金属表面渗镀复合改性层接触力学行为探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表而渗镀复合改性层,不但具备表面完全改性,而且由于成分梯度分布的中间扩散层的存在,使其在钛及不锈钢等软基材农而承载过程中具备较单一匀质涂层更好的协调变形性能。也正是由于中间梯度扩散层的存在,使渗镀复合改性层力学性能的表征远较匀质改性层复杂。本文借助纳米压入、微米压入、小能量多冲测试并结合有限元模拟,对渗镀复合改性层的弹塑性性能参数及典型静、动态接触载荷下的变形及火效行为进行初步分析。研究结果可为渗镀复合改性层的设计及工程应用提供理论参考。
     正向分析是本文研究的基础,本文先期对性能已知的钛/不锈钢(Ti/SS)及铬/不锈钢(Cr/SS)两种膜/基体系进行正向分析。然后,基于正向分析及代农性应力和代表性应变的概念,建立求解渗镀复合改性层塑性性能参数的反演分析方案。最后,针对Mo改性Ti进行纳米压入测试和反演分析,微米压入测试和正向分析,小能量多冲测试和正向分析。主要研究工作和结论如下:
     (1)对软膜硬基Ti/SS以及硬膜软基Cr/SS体系进行正向分析,发现弹性模量比硬度对基体效应更为敏感,10%准则不具有通用性;软膜硬基在受压过程中产生膜层的堆积,使得垂直于压头棱边的方向存在环向拉应力,因此沿着压头棱边的方向易于产生径向裂纹;硬膜软基在受压过程中,发生膜、基的沉陷,使得压头与试样表而接触圆周附近存在径向弯曲拉应力,导致该区域易于产生环向裂纹。
     (2)采取分层处理的思路,基于正向分析、代表性应力和代表性应变的概念,建立了两种求解渗镀复合改性层塑性性能参数的反演分析方案(Ⅰ和Ⅱ)。两种反演分析方案的主要区别是:方案Ⅱ选用的代表性应变为塑性应变,具有一定的物理意义;应变强化指数不是通过无量纲函数求得,而是依赖于反复的模拟修正。
     (3)利用等离子表面合金化技术,在纯Ti表面制备了Mo渗镀复合改性层,对其表面及横截面进行了纳米压入测试,并对改性前后的纯Ti基体也进行了对比纳米压入测试。考虑纳米压入测试尺寸效应的情况下,利用反演分析方案Ⅱ求解了Mo改性层的塑性性能参数。由Mo改性层的弹塑性性能参数可知,经过等离子表而合金化处理,Ti表面的硬度及弹性模量大幅升高,但依然保有较好的塑性性能指标。
     (4)选用5N、10N和15N三种载荷,通过单次力加载的方式对Mo改性层的表面进行了微米压入测试,发现Mo改性Ti具有硬膜/软基体系的失效形式。针对5N载荷情况,通过循环力加载的方式进行测试,得到了和纳米压入测试相衔接的结果。结合试验及正向分析,得出微米压入过程中环向裂纹产生的规律:随着施加载荷的增大,在压头的正下方,裂纹宽度逐渐增大,当达到最大载荷时,在接触圆周附近产生最大宽度的裂纹,且随着拉应力沿着接触表面向外的扩展,在接触圆周外围继续产生裂纹,但宽度呈逐渐减小的趋势。
     (5)采用100N、300N、500N和700N四种冲击载荷,对Mo改性层的表面进行了小能量多次冲击测试及分析。动态接触载荷下Mo改性层的典型失效过程表现为:首先,冲击球与试样表面接触圆周刷的附近,由于存在较大的塑性变形而产生环向裂纹;其次,由于冲击疲劳的作用,上述区域产生垂直于环向裂纹的径向裂纹;最后是在该区域发生内聚失效。上述失效过程中伴有一定程度的冲击磨损,尤其是在高冲击载荷下,冲击磨损作用不可忽略,应当加以考虑。结合试验及正向分析,提出了较高载荷理想冲击状态下Mo改性层的失效模型。
A diffusion and deposition duplex modified layer (DDDML) with high hardness and high resistance of wear and corrosion can be obtained by using the plasma surface alloying technique after selecting reasonable diffusion elements. DDDML contains a homogeneous deposition layer and a gradient diffusion layer. Compared to homogeneous films, DDDML belongs to metallurgical bonding and its diffusion part can coordinate the deformation between the deposition layer and the substrate. Because the diffusion layer is not only gradient in composition but in elasto-plastic properties, it is difficult to quantificationally determine its mechanical properties. Based on nano/microindentation, low energy repeat impact test and finite element simulation, this paper seeks to determine the elasto-plastic properties of DDDML and investigate its deformation and failure behavior corresponding static and dynamic contact conditions.The research results could provide theoretical references for the design and application of DDDML.
     Considering that forward analysis is the basis of this paper, it was firstly launched corresponding nanoindentation tests on Ti/SS and Cr/SS systems. Then, based on forward analysis, representative stress and representative strain, this paper sought to present inverse analysis approaches to determine the plastic properties of DDDML. Finally, nanoindentation, microindentation and low energy impact tests were performed. What is more, inverse analysis corresponding nanoindentation test and forward analysis correspongding microindentation and low energy impact tests were lauched. The main results are as follows:
     (1) According to the forward analysis corresponding nanoindentation tests on the Ti/SS and Ti/SS systems, it can be founded that the elastic modulus is more sensitive than the hardness and the10%rule is not universally true. In the nanoindentation process of soft film/hard substrate system,"pile up" presented, which made the hoop tensile stress exist in the direction perpendicular to the pyramidal edge. Therefore, along the pyramidal edge direction, radial cracks are easy to produce. For the hard film/soft substrate system,"sink in" exhibited in the nanoindentation process, which caused radial tensile stress around the contact circle between the indenter and the sample. Thus ring cracks are easy to form in this area.
     (2) Based on forward analysis, representative stress and representative strain, two inverse analysis approaches were built (Ⅰ and Ⅱ). The main differences between them are the representative strain of the inverse analysis approach II is of plastic strain and the strain hardening exponent of the inverse analysis approach II was not obtained by a dimensionless function but by repeated simulation modifications.
     (3) Nanoindentation tests were performed on the cross section and surface of the Mo modified layer. For the purpose of comparison, nanoindentation tests were also performed on the treated and untreated Ti substrates. With the consideration of size effects, the plastic properties of every sub-layer of the Mo modified layer were obtained. Experimental and inverse analysis results indicate that the whole Mo modified layer possesses higher hardness, elastic modulus and retains relatively fine plasticity. Through comparing nanoindentation test results of the treated and untreated Ti substrates, it is concluded that the alloying treatment temperature of900℃has no effect on the mechanical properties of the Ti substrate.
     (4) Microindentation tests were performed on the surface of the Mo modified layer using the CSM Micro-Hardness Tester (CSM Instruments, Switzerland) with a Vickers diamond tip. Two loading types were adopted, i.e. the linear loading type with three different maximum loads of5N, ION and15N, and the continuous multi-cycle (CMC) loading type with the maximum load of5N reached by30cycles. Linear loading test results indicate that the Mo modified Ti has the same failure mode as the hard film/soft substrate system. CMC loading test results could link with the nanonindentation results. According to the experimental and forward analysis results, the occurrence rule of the ring cracks was concluded. With the increase of the applied load, cracks become bigger and bigger under the indenter. When the load reaches the maximum value, the biggest crack appears around the contact circle. Owing to the expanding of the radial tensile stress, ring cracks continue to propagate at the periphery of the contact circle, but become weaker and weaker.
     (5) On the surface of the Mo modified layer, low energy impact tests were conducted at four loads of100N,300N,500N and700N with10000impact cycles. The failure process was obtained. Firstly, ring cracks occurred around the contact circle between the impact ball and the sample due to the large plastic deformation. Secondly, radial cracks perpendicular to the ring cracks presented because of impact fatigue. Finally, cohesion failure occurs near the contact circle. During the failure process, there existed the impact wear, especially under the higher impact load. According to the experimental and forward analysis results, the failure model under the ideal impact condition and the higher impact load was established.
引文
[1]严立,黑祖昆,孙俊才.金属表面性质与表面改性[M].大连海事大学出版社,1998.
    [2]王超,王金.机械可靠性工程[M].北京,冶金工业出版社,1992.
    [3]李银安,张友鹤,王新新,蒋洪英.等离子体的定义问题[J].物理,1992,12:758-761.
    [4]Jehn HA, Rother B. Homogeneity of multi-component PVD hard coatings deposited by multi-source arrangements[J]. Surface & Coatings Technology,1999,112 (1-3):103-107.
    [5]Laing K, Hampshire J, Teer D, Chester G. The effect of ion current density on the adhesion and structure of coatings deposited by magnetron sputter ion plating[J]. Surface & Coatings Technology,1999,112 (1-3):177-180.
    [6]郑伟涛.薄膜材料与薄膜技术[M].化学工业出版社,2008.
    [7]Ariely S, Bamberger M, Hugel H, Schaaf P. Phase investigation in laser surface alloyed steels with TiC[J]. Journal of Materials Science,1995,30 (7):1849-1853.
    [8]Ignat S, Sallamand P. Nichici A. Vannes A. Grevey D, Cicala E. MoSi2 laser cladding—a comparison between two experimental procedures:Mo-Si online combination and direct use of MoSi2[J]. Optics & Laser Technology,2001,33 (7):461-469.
    [9]Ion J, Moisio T, Pedersen T, Sorensen B, Hansson C. Laser surface modification of a 13.5% Cr,0.6% C steel [J]. Journal of Materials Science,1991,26 (1):43-48.
    [10]Jasim KM, Rawlings R, West D. Thermal barrier coatings produced by laser cladding[J]. Journal of Materials Science,1990,25 (12):4943-4948.
    [11]Kim T, Seong B. Titanium nitride laser-beam surface-alloying treatment on carbon tool steel[J]. Journal of Materials Science,1990,25 (8):3583-3591.
    [12]Almeida A, Carvalho F, Carvalho PA, Vilar R. Laser developed Al-Mo surface alloys: Micro structure, mechanical and wear behaviour. Surface & Coatings Technology,2006, 200(16-17):4782-4790.
    [13]Kokai F, Taniwaki M, Ishihara M, Koga Y. Effect of laser fluence on the deposition and hardnessof boron carbide thin films[J]. Applied Physics A:Materials Science & Processing, 2002,74 (4):533-536.
    [14]Laroudie F, Tassin C, Pons M.Hardening of 316L stainless steel by laser surface alloying[J]. Journal of Materials Science,1995,30 (14):3652-3657.
    [15]Lopez V, Bello J, Ruiz J, Fernandez B. Surface laser treatment of ductile irons[J]. Journal of Materials Science,1994,29 (16):4216-4224.
    [16]Pelletier J, Pergue D, Fouquet F, Mazille H. Laser surface melting of low and medium carbon steels:influence on mechanical and electrochemical properties [J]. Journal of Materials Science,1989,24 (12):4343-4349.
    [17]Pierantoni M, Wagniere J, Blank E. Improvement in the surface properties of Al Si cast alloys by laser surface alloying[J]. Materials Science and Engineering:A,1989, 110:L17-L21.
    [18]Solina A, de Sanctis M, Paganini L, Coppa P. Residual stresses induced by localized laser hardening treatments on steels and cast iron[J]. Journal of Heat Treating,1986,4 (3):272-280.
    [19]Tayal M, Mukherjee K. Localized boriding of low-carbon steel using a Nd:YAG laser[J]. Journal of Materials Science,1994,29 (21):5699-5702.
    [20]Volz R. Producing hardfacing layers on aluminium alloys by high power CO 2-laser[J]. Laser Treatment of Materials. ECLAT'92,1992,399-404.
    [21]黄开金,谢长生,许德胜.脉冲激光熔凝和相变硬化的研究现状[J].激光技术,2003,27(2):130-133.
    [22]刘常升,陈岁元,尚丽娟,马春雨,闻平,才庆魁.y-TiAl合金激光表面气相氮化层的组织与性能[J].中国激光,2002,29(3):277-280.
    [23]董星,段雄.喷丸强化机械及技术的发展[J].矿山机械,2004,32(7):66-68.
    [24]Curtis S, De los Rios E, Rodopoulos C, Levers A. Analysis of the effects of controlled shot peening on fatigue damage of high strength aluminium alloys[J]. International Journal of Fatigue,2003,25 (1):59-66.
    [25]Oguri K. Fatigue life enhancement of aluminum alloy for aircraft by Fine Particle Shot Peening (FPSP)[J]. Journal of Materials Processing Technology,2011,211 (8):1395-1399.
    [26]Turski M, Clitheroe S, Evans A, Rodopoulos C, Hughes D, Withers P. Engineering the residual stress state and microstructure of stainless steel with mechanical surface treatments [J]. Applied Physics A:Materials Science & Processing,2010,99 (3):549-556.
    [27]Zhan K, Jiang CH, Ji V. Surface mechanical properties of S30432 austenitic steel after shot peening[J]. Applied Surface Science,2012,258 (24):9559-9563.
    [28]Zhang P, Lindemann J. Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80[J]. Scripta Materialia,2005,52 (6):485-490.
    [29]高玉魁.喷丸对Ti-10V-2Fe-3Al钛合金拉拉疲劳性能的影响[J].中国有色金属学报2004(1):60-63.
    [30]孙艳,罗宏亮.喷丸对渗碳齿轮表层组织的影响[J].制造业自动化,2006(8):83-84.
    [31]王东林,李家宝,金涛,魏政,胡壮麒,付立群,刘世锋.利用喷丸再结晶方法提高K417合金的疲劳寿命[J].稀有金属材料与工程,2006(8):1294-1298.
    [32]王水芳,冉广,周敬恩,刘禹炯.喷丸对汽轮机叶片残余内应力影响的研究[J].汽轮机技术,2005(5):80-82.
    [33]杨素玲,吴仲棠.喷丸对DD31单晶高温合金高周疲劳性能的影响[J].材料工程,1997(12):39-41.
    [34]Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach[J]. Journal of Materials Science & Technology,1999 (3):193-197.
    [35]Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J]. Materials Science and Lnginecring:A.2004,375:38-45.
    [36]Gu J, Bei D, Pan J, Lu J, Lu K. Improved nitrogen transport in surface nanocrystallized low-carbon steels during gaseous nitridation[J]. Materials Letters,2002,55 (5):340-343.
    [37]Liu G, Lu J, Lu K. Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening[J]. Materials Science and Engineering:A,2000;286 (1):91-95.
    [38]Tao NR, Sui M, Lu J. Surface nanocrystalliation of iron by ultrasonic shot peening[J]. Nanostructural Materials,1998,11 (4):433-440.
    [39]Tao NR, Wang ZB, Tong W, Sui M, Lu J, Lu K. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J]. Acta Materialia 2002;50 (18):4603-4616.
    [40]Wang ZB, Tao NR, Li S, Wang W, Liu G, Lu J, Lu K. Effect of surface nanocrystallization on friction and wear properties in low carbon steel [J]. Materials Science and Engineering:A,2003,352 (1):144-149.
    [41]Zhang YS, Han Z, Wang K, Lu K. Friction and wear behaviors of nanocrystalline surface layer of pure copper[J]. Wear,2006,260 (9):942-948.
    [42]Chang HW, Lei MK. Mass transfer of metal ion implantation into metal targets at elevated temperatures[J]. Computational Materials Science,2005,33 (4):459-466.
    [43]Kelly R. Factors determining the compound phases formed by oxygen or nitrogen implantation in metals[J]. Journal of Vacuum Science and Technology,1982,21 (3):778-789.
    [44]Rauschenbach B. Synthesis of borides, carbides and nitrides in metal surfaces by high-dose ion implantation[J]. Journal of the Less Common Metals 1986;117 (1-2):115-119.
    [45]Reuther H, Rauschenbach B, Richter E. Ion implantation in metals-structure investigations and applications[J]. Vacuum 1988;38 (11):967-971.
    [46]Treglio JR, Elkind A, Stinner RJ, Perry AJ. Advanced vacuum arc metal ion implantation systems[J]. Surface & Coatings Technology,1997,96 (1):1-8.
    [47]Yen CC, Wang DY, Chang LS, Shih MH, Shih HC. Improving conversion efficiency of dye-sensitized solar cells by metal plasma ion implantation of ruthenium ions[J]. Thin Solid Films 2011;519 (15):4717-4720.
    [48]Xu Z, Gu FY, Pang JD, Fang BH. Plasma surface alloying[J]. Surface Engineering,1986, 2(2):103-106.
    [49]Fan AL, Qin L, Tian Lh, Tang B. Corrosion resistance of Molybdenum Nitride modified Ti6A14V alloy in HCl solution[J]. Journal of Wuhan University of Technology--Materials Science Edition,2008,23 (3):358-361.
    [50]He ZY, Wang ZX, Wang WB, Fan AL, Xu Z. Surface modification of titanium alloy Ti6A14V by plasma niobium alloying process[J]. Surface & Coatings Technology,2007,201 (9-11):5705-5709.
    [51]He ZY, Wang ZX, Liu XP, Han PD. Preparation of TiAl-Cr surface alloy by plasma-surface alloying technique[J]. Vacuum,2013,89:280-284.
    [52]Li XY, Tang B, Ye JR. Fabrication of Zr and Zr-N surface alloying layers and hardness improvement of Ti-6Al-4V alloy by plasma surface alloying technique[J]. Applied Surface Science,2012,258 (6):1981-1984.
    [53]Li XY, Wu PQ, Tang B, Celis JP. Fatigue behavior of plasma surface modified Ti-6A1-4V alloy[J]. Vacuum,2005,7991-2):52-57.
    [54]Liang WP, Xu Z, Miao Q, Liu XP, He ZY. Double glow plasma surface molybdenizing of Ti2AlNb[J]. Surface & Coatings Technology,2007,201 (9-11):5068-5071.
    [55]Liu XP, Gao Y, Li ZH, Xu Z, Tian WH, Tang B. Cr-Ni-Mo-Co surface alloying layer formed by plasma surface alloying in pure iron[J]. Applied Surface Science,2006,252 (10):3894-3902.
    [56]Liu XP, Tian WH, Xu W, Liang WP, Xu Z. Wear resistance of TiAl intermetallics by plasma alloying and plasma carburization[J]. Surface & Coatings Technology,2007,201 (9-11):5278-5281.
    [57]Liu XP, You K, Wang ZX, Zhang MQ, He ZY. Effect of Mo-alloyed layer on oxidation behavior of TiAl-based alloy[J]. Vacuum,2013,89:209-214.
    [58]Qin L, Li Z, Ma LJ, Tian LH, Liu DX, Tang B. Study on microstructure and wear resistance of Cr-Mo surface modified layer on Ti6A14V by double-glow plasma technique[J]. Rare Metal Materials and Engineering,2009,38 (12):2226-2229.
    [59]Qin L, Tian LH, Fan AL, Tang B, Xu Z. Fatigue behavior of surface modified Ti-6Al-4V alloy by double glow discharge plasma alloying[J]. Surface & Coatings Technology,2007, 201 (9-11):5282-5285.
    [60]Qin I, Yang KK, Liu CS, Tang B. Enhanced plasma bonding with molybdenum using double glow plasma surface alloying technique[J]. Materials Letters,2012.82:127-129.
    [61]Qin L, Zhan K, Fan AL, Tang B. Corrosion-wear behavior of molybdenum nitride layer on Ti6A14V alloy[J]. Rare Metal Materials and Engineering,2008,37 (4):725-728.
    [62]Tang B, Wu PQ, Fan AL, Qin L, Hu HJ, Celis JP. Improvement of corrosion-wear resistance of Ti-6A1-4V alloy by plasma Mo-N surface modification[J]. Advanced Engineering Materials,2005,7 (4):232-238.
    [63]Tang B, Wu PQ, Li XY, Fan AL, Xu Z, Celis JP. Tribological behavior of plasma Mo-N surface modified Ti-6A1-4V alloy[J]. Surface & Coatings Technology,2004,179 (2-3):333-339.
    [64]Wang WB, Xu Z, He ZY, Wang ZX, Zhang PZ. Study on double-glow plasma niobium surface alloying of pure titanium[J]. Vacuum,2007,81 (8):937-942.
    [65]Wang ZX, He ZY, Wang YQ, Liu XP, Tang B. Microstructure and tribological behaviors of Ti6A14V alloy treated by plasma Ni alloying[J]. Applied Surface Science,2011,257 (23):10267-10272.
    [66]Wang ZX, He ZY, Wang YQ, Liu XP, Tang B. Study on sliding dry friction properties of TiNi/Ti2Ni modified layer on TC4 alloy under different loads[J]. Rare Metal Materials and Engineering,2012,41 (7):1186-1190.
    [67]Liu XP, Ge PL, You K, Wang ZX, He ZY. Plasma alloying of TiAl with Niobium and its wear resistance[J]. Rare Metal Materials and Engineering,2011,40 (110:1891-1896.
    [68]Yao XH, Tang B, Fan AL, Tian LH, Qin L. Structure and corrosion behaviours of Mo modified titanium in saliva[J]. Journal of Wuhan University of Technology--Materials Science Edition,2010,25 (4):570-573.
    [69]Fan AL, Tian LH, Qin L, Tang B. Bacteria adherence property of molybdenum nitride modified layer on Ti6A14V alloy[J]. Transactions of Nonferrous Metals Society of China, 2007,17:s889-s891.
    [70]Lin NM, Huang XB, Zou JJ, Zhang XY, Qin L, Fan AL, Tang B. Effects of plasma nitriding and multiple arc ion plating TiN coating on bacterial adhesion of commercial pure titanium via in vitro investigations[J]. Surface & Coatings Technology,2012,209:212-215.
    [71]Zhang XY, Huang XB, Jiang L, Ma Y, Fan AL, Tang B. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel[J]. Applied Surface Science, 2011,258 (4):1399-1404.
    [72]Zhang XY, Fan AL, Zhu RH, Ma Y, Tang B. Antibacterial property and tribological behavior of duplex-surface-treated AISI 304 stainless steel[J]. Ieee Transactions on Plasma Science,2011,39 (7):1598-1605.
    [73]刘江南.金属表面工程学[M].北京:兵器工业出版社,1995.
    [74]廖乾初.表面处理技术现状及其在材料科学中的应用[J].兵器材料科学与工程1988:10.
    [75]徐重.等离子表面冶金学[M].北京:科学出版社,2008.
    [76]王振廷,孙俭峰,王永东.材料表面工程技术[M].哈尔滨:哈尔滨工业大学出版社,2011.
    [77]Oliver WC, Pharr GM. Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research,1992,7(6):1564-1583.
    [78]Doerner MF, Nix WD. A method for interpreting the data from depth-sensing indentation instruments[J]. Journal of Materials Research,1986, 1(4):601-609.
    [79]Pharr GM, Oliver WC. Measurement of thin film mechanical properties using nanoindentation[J]. Mrs Bull,1992,17 (7):28-33.
    [80]Bec S, Tonck A, Georges JM, Georges E, Loubet JL. Improvements in the indentation method with a surface force apparatus[J]. Philosophical Magazine A,1996,74 (5):1061-1072.
    [81]Bee S, Tonck A, Loubet JL. A simple guide to determine elastic properties of films on substrate from nanoindentation experiments [J]. Philosophical Magazine,2006,86 (33-35):5347-5358.
    [82]Bhattacharya AK, Nix WD. Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates[J]. International Journal of Solids and Structures, 1988,24(12):1287-1298.
    [83]Gamonpilas C, Busso EP. On the effect of substrate properties on the indentation behaviour of coated systems[J]. Materials Science and Engineering:A,2004,380 (1-2):52-61.
    [84]He JL, Veprek S. Finite element modeling of indentation into superhard coatings[J]. Surface & Coatings Technology,2003,163-164:374-379.
    [85]Panich N, Sun Y. Effect of penetration depth on indentation response of soft coatings on hard substrates:a finite element analysis[J]. Surface & Coatings Technology,2004,182 (2-3):342-350.
    [86]Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S. Computational modeling of the forward and reverse problems in instrumented sharp indentation[J]. Acta Materialia, 2001,49(19):3899-3918.
    [87]Antunes JM, Fernandes JV, Menezes LF, Chaparro BM. A new approach for reverse analyses in depth-sensing indentation using numerical simulation[J]. Acta Materialia,2007, 55 (I):69-81.
    [88]Bucaille JL, Stauss S, Felder E, Michler J. Determination of plastic properties of metals by instrumented indentation using different sharp indenters[J]. Acta Materialia,2003,51 (6):1663-1678.
    [89]Cao YP, Lu J. A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve[J]. Acta Materialia,2004,52 (13):4023-4032.
    [90]Chollacoop N, Dao M, Suresh S. Depth-sensing instrumented indentation with dual sharp indenters[J]. Acta Materialia,2003,51 (13):3713-3729.
    [91]Le MQ. A computational study on the instrumented sharp indentations with dual indenters[J]. International Journal of Solids and Structures,2008,45 (10):2818-2835.
    [92]Lee JM, Lee CJ, Kim BM. Reverse analysis of nano-indentation using different representative strains and residual indentation profiles[J]. Materials & Design,2009,30 (9):3395-3404.
    [93]Lee JH, Kim T, Lee H. A study on robust indentation techniques to evaluate elastic-plastic properties of metals[J]. International Journal of Solids and Structures,2010,47 (5):647-664.
    [94]Ogasawara N, Chiba N, Chen X. Measuring the plastic properties of bulk materials by single indentation test[J]. Scripta Materialia,2006,54 (1):65-70.
    [95]Ogasawara N, Chiba N, Chen X. A simple framework of spherical indentation for measuring elastoplastic properties[J]. Mechanics of Materials,2009,41 (9):1025-1033.
    [96]Qin J, Qu SX, Feng X, Huang YG, Xiao JL, Hwang KC. A numerical study of indentation with small spherical indenters[J]. Acta Mechanica Solida Sinica,2009,22 (1):18-26.
    [97]Wang LG, Ganor M, Rokhlin S. Inverse scaling functions in nanoindentation with sharp indenters:Determination of material properties[J]. Journal of Materials Research,2005,20 (4):987-1001.
    [98]Zhao Mh, Ogasawara N, Chiba N, Chen X. A new approach to measure the elastic-plastic properties of bulk materials using spherical indentation[J]. Acta Materialia, 2006,54(1):23-32.
    [99]Zhao MH, Chen X, Xiang Y, Vlassak JJ, Lee DY, Ogasawara N, Chiba N, Gan YX. Measuring elastoplastic properties of thin films on an elastic substrate using sharp indentation[J]. Acta Materialia,2007,55 (18):6260-6274.
    [100]Liao YG, Zhou YC, Huang YL, Jiang LM. Measuring elastic-plastic properties of thin films on elastic-plastic substrates by sharp indentation[J]. Mechanics of Materials,2009,41 (3):308-318.
    [101]King R. Elastic analysis of some punch problems for a layered medium[J]. International Journal of Solids and Structures,1987,23 (12):1657-1664.
    [102]Ma KJ, Bloyce A, Bell T. Examination of mechanical properties and failure mechanisms of TiN and Ti-TiN multilayer coatings[J]. Surface & Coatings Technology,1995,76:297-302.
    [103]Kazmanli MK, Rother B,Urgen M, Mitterer C. Identification of cracks generated by indentation experiments in hard-coating systems[J]. Surface & Coatings Technology,1998, 107(1):65-75.
    [104]Piana LA, Perez R EA, Souza RM, Kunrath AO, Strohaecker TR. Numerical and experimental analyses on the indentation of coated systems with substrates with different mechanical properties[J]. Thin Solid Films,2005,491 (1):197-203.
    [105]Kataria S, Goyal S, Dash S, Tyagi AK. Nanomechanical characterization of thermally evaporated Cr thin films-FE analysis of the substrate effect[J]. Thin Solid Films,2010,519 (1):312-318.
    [106]Bouzakis KD, Vidakis N, Leyendecker T, Lemmer O, Fuss HG, Erkens G. Determination of the fatigue behaviour of thin hard coatings using the impact test and a FEM simulation[J]. Surface & Coatings Technology,1996,86:549-556.
    [107]Bouzakis KD, Kfstathiou K. Vidakis N. Kallinkidis D, Angos S, Leyendecker T, Erkens G, Fuss IIG. Wenke R. Experimental and FEM analysis of the fatigue behaviour of PVD coatings on HSS substrate in milling[J].CIRP Annals-Manufacturing Technology,1998,47 (1):69-72.
    [108]Bouzakis KD, Asimakopoulos A, Michailidis N, Kompogiannis S, Maliaris G, Giannopoulos G, Pavlidou E, Erkens G. The inclined impact test, an efficient method to characterize coatings' cohesion and adhesion properties[J]. Thin Solid Films,2004, 469:254-262.
    [109]Bouzakis KD, Siganos A. Fracture initiation mechanisms of thin hard coatings during the impact test[J]. Surface & Coatings Technology,2004,185 (2):150-159.
    [110]Bouzakis KD, Siganos A, Leyendecker T, Erkens G. Thin hard coatings fracture propagation during the impact test[J]. Thin Solid Films,2004,460 (1):181-189.
    [111]Bouzakis KD, Gerardis S, Skordaris G, Bouzakis E. Nano-impact test on a TiAIN PVD coating and correlation between experimental and FEM results[J]. Surface & Coatings Technology,2011,206 (7):1936-1940.
    [112]Bouzakis KD, Michailidis N.Coating elastic-plastic properties determined by means of nanoindentations and FEM-supported evaluation algorithms[J]. Thin Solid Films,2004, 469:227-232.
    [113]Bouzakis KD, Michailidis N. An accurate and fast approach for determining materials stress-strain curves by nanoindentation and its FEM-based simulation [J]. Materials Characterization,2006,56 (2):147-157.
    [114]Giannakopoulos AE, Suresh S. Indentation of solids with gradients in elastic properties: Part I. Point force[J]. International Journal of Solids and Structures,1997,34 (19):2357-2392.
    [115]Giannakopoulos AE, Suresh S. Indentation of solids with gradients in elastic properties: Part II. axisymmetric indentors[J]. International Journal of Solids and Structures,1997,34 (19):2393-2428.
    [116]Suresh S, Olsson M, Giannakopoulos AE, Padture NP, Jitcharoen J. Engineering the resistance to sliding-contact damage through controlled gradients in elastic properties at contact surfaces[J]. Acta Materialia,1999,47 (14):3915-3926.
    [117]Fischer-Cripps AC. Analysis of instrumented indentation test data for functionally graded materials[J]. Surface & Coatings Technology,2003,168 (2):136-141.
    [118]Suresh S. Graded materials for resistance to contact deformation and damage[J]. Science,2001,292 (5526):2447-2451.
    [119]Giannakopoulos AE. Indentation of plastically graded substrates by sharp indentors[J]. International Journal of Solids and Structures,2002,39 (9):2495-2515.
    [120]Cao YP, Lu J. A new scheme for computational modeling of conical indentation in plastically graded materials[J]. Journal of Materials Research,2004,19 (6):1703-1716.
    [121]Choi IS, Dao M, Suresh S. Mechanics of indentation of plastically graded materials—Ⅰ: Analysis[J]. Journal of the Mechanics and Physics of Solids,2008,56 (1):157-171.
    [122]Choi IS, Detor AJ, Schwaiger R, Dao M, Schuh CA, Suresh S. Mechanics of indentation of plastically graded materials·Ⅱ:Experiments on nanocrystalline alloys with grain size gradients[J]. Journal of the Mechanics and Physics of Solids,2008,56 (1):172-183.
    [123]Ruan HH, Chen AY, Lu J. Characterization of plastically graded nanostructured material: Part I. The theories and the inverse algorithm of nanoindentation[J]. Mechanics of Materials, 2010,42(5):559-569.
    [124]Ruan HH, Chen AY, Chan HL, Lu J. Characterization of plastically graded nanostructured material:Part II. The experimental validation in surface nanostructured material[J]. Mechanics of Materials,2010,42 (7):698-708.
    [125]Yuan FQ, Jiang P, Xie JJ, Wu XL. Analysis of spherical indentation of materials with plastically graded surface layer[J]. International Journal of Solids and Structures,2012,49 (3-4):527-536.
    [126]Branch NA, Arakere NK, Subhash G, Klecka MA. Determination of constitutive response of plastically graded materials[J]. International Journal of Plasticity,2011,27 (5):728-738.
    [127]Branch NA. Subhash G, Arakere NK, Klecka MA. A new reverse analysis to determine the constitutive response of plastically graded case hardened bearing steels[J]. International Journal of Solids and Structures,2011,48 (3-4):584-591.
    [128]Nakamura T, Wang T, Sampath S. Determination of properties of graded materials by inverse analysis and instrumented indentation[J]. Acta Materialia,2000,48 (17):4293-4306.
    [129]Gu Y, Nakamura T, Prchlik L, Sampath S, Wallace J. Micro-indentation and inverse analysis to characterize elastic-plastic graded materials[J]. Materials Science and Engineering: A,2003,345(1-2):223-233.
    [130]Bouzakis KD, Vidakis N, Leyendecker T,Erkens G, Wenke R. Determination of the fatigue properties of multilayer PVD coatings on various substrates, based on the impact test and its FEM simulation[J]. Thin Solid Films,1997,308:315-322.
    [131]Wang ZQ, Nakamura T. Simulations of crack propagation in elastic-plastic graded materials[J]. Mechanics of Materials,2004,36 (7):601-622.
    [132]Tabor D. The hardness of metals. Oxford, Clarendon Press,1951.
    [133]Johnson KL. The correlation of indentation experiments[J]. Journal of the Mechanics and Physics of Solids,1970,18:115-126.
    [134]Cao YP, Huber N. Further investigation on the definition of the representative strain in conical indentation[J]. Journal of Materials Research,2006,21 (7):1810-1821.
    [135]Chaudhri MM. Subsurface strain distribution around Vickers hardness indentations in annealed polycrystalline copper[J]. Acta Materialia,1998,46 (9):3047-3056.
    [136]Ogasawara N, Chiba N, Zhao MH, Chen X. Measuring material plastic properties with optimized representative strain-based indentation technique[J].Journal of Solid Mechanics and Materials, Engineering 2007,1 (7):895-906.
    [137]Branch NA, Subhash G, Arakere NK, Klecka MA. Material-dependent representative plastic strain for the prediction of indentation hardness[J]. Acta Materialia,2010,58 (19):6487-6494.
    [138]张泰华.微/纳米力学测试技术及其应用[M].机械工业出版社,2005.
    [139]Choi Y, Lee HS, Kwon D. Analysis of sharp-tip-indentation load-depth curve for contact area determination taking into account pile-up and sink-in effects[J]. Journal of Materials Research 2004,19(11):3307-3315.
    [140]Soare S, Bull S, O'Neil A, Wright N, Horsfall A, dos Santos J. Nanoindentation assessment of aluminium metallisation; the effect of creep and pile-up[J]. Surface & Coatings Technology 2004,177:497-503.
    [141]Boyer RR. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering:A,1996,213(1-2):103-114.
    [142]Cai Z, Shafer T, Watanabe I, Nunn ME, Okabe T. Electrochemical characterization of cast titanium alloys[J]. Biomaterials,2003,24(2):213-218.
    [143]De Giglio E, Guascito MR, Sabbatini L, Zambonin G. Electropolymerization of pyrrole on titanium substrates for the future development of new biocompatible surfaces[J]. Biomaterials,2001,22(19):2609-2616.
    [144]Fu YQ, Du HJ, Huang WM, Zhang S, Hu M. TiNi-based thin films in MEMS applications:a review[J]. Sensors and Actuators A:Physical,2004,112(2-3):395-408.
    [145]Mallia B, Dearnley PA. The corrosion-wear response of Cr-Ti coatings[J]. Wear,2007, 263(1-6):679-690.
    [146]Moskalewicz T, Smeacetto F, Cempura G, Ajitdoss LC, Salvo M, Czyrska-Filemonowicz A. Microstructure and properties characterisation of the double layered glass-ceramic coating on near-a titanium alloy[J]. Surface & Coatings Technology, 2010,204(21-22):3509-3516.
    [147]Poondla N, Srivatsan TS, Patnaik A, Petraroli M. A study of the microstructure and hardness of two titanium alloys:Commercially pure and Ti-6A1-4V[J]. Journal of Alloys and Compounds,2009,486(1-2):162-167.
    [148]Kaestner P, Olfe J, He JW, Rie KT. Improvement in the load-bearing capacity and adhesion of TiC coatings on TiA16V4 by duplex treatment[J]. Surface & Coatings Technology, 2001,142:928-933.
    [149]Pethica JB, Oliver WC. Tip surface interactions in STM and AFM[J]. Physica Scripta, 1987,19:61-68.
    [150]Pethica JB, Oliver WC. Mechanical properties of nanometer volumes of material:use of the elastic response of small area indentations[J]. Thin Films-Stresses and Mechanical Properties, MRS Symposium Proc:Cambridge Univ Press,1989,130:13-23.
    [151]Pharr GM, Oliver WC, Brotzen FR. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation[J]. Journal of Materials Research,1992,7(3):613-617.
    [152]Stelmashenko NA, Walls MG, Brown LM, Milman YV. Microindentations on W and Mo oriented single crystals:an STM study[J]. Acta Metallurgica et Materialia,1993, 41(10):2855-2865.
    [153]Fleck NA, Muller GM, Ashby MF, Hutchinson JW. Strain gradient plasticity:theory and experiment[J]. Acta Metallurgica et Materialia,1994,42(2):475-487.
    [154]Nix WD, Gao HJ. Indentation size effects in crystalline materials:a law for strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids,1998,46(3):411-425.
    [155]Fleck NA, Hutchinson JW. A phenomenological theory for strain gradient effects in plasticity[J]. Journal of the Mechanics and Physics of Solids,1993,41 (12):1825-1857.
    [156]Ashby M. The deformation of plastically non-homogeneous materials[J]. Philosophical Magazine,1970.21(170):399-424.
    [157]McElhaney K.W, Vlassak JJ, Nix WD. Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments[J]. Journal of Materials Research,1998,13(5):1300-1306.
    [158]Ma ZS, Zhou YC, Long SG, Lu CS. An inverse approach for extracting elastic-plastic properties of thin films from small scale sharp indentation[J]. Journal of Materials Science & Technology,2012,28(7):626-635.
    [159]Graca S, Colaco R, Vilar R. Indentation size effect in nickel and cobalt laser clad coatings[J]. Surface & Coatings Technology,2007,202(3):538-548.
    [160]Branch NA, Arakere NK, Subhash G, Klecka MA. Determination of constitutive response of plastically graded materials[J]. International Journal of Plasticity,2011, 27(5):728-738.
    [161]Guicciardi S, Melandri C, Monteverde FT. Characterization of pop-in phenomena and indentation modulus in a polycrystalline ZrB2 ceramic[J]. Journal of the European Ceramic Society,2010,30(4):1027-1034.
    [162]Navamathavan R, Park SJ, Hahn JH, Choi CK. Nanoindentation 'pop-in' phenomenon in epitaxial ZnO thin films on sapphire substrates[J]. Materials Characterization,2008, 59(4):359-364.
    [163]Knotek O, Bosserhoff B, Schrey A, Leyendecker T, Lemmer O, Esser S. A new technique for testing the impact load of thin films:the coating impact test[J]. Surface & Coatings Technology,1992,54:102-107.
    [164]Voevodin AA, Bantle R, Matthews A. Dynamic impact wear of TiCxNy and Ti-DLC composite coatings[J]. Wear,1995,185(1):151-157.
    [165]Bantle R, Matthews A. Investigation into the impact wear behaviour of ceramic coatings[J]. Surface & Coatings technology,1995,74:857-868.
    [166]Batista JCA, Godoy C, Matthews A. Impact testing of duplex and non-duplex (Ti, Al) N and Cr-N PVD coatings[J]. Surface & Coatings Technology,2003,163:353-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700