    Prell W L and Kutzbach J E (1992). Sensitivity of the Indian monsoon to forcingparameters and implications for its evolution. Nature.360:647—652.
    Prell W L and Kutzbach J E (1997). The impact of Tibet—Himalayan elevation on thesensitivity of the monsoon climate system to changes in solar radiation. TectonicUplift and Climate Change. W. F. Ruddiman. NewYork, Plenum PublishingCorporation:172–201.
    Qiang X K, Li Z X, Powell C M A, et al.(2001). Magnetostratigraphic record of theLate Miocene onset of the East Asian monsoon, and Pliocene uplift of northernTibet. Earth and Planetary Science Letters.187(1—2):Wang P, Quanhong Z,Zhimin J, et al.(2003a). Thirty million year deep—sea records in the SouthChina Sea. Chinese Science Bulletin.48(23):2524—2535.
    Quade J, Cerling T E and Bowman J R (1989). Development of Asian monsoonrevealed by marked ecological shift during the latest Miocene in northernPakistan. Nature.342:163—166.
    Quang C X, Clark A H, Lee J K W, et al.2003.40Ar/39Ar ages of hypogene andsupergene mineralization in the Cerro Verde—Santa Rosa Porphyry Cu—Mocluster, Arequipa, Peru [J]. Economic Geology.98(8):1683—1696.
    Quang C X, Clark A H, W. Lee J K, et al.(2005). Response of supergene processes toepisodic Cenozoic uplift, pediment erosion, and ignimbrite eruption in theporphyry copper province of southern Peru. Economic Geology.100(1):87—114.
    Ramstein G, Fluteau F, Besse J, et al.(1997). Effect of orogeny, plate motion andland–sea distribution on Eurasian climate change over the past30million years.Nature.386(788—795).
    Raymo M E and Ruddiman W F (1992). Tectonic forcing of late Cenozoic climate.Nature.359:117—122.
    Raymo M E, Ruddiman W F and Froelich P N (1988). Influence of late Cenozoicmountain building on ocean geochemical cycles. Geology.16:649—653.
    Rea D K (1992). Delivery of Himalayan sediment to the Northern Indium Ocean andits relation to global climate, sea level, uplift and seawater strontium.Geophysical Monography.70:387—402.
    Rea D K, Leinen M and Janecek T R (1985). Geologic approach to the long—termhistory of atmospheric circulation. Science.227:721—725.
    Rea D K, Snoeckx H and Joseph L H (1998). Late Cenozoic eolian deposition in theNorth Pacific: Asian drying, Tibetan uplift, and cooling of the northernhemisphere. Paleoceanography.13:215—224.
    Rech J A, Currie B S, Michalski G, et al.(2006). Neogene climate change and upliftin the Atacama Desert, Chile. Geology.34(9):761—764.
    Roddick J C (1983). High precision intercalibration of40Ar/39Ar standards. Geochim.Cosmochim. Acta.47(5):887—898.
    Roddick J C (1987). Generalized numerical error analysis with applications togeochronology and thermodynamics. Geochim. Cosmochim. Acta.51(8):2129—2135.
    Rowland M, Clark A H.2001. Temporal overlap of supergene alteration andhigh—sulfidation mineralization in the Supergene porphyry copper deposit, ⅡRegion. Chile [abs]: Geological Society of America, Abstracts with programs, v.33: A—358.
    Rowley D B and Currie B S (2006). Palaeo—altimetry of the late Eocene to MioceneLunpola basin, central Tibet. Nature.439:677—681.
    Royden L H, Burchfiel B C, King R W, et al.(1997). Surface deformation and lowercrustal flow in eastern Tibet. Science.276(5313):788—790.
    Royden L H, Burchfiel B C and van der Hilst R D (2008). The Geological Evolutionof the Tibetan Plateau. Science.321(5892):1054—1058.
    Ruddiman W F and Kutzbach J E (1989). Forcing of late Cenozoic NorthernHemisphere climate by plateau uplift in southern Asia and the American West.Journal of Geophysical Research.94(D15):18409—18427.
    Ruffet G, Innocent C, Michard A, et al.(1996). A geochronologica40Ar/39Ar and87Rb/81Sr study of K—Mn oxides from the weathering sequence of Azul, Brazil,Geochim. Cosmochim. Acta.60:2219—2232.
    Rye R O, Bethke P M, Lanphere M A, et al.(1993). Age and stable isotopicsystematics of supergene alunite and jarosite from the Creede mining district,Colorado: Implications for supergene processes and Neogene geomorphicevolution and climate of the southern Rocky Mountains, Geol. Soc. Am. Abstr.Programs.25:274.
    Shafiqullah M and Damon P E (1974). Evaluation of K—Ar isochron methods.Geochim. Cosmochim. Acta.38:1341—1358.
    Shanin L L, Ivanov I B and Shipulin F K (1968). The possible use of alunite in K—Argeochronometry, Geokhimiya.1:109—111.
    Sillitoe R H and McKee E H (1996). Age of supergene oxidation and enrichment inthe Chilean porphyry copper province, Econ. Geol.91:164—179.
    Stoffregen R E and Cygan G L (1990). An experimental study of Na—K exchangebetween alunite and aqueous sulfate solutions. Am. Mineral.75:209—220.
    Stoffregen R E, Wasserman M D and Rye R O (1994). Experimental studies of alunite:II. Rates of alunite—water alkali and isotope exchange. Geochim. Cosmochim.Acta.58(2):917—929.
    Sun Y and An Z (2005). Late Pliocene—Pleistocene changes in mass accumulationrates of eolian deposits on the central Chinese Loess Plateau. Journal ofGeophysical Research.110: D23101, doi:23110.21029/22005JD006064.
    Sun, J.M., Liu, T.S.(2006). The age of the Taklimakan Desert. Science312,1621.
    Sun, J.M., Zhang, Z.Q.(2008). Palynological evidence for the Mid-Miocene climaticoptimum recorded in Cenozoic sediments of the Tianshan Range, northwesternChina. Global Planet Change64,53–68.
    Sun, J.M., Zhang, Z.Q.(2009). Syntectonic growth strata and implications for lateCenozoic tectonic uplift in the northern Tian Shan, China. Tectonophysics463,60–68.
    Sun, J.M., Xu, Q.H., Huang, B.C.,2007. Late Cenozoic magnetochronology andpaleoenvironmenta changes in the northern foreland basin of the Tian ShanMountains. Journal of Geophysical Research112. doi:10.1029/2006JB004653
    Tang, Z.H., Ding, Z.L., White, P.D., Dong, X.X., Ji, J.L., Jiang, H.C., Luo, P., Wang,X.,2011. Late Cenozoic central Asian drying inferred from a palynologicalrecord from the northern Tian Shan. Earth and Planetary Science Letters302(3–4),439–447.
    Tapponnier P, Meyer B, Avouac J P, et al.(1990). Active thrusting and folding in theQilian Shan, and decoupling between upper crust and mantle in northeasternTibet. Earth and Planetary Science Letters.97:382–403.
    Tapponnier P, Zhiqin X, Roger F, et al.(2001). Oblique stepwise rise and growth ofthe Tibet Plateau. Science.294:1671—1677.
    Tetley N, McDougall I and Heydegger H R (1980). Thermal neutron interferences inthe40Ar/39Ar dating technique. Journal of Geophysical Research.85:7201—7205.
    Tilmann F and Ni J (2003). Seismic imaging of the downwelling Indian lithospherebeneath central Tibet. Science.300:1424—1427.
    Turner G (1968). The distribution of potassium and argon in chondrites. In Origin anddistribution of the elements. L. H. Ahrens. London, Pergamon.20:387—398.
    Turner G (1969). Thermal histories of meteorites by the40Ar/39Ar method. InMeteorite research. P. M. Millan.12:407—417.
    Vasconcelos P M (1999). K—Ar and40Ar/39Ar geochronology of weatheringprocesses. Annual Reviews of Earth and Planetary Sciences.27:183—229.
    Vasconcelos P M, Becker T A, Renne P R, et al.(1992). Age and duration ofweathering by40K/40Ar and40Ar/39Ar analysis of potassium—manganese oxides,Science.258:451—455.
    Vasconcelos P M, Becker T A, Renne P R, et al.(1994b). Direct dating of weatheringphenomena by40Ar/39Ar andK—Ar analysis of supergene K—Mn oxides,Geochim. Cosmochim. Acta..58:1635—1665.
    Vasconcelos P M, Brimhall G H, Becker T A, et al.(1994a).40Ar/39Ar analysis ofsupergene jarosite and alunite: implications to the paleoweathering history of thewestern USA and West Africa, Geochim. Cosmochim. Acta.58:401—420.
    Virtue T L (1996). Geology, mineralogy, and genesis of supergene enrichment at theCananea porphyry copper deposit, Sonora, Mexico, Master's thesis. Univ. Tex.El Paso.:261pp.
    Wang P, Jun T, Xinrong C, et al.(2003b). Exploring cyclic changes of the oceancarbon reservoir. Chinese Science Bulletin.48(23):2536—2548.7283—93.
    Wang P, Zhimin J, Quanhong Z, et al.(2003c). Evolution of the South China Sea andmonsoon history revealed in deep—sea records. Chinese Science Bulletin.48(23):2549—2561.
    Webb A W and McDougall I (1968). The geochronology of the igneous rocks ofeastern Queensland, Geol. Soc. Aust.15:313—343.
    Wolf R A, Farley K A, Kass D M. Modeling of the temperature sensitivity of theapatite (U—Th)/He thermochronometer. Chemical Geology,1998,148:105~114
    Yashvili L P and Gukasyan R K (1974). Use of cryptomelane for K—Ar dating ofmanganese oreof the Sevkar—Sargyukh deposits, Armenia. Dokl, Earth Sci. Sect.212:49—51.
    Zachos J, Pagani M, Sloan L, et al.(2001). Trends, rhythms, and aberrations in globalclimate65Ma to present. Science.292:686—693.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700