移居高原汉族高原红细胞增多症流行病学调查及遗传易感机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高原红细胞增多症(HAPC)是由高原低氧引起的以红细胞过度代偿性增生为主要特征的临床综合症。2004年青海国际高原医学大会提出了新的HAPC国际诊断标准,规定男性血红蛋白浓度≥21g/dl,女性血红蛋白浓度≥19g/dl可诊断为HAPC。目前还未见依据新的HAPC国诊断标准来调查移居高原汉族HAPC流行病学的文献报道。随着社会的进步,经济的发展,大量世居平原人群进入高原,移居高原人群的构成、劳动强度等已经发生了很大的变化,可能影响移居高原人群的HAPC发病率。同时,因调查地域的自然环境、海拔高度以及被调查人群的民族、年龄和职业不同等因素的影响,各地HAPC的发病率报道不一。为此,我们采用新的HAPC国际诊断标准,对不同海拔高度的移居高原汉族进行一次大样本量的HAPC流行病学调查,分析移居高原汉族HAPC发病的规律与特点,为探讨其发病机制奠定基础。
     HAPC的发病具有明显的种族差异和个体易感倾向,提示HAPC的发生可能与遗传因素有关。高原环境影响机体的主要因素是缺氧,机体对高原环境的习服也是围绕着氧的摄取-运输-利用这条轴线来进行的。线粒体是机体能量代谢的中心,是组织、细胞氧利用的关键场所,机体耗能的90%以上来自于线粒体的氧化磷酸化作用。线粒体作为细胞的‘动力工厂’,在低氧引起细胞损伤和组织、细胞对低氧环境的习服过程中的作用都是至关重要的。为此,我们通过观察HAPC患者线粒体基因组DNA单核苷酸多态性的分布状况,研究HAPC发病的线粒体遗传易感机制。同时,国内外文献报道,缺氧相关核基因也与HAPC发病有密切关系。我们采用全基因组mRNA表达谱芯片观察HAPC的差异表达基因,分析其相关的信号通路,为缺氧相关核基因单核苷酸多态性与HAPC发病的相关性研究奠定基础。本课题针对上述问题进行研究。
     本研究的主要内容有:①采用新的HAPC诊断标准(青海,2004),对新疆喀喇昆仑山地区、西藏阿里地区和青藏公路沿线地区的移居高原汉族HAPC的发病情况进行调查。研究对象分为HAPC组(Hb≥21g/dl的移居高原汉族,并无其他相关疾病)和对照组(Hb<21g/dl,健康的移居高原汉族)。采集外周静脉血,并收集受试者的人口学资料、基本生理情况、个人生活习惯和高原低氧环境暴露等相关信息,分析移居高原汉族HAPC发病的规律和特点。②采用分层卡方检验和Logistic回归统计分析HAPC患者线粒体DNA单核苷酸多态性与HAPC易感性的相关性,探讨HAPC发病的线粒体遗传易感机制。③采用全基因组mRNA表达谱芯片技术,寻找HAPC患者的差异表达基因,分析差异表达基因的功能及其参与的相关信号通路,为缺氧相关核基因单核苷酸多态性与HAPC发病的相关性研究奠定基础。
     结果:
     1、HAPC组的血红蛋白(Hb)浓度、年龄、收缩压、舒张压、心率和体重指数(BMI)均非常显著的高于对照组(P<0.01),而HAPC组的血氧饱和度则非常显著地低于对照组(P<0.01)。
     2、对于长期移居高原汉族人群而言,当血红蛋白浓度<21g/dl时,血氧饱和度与血红蛋白浓度无显著的相关性(P=0.158);当血红蛋白浓度≥21g/dl时,血氧饱和度与血红蛋白浓度有非常显著的负相关性(P<0.001),此时,血氧饱和度随血红蛋白浓度的升高而降低。
     3、移居高原的海拔高度(3700m~5380m)、移居高原人群的年龄(18岁~58岁)、高原暴露时间(3月~30年)和BMI(16.51~31.02)均与长期移居高原汉族人群的Hb浓度有非常显著的正相关性(P<0.01),长期移居高原汉族人群的Hb浓度和HAPC发病率随着海拔高度的升高、年龄的增大、高原暴露时间的延长和BMI的增加而增加。
     4、经相关分析发现,长期移居高原汉族血浆中EPO浓度与Hb浓度有非常显著的正相关性(P<0.01),Hb浓度随血浆中EPO含量的增加而增加。HAPC组血浆中的促红细胞生成素(EPO)含量非常显著地高于对照组(P<0.01)。
     5、经相关分析发现,长期移居高原汉族血浆中ROS浓度与Hb浓度有非常显著的正相关性(P<0.01),Hb浓度随血浆中ROS含量的增加而增加。HAPC组血浆中的活性氧(ROS)含量非常显著地高于对照组(P<0.01)。
     6、HAPC组mtDNA8414T基因型的频率(19.5%)显著高于对照组(13.0%,P=0.04,OR=1.615,95%CI:1.02-2.555)。
     7、分层分析结果显示,①在不吸烟组,携带mtDNA8414T基因型显著增加HAPC的发病风险,其OR值为2.367(95%CI:1.001-5.644),携带mtDNA10609C基因型和mtDNA12406A基因型显著降低HAPC的发病风险,其OR值分别为0.355(95%CI:0.151-0.833)和0.292(95%CI:0.122-0.703);②在不饮酒组,携带mtDNA10609C基因型显著降低HAPC的发病风险,其OR值为0.479(95%CI:0.254-0.906);③在年龄≥25岁组,携带mtDNA3010A基因型显著增加HAPC的发病风险,其OR值为2.189(95%CI:1.038-4.620),携带mtDNA12406A基因型显著降低HAPC的发病风险,其OR值为0.44(95%CI:0.196-0.987);④在高原暴露时间>1年组,携带mtDNA9053A基因型或mtDNA10609C基因型均显著降低HAPC的发病风险,其OR值分别为0.382(95%CI:0.152-0.961)和0.385(95%CI:0.169-0.880)。
     8、采用非条件Logistic回归模型,经年龄、BMI、吸烟饮酒状况、移居高原的海拔和高原暴露时间等因素校正后,携带mtDNA10609C基因型能显著地降低长期移居高原汉族HAPC的发病风险(P=0.01,OR=0.391,95%CI:0.191-0.800)。
     9、全基因组mRNA表达谱芯片结果显示,与健康对照比较后,HAPC组有9个基因的mRNA表达水平存在显著差异,其中表达上调的有5个,表达下调的有4个。其中HLA-DQB1、HLA-DQA1、HLA-DRB4和2型内质网氨肽酶(ERAP2)的主要功能是参与HLA介导的细胞免疫反应;细胞周期蛋白42(CDC42)和法尼基转移酶(FNTB)参与骨髓造血干细胞的增殖与分化。通过荧光定量PCR(qRT-PCR)证实了基因芯片结果的准确性。
     结论:
     1、将血红蛋白浓度≥21g/dL作为HAPC的诊断标准是合理的。
     2、移居高原的海拔高度、年龄、高原暴露时间和肥胖程度是长期移居高原汉族人群患HAPC的危险因素。
     3、HAPC组血浆中的ROS含量非常显著地高于对照组,并且移居高原汉族人群的Hb浓度与ROS浓度呈显著的正相关性,提示ROS与HAPC的发病有密切关系。
     4、携带mtDNA3010A基因型可显著增加移居高原汉族年龄≥25岁亚组HAPC的易感性,是此亚组人群患HAPC的危险因素。
     5、mtDNA8414位点多态性与移居高原汉族HAPC的易感性关联, mtDNA8414T基因型可能是移居高原汉族患HAPC的危险因素,ATP合成酶亚基6基因可能是移居高原汉族HAPC的易感基因。
     6、携带mtDNA9053A基因型可显著降低移居高原时间超过1年汉族亚组HAPC的易感性,是此亚组人群患HAPC的保护因素。
     7、经环境因素校正后,mtDNA10609位点多态性与移居高原汉族HAPC的易感性相关,mtDNA10609C基因型是移居高原汉族患HAPC的保护因素,ND4L基因可能是移居高原汉族HAPC的易感基因。携带mtDNA12406A基因型可显著降低移居高原汉族不吸烟亚组和年龄≥25亚组HAPC的易感性,是这二个亚组人群患HAPC的保护因素。线粒体呼吸链复合体Ⅰ可能参与了HAPC的发病。
     8、CDC42和FNTB可能通过调控骨髓造血干细胞的增殖与分化,调控移居高原汉族的红系造血生成,参与了HAPC的红细胞过度增生。
     9、HLA-DQB1、HLA-DQA1、HLA-DRB4和2型内质网氨肽酶(ERAP2)参与的HLA介导的细胞免疫反应与HAPC的发生有密切关系,但具体机制不明。
High altitude polycythemia (HAPC) is a clinical syndrome characterized withexcessive erythropoiesis caused by hypoxic environment in plateau. Due to different naturalenvironment and altitude in plateau, race, age and occupation of subjects, the incidence ofHAPC is reported differently from each other, also owing to application of differentdiagnostic criteria of HAPC. With social progress and economic development, a largenumber of native plain people migrate to plateau, the composition of immigrants and theirlabor intensity have changed. So, according to new international diagnostic criteria ofHAPC (2004, Qinghai. females≥19g/dl, males≥21g/dl), we perform a epidemiologicalstudy of high altitude polycythemia in Han Chinese migrated to several districts withdifferent altitude in plateau, which will lay the foundation for the pathogenesis study ofHAPC.
     There are significant susceptibility tendency in HAPC within different nationality orindividual, suggesting a relationship between HAPC and heredity. Hypoxia is the mainfactor affecting normal physiological function of immigrants. Acclimatization to highaltitude is around the axis of oxygen intaking-transporting-utilizing. Mitochondrion is thecenter of cellular energy metabolism, and is a key organelle where utilization of oxygentake place. Up to90percent of ATP come from mitochondrial oxidative phosphorylation.Mitochondrion, regarded as power manufactory, act a crucial role in hypoxic cellular injuryand acclimatization to high altitude. We aim to observe distribution of mitochondrialgenomic single nucleotide polymorphisms in patients with HAPC, and study themitochondrial hereditary susceptibility mechanism of HAPC. Secondly, a number ofhypoxia related nuclear genes have been reported to correlate with HAPC. By means ofwhole genomic mRNA expression microarray technology, we detect differently expressedgenes in patients with HAPC and analyze their signaling pathway, which will profit us to study the association of hypoxia related genes polymorphisms with HAPC.
     The purpose of this study include as follows:①to have a epidemiological survey ofHAPC in Han Chinese migrated to plateau, analyze regularity and character of HAPC.②tostudy the association of mitochondrial genomic polymorphisms with HAPC in Han Chinesemigrated to plateau.③to observe the differently expressed genes in patients with HAPC bymeans of microarray.
     Results:
     1. Compared with control group, the concentration of hemoglobin (Hb), age, systolicpressure, diastolic pressure, heart rate and body mass index (BMI) significantly increased inHAPC group (P<0.01), and the saturation of blood oxygen (SaO2) decreased obviously inHAPC group (P<0.01).
     2. For Han Chinese migrated to plateau, when Hb was below21g/dL, there was nocorrelation between SaO2and Hb (P=0.158); when Hb was up to21g/dL, there wasnegative correlation between SaO2and Hb (P<0.001).
     3. There were positive correlations between altitude (3700m~5380m), age (18years~58years), during of exposure to plateau (3months~30years), BMI (16.51~31.02)and incidence of HAPC (P<0.01).
     4. There was positive correlations between plasma content of EPO and Hb (P<0.01).Compared with control group, the plasma content of EPO increased significantly in HAPCgroup (P<0.01).
     5. There was positive correlations between plasma content of ROS and Hb (P<0.01).Compared with control group, the plasma content of ROS increased significantly in HAPCgroup (P<0.01).
     6. The frequency of mtDNA8414T was significantly higher in HAPC group (vscontrol group, P=0.04,OR=1.615,95%CI:1.02-2.555).
     7. After stratification analysis, we found that:①Compared withwild type genotype,mtDNA8414T significantly increased the risk of HAPC among the individuals with nosmoking (OR=2.367,95%CI:1.001-5.644); Compared with wild type genotype, mtDNA10609C and mtDNA12406A significantly decreased the risk of HAPC among theindividuals with no smoking (respectively, OR=0.355,95%CI:0.151-0.833and OR=0.292, 95%CI:0.122-0.703);②Compared with wild type genotype,mtDNA10609Csignificantly decreased the risk of HAPC among the individuals with no alcohol drinking(OR=0.479,95%CI:0.254-0.906);③Compared with wild type genotype, mtDNA3010Asignificantly increased the risk of HAPC among the individuals with age up to25years old(OR=2.189,95%CI:1.038-4.620); Compared with wild type genotype, mtDNA12406Asignificantly decreased the risk of HAPC among the individuals with age up to25years old(OR=0.44,95%CI:0.196-0.987);④Compared with wild type genotype, mtDNA9053Aand mtDNA10609C significantly decreased the risk of HAPC among the individuals havemigrated to plateau more than one year (respectively, OR=0.382,95%CI:0.152-0.961andOR=0.385,95%CI:0.169-0.880).
     8. Multivariate Logistic regression analysis showed that mtDNA10609C significantlydecreased the risk of HAPC in Han Chinese migrated to plateau (P=0.01, OR=0.391,95%CI:0.191-0.800).
     9. Nine differentially expressed genes were identified in HAPC patients usingmicroarrays: five were up-regulated and four were down-regulated. Functional analysis ofthe array data showed that cell division cycle42(CDC42) and HLA-mediated immuneresponse may be key features underlying the mechanism and development of HAPC.
     Conclusion:
     1. It was reasonable that we considered Hb≥21g/dl as diagnostic criteria of HAPC.
     2. Altitude, age, during of exposure to plateau and obesity were risk factors of HAPCin Han Chinese migrated to plateau.
     3. There were positive correlation between plasma level of ROS and Hb, suggestingthat ROS was closely related with HAPC.
     4. mtDNA3010A genotype increased the risk of HAPC among the individuals withage up to25years, and was a risk factor to HAPC for this sub-group.
     5. The mtDNA8414C/T polymorphism was associated with the susceptibility ofHAPC in Han migrated to plateau, and was the risk factor to HAPC. ATPase6may beHAPC susceptibility gene.
     6. mtDNA9053A genotype decreased the risk of HAPC among the individuals withduring of exposure to plateau up to one year, and was a protection factor to HAPC for this sub-group.
     7. Multivariate Logistic regression analysis showed that mtDNA10609C wasprotection factor to HAPC in Han migrated to plateau, ND4L may be HAPC susceptibilitygene. mtDNA12406A genotype decreased the risk of HAPC among with the individualswith no smoking or age up to25years old, and was a protection factor to HAPC for the twosub-groups. Mitochondrial respiratory chain complex Ⅰmay be involved in thepathogenesis of HAPC.
     8. CDC42and FNTB may be involved in regulation of bone marrow excessivelyerythropoiesis, which induced HAPC.
     9. HLA-DQB1, HLA-DQA1, HLA-DRB4and ERAP2mediated HLA-immuneresponse may be a cause of HAPC or a pathological process in development of HAPC.
引文
1. Windsor, J.S. and Rodway, G.W.(2007) Heights and haematology: the story ofhaemoglobin at altitude. Postgrad Med J83,148-151
    2. Velarde, F.L., Maggiorini, M., Reeves, J.T., et al.(2005) Consensus statement onchronic and subacute high altitude diseases. High Alt Med Biol6,147-157
    3.高钰琪主编(2005)《高原军事医学》.重庆出版社,276-285
    4.张朝霞,赵兰君,王东林, et al.(2010)青海海西地区高原红细胞增多症调查分析.现代预防医学37,2021-2022
    5.张西洲,崔建华,王宏运, et al.(2007)住喀喇昆仑山和西藏阿里某部队高原红细胞增多症患病率调查.高原医学杂志17,58-60
    6. Simonson, T.S., Yang, Y., Huff, C.D., et al.(2010) Genetic evidence for high-altitudeadaptation in Tibet. Science329,72-75
    7. Fang, J., Menon, M., Kapelle, W., et al.(2007) EPO modulation of cell-cycleregulatory genes, and cell division, in primary bone marrow erythroblasts. Blood110,2361-2370
    8. Gunga, H.C., Kirsch, K.A., Roecker, L., et al.(2007) Erythropoietin regulations inhumans under different environmental and experimental conditions. Respir PhysiolNeurobiol158,287-297
    9. Semenza, G.L., Nejfelt, M.K., Chi, S.M., et al.(1991) Hypoxia inducible nuclearfactors bind to an enhancer element located3' to the human erythropoietein gene. ProcNatl Acad Sci USA88,5680-5684
    10. Wang, G.L., Jiang, B.H., Rue, E.A., et al.(1995) Hypoxia-inducible factor1is abasic-helix-loop-helix-PAS heterodimer regulated by cellular O2tension. Proc NatlAcad Sci U S A92,5510-5514
    11. Maxwell, P.H., Wiesener, M.S., Chang, G.W., et al.(1999) The tumour suppressorprotein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis.Nature399,271-275
    12. Pialoux, V., Mounier, R., Brown, A.D., et al.(2009) Relationship between oxidativestress and HIF-1alpha mRNA during sustained hypoxia in humans. Free Radic BiolMed46,321-326
    13. Taylor, C.T.(2008) Mitochondria and cellular oxygen sensing in the HIF pathway.Biochem J409,19-26
    14. Gorlach, A. and Kietzmann, T.(2007) Superoxide and derived reactive oxygen speciesin the regulation of hypoxia-inducible factors. Methods Enzymol435,421-446
    15. Vives-Bauza, C., Gonzalo, R., Manfredi, G., et al.(2006) Enhanced ROS productionand antioxidant defenses in cybrids harbouring mutations in mtDNA. Neurosci Lett391,136-141
    16. Yuqi, G., Jian, C., Fuyu, L., et al.(2007) Relationship between high-altitude pulmonaryedema (HAPE) and mitochondrial DNA haplogroup of Han. Wilderness Environ Med18,239
    17. Yuqi, G., Yongjun, L., Jian, C., et al.(2007) Comparative study on mitochondrial singlenucleotide polymorphisms (SNPs) of Tibetans and Han. Wilderness Environ Med18,238
    18. Li, F.-X., Ji, F.-Y., Zheng, S.-Z., et al.(2011) MtDNA haplogroups M7and B insouthwestern Han Chinese at risk for acute mountain sickness. Mitochondrion11,553-558
    19.陈丽峰,柳君泽,宋熔, et al.(2004)氯霉素处理对急性缺氧大鼠脑线粒体氧化呼吸功能变化研究.第三军医大学学报18,1611-1614
    20.吴天一(2005)我国高原医学研究进展.高原医学杂志15,1-8
    21.牟信兵,李素芝主编(2001)《高原病学》.西藏人民出版社,257-260
    22. Velarde, F., Villafuerte, F. and Richalet, J.(2010) Chronic Mountain Sickness and theHeart. progress in cardiovascular diseases52,540-549
    23. Naeije, R.(2010) Physiological Adaptation of the Cardiovascular System to HighAltitude. Prog Cardiovasc Dis52,456-466
    24. Leon-Velarde, F., Gamboa, A., Chuquiza, J.A., et al.(2000) Hematological parametersin high altitude residents living at4,355,4,660, and5,500meters above sea level. HighAlt Med Biol1,97-104
    25.杨波,王广义,陈练, et al.(2007)肥胖与急性高原病关系的研究.心血管康复医学杂志16,7-9
    26. Kayser, B.(1991) Acute mountain sickness in western tourists around the Thorong pass(5400m) in Nepal. Journal of Wilderness Medicine2,110-117
    27. Leon-Velard, F., Arregui, A., Monge, C., et al.(1993) Aging at high altitudes and therisk of chronic mountain sickness. J Wilderness Med4,183-188
    28. Okumiya, K., Sakamoto, R., Kimura, Y., et al.(2009) Comprehensive geriatricassessment of elderly highlanders in Qinghai, China II: the association of polycythemiawith lifestyle-related diseases among the three ethnicities. Geriatr Gerontol Int9,342-351
    29. Wallace, D.C.(2008) Mitochondria as Chi. Genetics179,727-735
    30. Andrews, R.M., Kubacka, I., Chinnery, P.F., et al.(1999) Reanalysis and revision of theCambridge reference sequence for human mitochondrial DNA. Nat Genet23,147
    31. Boore, J.L.(1999) Animal mitochondrial genomes. Nucleic Acids Res27,1767-1780
    32. Wei, Y.H. and Lee, H.C.(2003) Mitochondrial DNA mutations and oxidative stress inmitochondrial diseases. Adv Clin Chem37,83-128
    33. Wei, Y.H.(1998) Oxidative stress and mitochondrial DNA mutations in human aging.Proc Soc Exp Biol Med217,53-63
    34. Javed, R. and Mukesh (2010) Current research status, databases and application ofsingle nucleotide polymorphism. Pak J Biol Sci13,657-663
    35. Siren, J., Marttinen, P. and Corander, J.(2011) Reconstructing population historiesfrom single nucleotide polymorphism data. Mol Biol Evol28,673-683
    36. Weber, J.L. and Wong, C.(1993) Mutation of human short tandem repeats. Hum MolGenet2,1123-1128
    37. Feder, J., Ovadia, O., Blech, I., et al.(2009) Parental diabetes status reveals associationof mitochondrial DNA haplogroup J1with type2diabetes. BMC Med Genet10,60
    38. Namslauer, I. and Brzezinski, P.(2009) A mitochondrial DNA mutation linked to coloncancer results in proton leaks in cytochrome c oxidase. Proc Natl Acad Sci U S A106,3402-3407
    39. Zhang, A.M., Zou, Y., Guo, X., et al.(2009) Mitochondrial DNA mutation m.3635G>Amay be associated with Leber hereditary optic neuropathy in Chinese. Biochem BiophysRes Commun386,392-395
    40. Wallace, D.C.(2005) A mitochondrial paradigm of metabolic and degenerative diseases,aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet39,359-407
    41. Mishmar, D., Ruiz-Pesini, E., Golik, P., et al.(2003) Natural selection shaped regionalmtDNA variation in humans. Proc Natl Acad Sci U S A100,171-176
    42. Wallace, D.C., Ruiz-Pesini, E. and Mishmar, D.(2003) mtDNA variation, climaticadaptation, degenerative diseases, and longevity. Cold Spring Harb Symp Quant Biol68,479-486
    43. Luo, Y., Gao, W., Gao, Y., et al.(2008) Mitochondrial genome analysis of Ochotonacurzoniae and implication of cytochrome c oxidase in hypoxic adaptation.Mitochondrion8,352-357
    44. Peng, M.S., Palanichamy, M.G., Yao, Y.G., et al.(2011) Inland post-glacial dispersal inEast Asia revealed by mitochondrial haplogroup M9a'b. BMC Biol9,2-10
    45. Thangaraj, K., Nandan, A., Sharma, V., et al.(2009) Deep rooting in-situ expansion ofmtDNA Haplogroup R8in South Asia. PLoS One4, e6545
    46. Roostalu, U., Kutuev, I., Loogvali, E.L., et al.(2007) Origin and expansion ofhaplogroup H, the dominant human mitochondrial DNA lineage in West Eurasia: theNear Eastern and Caucasian perspective. Mol Biol Evol24,436-448
    47. Li, H., Cai, X., Winograd-Cort, E.R., et al.(2007) Mitochondrial DNA diversity andpopulation differentiation in southern East Asia. AM J Phys Anthropol134,481-488
    48. Liew, M., Pryor, R., Palais, R., et al.(2004) Genotyping of single-nucleotidepolymorphisms by high-resolution melting of small amplicons. Clin Chem50,1156-1164
    49. Seipp, M.T., Pattison, D., Durtschi, J.D., et al.(2008) Quadruplex genotyping of F5, F2,and MTHFR variants in a single closed tube by high-resolution amplicon melting. ClinChem54,108-115
    50. Wittwer, C.T.(2009) High-resolution DNA melting analysis: advancements andlimitations. Hum Mutat30,857-859
    51. Vossen, R.H., Aten, E., Roos, A., et al.(2009) High-resolution melting analysis(HRMA): more than just sequence variant screening. Hum Mutat30,860-866
    52. Weber, J. and Senior, A.E.(2000) ATP synthase: what we know about ATP hydrolysisand what we do not know about ATP synthesis. Biochim Biophys Acta1458,300-309
    53.罗勇军(2008)线粒体基因组与高原习服适应相关性的初步研究.博士学位论文,63-77
    54. Distelmaier, F., Koopman, W.J., van den Heuvel, L.P., et al.(2009) Mitochondrialcomplex I deficiency: from organelle dysfunction to clinical disease. Brain132,833-842
    55. Carroll, J., Fearnley, I.M., Skehel, J.M., et al.(2006) Bovine complex I is a complex of45different subunits. J Biol Chem281,32724-32727
    56. Sazanov, L.A. and Hinchliffe, P.(2006) Structure of the hydrophilic domain ofrespiratory complex I from Thermus thermophilus. Science311,1430-1436
    57. Berrisford, J.M. and Sazanov, L.A.(2009) Structural basis for the mechanism ofrespiratory complex I. J Biol Chem284,29773-29783
    58. Yagi, T. and Matsuno-Yagi, A.(2003) The proton-translocating NADH-quinoneoxidoreductase in the respiratory chain: the secret unlocked. Biochemistry42,2266-2274
    59. van Oven, M. and Kayser, M.(2009) Updated comprehensive phylogenetic tree ofglobal human mitochondrial DNA variation. Hum Mutat30, E386-394
    60. Kong, Q.P., Bandelt, H.J., Sun, C., et al.(2006) Updating the East Asian mtDNAphylogeny: a prerequisite for the identification of pathogenic mutations. Hum MolGenet15,2076-2086
    61. Cardol, P., Lapaille, M., Minet, P., et al.(2006) ND3and ND4L subunits ofmitochondrial complex I, both nucleus encoded in Chlamydomonas reinhardtii, arerequired for activity and assembly of the enzyme. Eukaryot Cell5,1460-1467
    62. McKenzie, M., Liolitsa, D., Akinshina, N., et al.(2007) Mitochondrial ND5genevariation associated with encephalomyopathy and mitochondrial ATP consumption. JBiol Chem282,36845-36852
    63. Jahangir Tafrechi, R.S., Svensson, P.J., Janssen, G.M., et al.(2005) Distinct nucleargene expression profiles in cells with mtDNA depletion and homoplasmic A3243Gmutation. Mutat Res578,43-52
    64. Martin, D. and Windsor, J.(2008) From mountain to bedside: understanding the clinicalrelevance of human acclimatisation to high-altitude hypoxia. Postgrad Med J84,622-627
    65. Reeves, J.T. and Leon-Velarde, F.(2004) Chronic mountain sickness: recent studies ofthe relationship between hemoglobin concentration and oxygen transport. High Alt MedBiol5,147-155
    66. Ou, L.C., Salceda, S., Schuster, S.J., et al.(1998) Polycythemic responses to hypoxia:molecular and genetic mechanisms of chronic mountain sickness. J Appl Physiol84,1242-1251
    67. Lee, F.S. and Percy, M.J.(2011) The HIF Pathway and Erythrocytosis. Annual Reviewof Pathology: Mechanisms of Disease6,165-192
    68. Richmond, T.D., Chohan, M. and Barber, D.L.(2005) Turning cell red: signaltransduction mediated by erythropoietin. Trends Cell Biol15,146-155
    69. Amaru, R., Villarroel, M., Miguez, H., et al.(2009) Hematopoietic progenitor cellsfrom patients with chronic mountain sickness lack the JAK(V617F) mutation, showhypersensitivity to erythropoietin and are inhibited by statins[abstract]. Blood114,752
    70. Li, P., Huang, J., Tian, H.J., et al.(2011) Regulation of bone marrow hematopoieticstem cell is involved in high-altitude erythrocytosis. Exp Hematol39,37-46
    71. Zhang, Y., Cui, Y., Zhou, Z., et al.(2010) Altered global gene expressions of humanplacentae subjected to assisted reproductive technology treatments. Placenta31,251-258
    72. Wang, L., Yang, L., Filippi, M.D., et al.(2006) Genetic deletion of Cdc42GAP revealsa role of Cdc42in erythropoiesis and hematopoietic stem/progenitor cell survival,adhesion, and engraftment. Blood107,98-105
    73. Yang, L., Wang, L., Geiger, H., et al.(2007) Rho GTPase Cdc42coordinateshematopoietic stem cell quiescence and niche interaction in the bone marrow. Proc NatlAcad Sci USA104,5091-5096
    74. Ghiaur, G., Lee, A., Bailey, J., et al.(2006) Inhibition of RhoA GTPase activityenhances hematopoietic stem and progenitor cell proliferation and engraftment. Blood108,2087-2094
    75. Yang, L., Wang, L., Kalfa, T.A., et al.(2007) Cdc42critically regulates the balancebetween myelopoiesis and erythropoiesis. Blood110,3853-3861
    76. Yang, F.C., Atkinson, S.J., Gu, Y., et al.(2001) Rac and Cdc42GTPases controlhematopoietic stem cell shape, adhesion, migration, and mobilization. Proc Natl AcadSci USA98,5614-5618
    77. Sebti, S.M. and Der, C.J.(2003) Opinion: Searching for the elusive targets offarnesyltransferase inhibitors. Nat Rev Cancer3,945-951
    78. Winter-Vann, A.M. and Casey, P.J.(2005) Post-prenylation-processing enzymes as newtargets in oncogenesis. Nat Rev Cancer5,405-412
    79. Saveanu, L., Carroll, O., Lindo, V., et al.(2005) Concerted peptide trimming by humanERAP1and ERAP2aminopeptidase complexes in the endoplasmic reticulum. NatureImmunology6,689-697
    80. Tanioka, T.(2003) Human leukocyte-derived arginine aminopeptidase: the thirdmember of the oxytocinase subfamily of aminopeptidases. J Biol Chem278,32275-32283
    81. Haroon, N. and Inman, R.D.(2010) Endoplasmic reticulum aminopeptidases: biologyand pathogenic potential. Nat Rev Rheumatol6,461-467
    82. Ackerman, S.J., Liu, L., Kwatia, M.A., et al.(2002) Charcot-Leyden CrystalProtein(Galectin-10) is not a dual function galectin with lysophospholipase activity butbinds a lysophospholipase inhibitor in a novel structural fashion. J Biol Chem277,14859-14868
    83. Jan, K., Petra, L., Tobias, B., et al.(2007) Human CD4+CD25+regulatory T cells:proteome analysis identifies galectin-10as a novel marker essential for their anergy andsuppressive function. Blood110,1550-1558
    84. Facco, M., Zilli.C., Siviero, M., et al.(2005) Modulation of immune response by theacute and chronic exposure to high altitide. Med Sci Sports Exerc37,768-774
    85. Eltzschig, H.K. and Carmeliet, P.(2011) Hypoxia and inflammation. New England JMedicine364,656-665
    86. Hartmann, G., Tschop, K., Fischer, R., et al.(2000) High altitide increases circulatinginterleukin-6,interleukin-1receptor antagonist and C-reactive protein. Cytokine12,246-252
    87. Wang, J.S., Lin, H.Y., Cheng, M.L., et al.(2007) Chronic intermittent hypoxiamodulates eosinophil-and neutrophil-platelet aggregation and inflammatory cytokinesecrection caused by strenuous exercise in men. J Appl Physiol103,305-314
    88. Alexander, L.D. and Mark, H.K.(2008) T cell regulation of hematopoiesis. Frontiers inBioscience13,6229-6236
    89. Monterio, J.P., Benjamin, A., Costa, E.S., et al.(2005) A normal hematopoiesis ismaintained by activated bone marrow CD4+T cell. Blood105,1484-1491
    90. Saini, S., Hirata, H., Majid, S., et al.(2009) Functional significance of cytochromeP4501B1in endometrial carcinogensis. Cancer Res69,7038-7045
    91. Murray, G.I., Taylor, M.C. and Mcfadyen, M.(1997) Tumor-specific Expression ofCytochrome P450CYP1B1. Cancer Res57,3026-3031
    92. Nebert, D.W., Nelson, D.R., Coon, M.J., et al.(1991) The P450superfamily: update onnew sequences, gene mapping, and recommended nomenclature. DNA and Cell Biol10,1-14
    93. Hu, S.W., Lin, P.P. and Chen, C.C.(2008) Association of cytochrome P4501B1geneexpression in peripheral leukocytes with blood lipid levels in waste incinerator workers.Ann Epidemiol18,784-791
    94. Meurs, I., Hoekstra, M., van Wanrooij, E.J., et al.(2005) HDL cholesterol levels are animportant factor for determining the lifespan of erythrocytes. Exp Hematol33,1309-1319
    95. Theocharis, A.D., Skandalis, S.S., Tzanakakis, G.N., et al.(2010) Progeoglycans inhealth and disease: novel roles for proteoglycans in malignancy and theirpharmacological targeting. FEBS J277,3904-3923
    96. Theocharis, A.D.(2008) Versican in health and disease. Connect Tissue Res.49,230-234
    97. Wight, T.N.(2002) Versican: a versatile extracellular matrix proteoglycan in cellbiology. Curr Opin Cell Biol14,617-623
    98. Hernandez, D., Miquel-Serra, L., Docampo, M.J., et al.(2011) Role of versican V0/V1and CD44in the regulation of human melanoma cell behavior. Int J Mol Med27,269-275
    99. Cattaruzza, S., Schiappacassi, M., Kimata, K., et al.(2004) The globular domains ofPGM/versican modulate the proliferation-apoptosis equilibrium and invasivecapabilities of tumor cells. FASEB J18,779-781
    100. Lapierre, D.P., Lee, D.Y., Li, S.Z., et al.(2007) The ability of versican tosimultaneously cause apoptotic resistance and sensitivity. Cancer Res67,4742-4750
    1. Monge, C.C., Arrequi, A. and Leon-Velarde, F.(1992) Pathophysiology andepidemiology of chronic mountain sickness. Int J Sports Med Suppl1, s79-s81
    2. Reeves, J.T. and Leon-Velarde, F.(2004) Chronic mountain sickness: recent studies ofthe relationship between hemoglobin concentration and oxygen transport. High Alt MedBiol5,147-155
    3. Beall, C.M.(2000) Tibetan and Andean patterns of adaptation to high-altitude hypoxia.Hum Biol72,201-228
    4. Velarde, F.L., Maggiorini, M., Reeves, J.T., et al.(2005) Consensus statement onchronic and subacute high altitude diseases. High Alt Med Biol6,147-157
    5. Wu, T.Y.(2005) Chronic mountain sickness on the Qinghai-Tibetan plateau. Chin MedJ (Engl)118,161-168
    6. Wu, T., Li, S. and Ward, M.P.(2005) Tibetans at extreme altitude. Wilderness EnvironMed16,47-54
    7.高钰琪主编(2005)《高原军事医学》.重庆出版社,276-285
    8. Okumiya, K., Sakamoto, R., Kimura, Y., et al.(2009) Comprehensive geriatricassessment of elderly highlanders in Qinghai, China II: the association of polycythemiawith lifestyle-related diseases among the three ethnicities. Geriatr Gerontol Int9,342-351
    9. Beall, C.M.(2000) Tibetan and Andean contrasts in adaptation to high-altitude hypoxia.Adv Exp Med Biol475,63-74
    10. Beall, C.M.(2006) Andean, Tibetan, and Ethiopian patterns of adaptation tohigh-altitude hypoxia. Integr Comp Biol46,18-24
    11. Beall, C.M.(2007) Two routes to functional adaptation: Tibetan and Andeanhigh-altitude natives. Proc Natl Acad Sci U S A104Suppl1,8655-8660
    12. Xing, G., Qualls, C., Huicho, L., et al.(2008) Adaptation and mal-adaptation toambient hypoxia; Andean, Ethiopian and Himalayan patterns. PLoS One3, e2342
    13.赵秀欣,高文祥,李素芝, et al.(2007)高原缺氧环境对世居藏族和移居汉族胎儿生长发育的影响.西南国防医药17,146-148
    14. Moore, L.G., Niermeyer, S. and Vargas, E.(2007) Does chronic mountain sickness(CMS) have perinatal origins? Respir Physiol Neurobiol158,180-189
    15. Huicho, L., Xing, G., Qualls, C., et al.(2008) Abnormal energy regulation in early life:childhood gene expression may predict subsequent chronic mountain sickness. BMCPediatr8,47
    16. Saaresranta, T. and Polo, O.(2002) Hormones and breathing. Chest122,2165-2182
    17. Gonzales, G.F., Gasco, M., Tapia, V., et al.(2009) High serum testosterone levels areassociated with excessive erythrocytosis of chronic mountain sickness in men. Am JPhysiol Endocrinol Metab296, E1319-1325
    18. Gonzales, G.F., Tapia, V., Gasco, M., et al.(2011) High serum zinc and serumtestosterone levels were associated with excessive erythrocytosis in men at highaltitudes. Endocrine
    19. Suzuki, K., Kizaki, T., Hitomi, Y., et al.(2003) Genetic variation in hypoxia-induciblefactor1alpha and its possible association with high altitude adaptation in Sherpas. MedHypotheses61,385-389
    20. Liu, K.X., Sun, X.C., Wang, S.W., et al.(2007) Association of polymorphisms of1772(C-->T) and1790(G-->A) in HIF1A gene with hypoxia adaptation in high altitude inSherpas. Zhonghua Yi Xue Yi Chuan Xue Za Zhi24,230-232
    21. Appenzeller, O., Minko, T., Qualls, C., et al.(2006) Gene expression, autonomicfunction and chronic hypoxia:lessons from the Andes. Clin Auton Res16,217-222
    22. Beall, C.M., Laskowski, D., Strohl, K.P., et al.(2001) Pulmonary nitric oxide inmountain dwellers. Nature414,411-412
    23. Erzurum, S.C., Ghosh, S., Janocha, A.J., et al.(2007) Higher blood flow andcirculating NO products offset high-altitude hypoxia among Tibetans. Proc Natl AcadSci U S A104,17593-17598
    24. Ahsan, A., Norboo, T., Baig, M.A., et al.(2005) Simultaneous selection of thewild-type genotypes of the G894T and4B/4A polymorphisms of NOS3associate withhigh-altitude adaptation. Ann Hum Genet69,260-267
    25. Droma, Y., Hanaoka, M., Basnyat, B., et al.(2006) Genetic contribution of theendothelial nitric oxide synthase gene to high altitude adaptation in sherpas. High AltMed Biol7,209-220
    26. Danser, A.H., Schalekamp, M.A., Bax, W.A., et al.(1995) Angiotensin-convertingenzyme in the human heart. Effect of the deletion/insertion polymorphism. Circulation92,1387-1388
    27. Bigham, A.W., Kiyamu, M., Leon-Velarde, F., et al.(2008) Angiotensin-convertingenzyme genotype and arterial oxygen saturation at high altitude in Peruvian Quechua.High Alt Med Biol9,167-178
    28.青格乐图,耿排力,吕同德, et al.(2009) HLA-DQA1、-DQB1基因多态性与高原红细胞增多症的相关性研究.中国免疫学杂志25,240-246
    29.青格乐图,耿排力,张雪峰, et al.(2010) HAPC易感性与HLA-Ⅱ类基因相关性探讨.青海医学院学报31,80-83
    30. Beall, C.M., Cavalleri, G.L., Deng, L., et al.(2010) Natural selection on EPAS1(HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders.Proc Natl Acad Sci U S A107,11459-11464
    31. Simonson, T.S., Yang, Y., Huff, C.D., et al.(2010) Genetic evidence for high-altitudeadaptation in Tibet. Science329,72-75
    32. Yi, X., Liang, Y., Huerta-Sanchez, E., et al.(2010) Sequencing of50human exomesreveals adaptation to high altitude. Science329,75-78
    33. Saito, Y. and Ishikawa, F.(2008) The origins of blood: induction of hematopoietic stemcells from different sources. Cell Stem Cell3,8-10
    34. Vanhees, K., Coort, S., Ruijters, E.J., et al.(2011) Epigenetics: prenatal exposure togenistein leaves a permanent signature on the hematopoietic lineage. FASEB J25,797-807
    35. Abu-Remaileh, M., Albacker, C.E., Audet, J., et al.(2009) Regulatory Networks inStem Cells.(Rajasekhar, V.K. and Vemuri, M.C., eds), Humana Press
    36. Gao, X.N., Lin, J., Wang, L.L., et al.(2009) Demethylating treatment suppressesnatural killer cell cytolytic activity. Mol Immunol46,2064-2070
    37. Gopalakrishnan, S., Van Emburgh, B.O. and Robertson, K.D.(2008) DNA methylationin development and human disease. Mutation Research647,30-38
    38. Andersen, J.L. and Kornbluth, S.(2011) Meeting the (N-terminal) end with acetylation.Cell146,503-505

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700