不同初生重肉鸡生长发育规律及日粮蛋氨酸的调控作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关于不同初生重肉鸡生产性能的差异已有大量报道,大部分试验结果表明高初生重肉鸡的生产性能优于低初生重肉鸡,但有关其生长发育规律和营养调控方面的研究鲜见报道。为此,本论文旨在研究不同初生重肉鸡的生长发育规律,并选择蛋氨酸为试验材料,探讨日粮蛋氨酸水平对不同初生重肉鸡生长发育的调控作用及相关机理,为不同初生重肉鸡营养调控研究提供参考依据。本文分为以下五个部分:
     试验一旨在调查不同周龄肉种鸡的雏鸡初生重分布情况。选择产蛋高峰(32周龄)、产蛋后期(53周龄)和强制换羽8周后(68周龄)的AA肉种鸡所产的健康雏鸡各500只,逐个称重用于统计初生重分布情况。结果表明,各周龄肉种鸡所产雏鸡初生重呈正态分布,平均值分别为42.87g、48.24g和47.33g,变异系数均在7%-8%之间,分别有74.4%、17.0%和28.8%的雏鸡初生重小于45g,有24.4%、52.0%和49.0%介于45g和50g之间,有1.2%、31.0%和22.2%大于50g。
     试验二旨在测定不同初生重和性别肉鸡生产性能、器官发育、血液生理生化指标、养分利用率、胰腺消化酶活性随日龄的变化规律。将初生重为42.3±0.3g和51.2±0.1g的AA肉雏鸡各192只(公母各半)按2×2因子分为4组,每组8个重复,饲喂相同日粮(粉料),试验为期42d。结果表明,高初生重肉鸡21d、42d的BW和前、后及全期ADG显著大于低初生重肉鸡(P<0.05),公鸡42d的BW及后期和全期ADG、ADFI大于母鸡(P<0.05),两者互作均无显著影响。高初生重肉鸡卵黄囊重量和不含卵黄囊体重大于低初生重肉鸡(P<0.05),21和42d胸肌相对重量显著大于后者(P<0.05),在28d和35d也表现出相同趋势(P=0.058),对其他器官相对重量基本无影响。初生重对血清生理生化指标、养分表观利用率和胰腺消化酶活性无影响。
     试验三旨在研究日粮蛋氨酸水平对不同初生重肉鸡生长发育的影响。选用初生重为41.73±0.04g和48.30±0.04g的1d健康AA肉鸡各96只,按2×2因子分为4组,每组6个重复,每个重复8只(公母各半),对照日粮蛋氨酸水平按NRC(1994)配制,高蛋氨酸日粮在对照日粮中额外添加0.1%蛋氨酸。结果表明,饲喂对照日粮时高初生重肉鸡21d、42d的BW和前期、全期ADG显著大于低初生重肉鸡(P<0.05),血清生化指标和器官相对重量无显著差异,高初生重肉鸡42d胸肌DNA含量与低初生重肉鸡相比显著下降(P<0.05),而RNA/DNA和IGF-I含量显著提高(P<0.05)。提高蛋氨酸水平使低初生重肉鸡42d的BW及后期和全期ADG显著提高(P<0.05),前后期及全期F/G显著下降(P<0.05),使高初生重肉鸡42d血清UA和TG含量显著提高(P<0.05),使低初生重肉鸡的胸肌相对重量显著提高(P<0.05),21d和42d胸肌DNA含量显著减少(P<0.05),而42d的胸肌RNA/DNA和蛋白/DNA及IGF-Ⅰ含量显著提高(P<0.05)。
     试验四旨在研究日粮蛋氨酸水平对不同初生重肉鸡胸肌发育调控基因表达及MSTN基因甲基化的影响,试验设计同试验三。结果表明,饲喂对照日粮时不同初生重肉鸡胸肌中各基因的表达量和MSTN甲基化率无显著差异,提高蛋氨酸水平使低初生重肉鸡胸肌Myf5和MEF2B的mRNA表达量显著提高(P<0.05),MSTN的mRNA表达量显著下降(P<0.05),其甲基化率显著提高(P<0.05)。
     试验五旨在研究日粮蛋氨酸水平对不同初生重肉鸡胸肌IGF-Ⅰ信号通路的影响,试验设计同试验三。结果表明,饲喂对照日粮时高初生重肉鸡胸肌IGF-Ⅰ的mRNA表达量显著大于低初生重肉鸡(P<0.05),提高蛋氨酸水平使低初生重肉鸡胸肌IGF-Ⅰ和TOR的mRNA表达量及p-TOR/TOR显著提高(P<0.05),使4EBP1、FOXO4和atrogin-1的mRNA表达量及p-FOXO4/FOXO4显著下降(P<0.05)。
     综上所述,得出以下结论:
     (1)肉鸡初生重随种鸡周龄增加而逐渐提高,在种鸡换羽后有所下降;肉种鸡处于产蛋高峰期时大部分雏鸡初生重小于45g,处于产蛋后期时大部分在45g以上。
     (2)高初生重肉鸡的日增重大于低初生重肉鸡,主要是胸肌发育速度不同所致;初生重与性别之间不存在互作效应。
     (3)在日粮中添加0.1%蛋氨酸不影响高初生重肉鸡生产性能,但显著改善低初生重肉鸡生产性能和胸肌发育,这可能与其胸肌IGF-I含量提高有关。
     (4)提高日粮蛋氨酸水平可能是通过提高胸肌Myf5和MEF2B的基因表达量及MSTN基因甲基化水平,降低MSTN的基因表达量,从而促进胸肌发育。
     (5)高蛋氨酸日粮对低初生重肉鸡胸肌发育的促进作用可能是通过提高IGF-I基因表达量,进而调控TOR/4EBP1和FOXO4/atrogin-1信号通路实现的。
Extensive studies have demonstrated that broiler chicks with high hatching weight (HW) have better growth performance than those with lower HW, but up to date little attention has been paid to their physiological differences and nutritional regulations. Therefore, the objective of this study was to investigate the growth and development of broilers with different HW, and to evaluate the regulatory effects of dietary methionine (Met) and underlying mechanism. The study was composed of5trials as below:
     Trial1was conducted to investigate the HW distribution of broiler chicks from breeders of different age groups. Three batches (500birds each) of one-day-old Arbor Acres (AA) broiler chicks were selected from peak (32wk), late (53wk) and molted (68wk) breeders. They were weighed individually to analyze the HW distribution. The HW of chicks were normally distributed, and the mean value was42.87,48.24and47.33g, respectively, and CV was7%-8%. Among the three batches of chicks,74.4%,17.0%and28.8%of chicks were below45g,24.4%,52.0%and49.0%were between45and50g, and1.2%,31.0%and22.2%were above50g.
     Trial2was conducted to determine the growth performance, organ development, serum physiological and biochemical parameters, nutrient utilization, pancreatic enzyme activities of broilers with different HW and genders. A total of384day-old AA broiler chicks (half male and half female) with different HW (heavy:51.2±0.1g, and light:42.3±0.3g) were allocated to a randomized block design with a2×2factorial arrangement with4treatments. Each treatment had8replicates and12chicks per replicate. Chicks were fed the same starter and finisher mash diets for42days. The BW at21and42d and ADG were greater in heavy chicks than in light chicks during whole growth period (P<0.05). Male birds had a greater BW than female birds at42d (P<0.05). The ADG and ADFI of male birds were greater than those of female birds during finisher and overall phase (P<0.05). The interaction between HW and gender was not significant for growth performance of broilers. Heavy chicks had greater yolk sac weight and yolk-free BW than light chicks (P<0.05). The relative weight of breast muscle at21and42d was greater in heavy than in light birds (P<0.05), and the same trend was observed at28and35d. However, the relative weights of other organs did not differ. Gender and HW did not affect serum parameters tested, nutrient utilization or pancreatic enzyme activities.
     Trial3was conducted to evaluate the effect of dietary Met levels on growth and development of broilers with different HW. A total of192one-day-old AA broiler chicks with different HW (heavy:48.30±0.04g, and light:41.73±0.04g) were allocated to a2×2factorial arrangement with6replicates of8chicks (half male and half female). Met in the control diets was formulated to meet NRC recommendations, and high Met diets were manufactured by supplementing0.1%Met to the control diets. Light chicks had lower BW and ADG than heavy chicks when both were fed the control diets (P<0.05), whereas serum biochemical parameters or relative organ weights did not differ. Compared with light chicks, heavy chicks had lower DNA content in breast muscle at42d and higher RNA/DNA and IGF-I content (P<0.05). High Met diets improved42-d BW and ADG during finisher and whole phase as well as F/G in light chicks (P<0.05). Serum uric acid and triglyceride concentrations were increased by Met in heavy chicks at42d (P<0.05). Increasing Met levels increased42-d breast muscle yield and decreased its DNA concentration in light chicks at21and42d (P<0.05), whereas RNA/DNA, protein/DNA and IGF-I concentrations were increased at42d (P<0.05).
     Trial4was conducted to determine the effect of dietary Met levels on expression of genes related to muscle development and MSTN methylation in broilers with different HW. Experiment design was the same as that of Trial3. No difference was observed in the parameters tested when the birds were fed the control diets. High Met diets upregulated the mRNA levels of Myf5and MEF2B and the MSTN methylation and downregulated that of MSTN in breast muscle of light chicks (P<0.05).
     Trial5was conducted to explore the effect of dietary Met levels on the IGF-I signaling pathway in broilers with different HW. Experiment design was the same as that of Trial3. Heavy chicks had higher IGF-I mRNA expression in breast muscle than light chicks when both were fed the control diets (P<0.05). High Met diets increased the mRNA expressions of IGF-I, TOR and p-TOR/TOR in breast muscle of light chicks (P<0.05). Inversely, the mRNA expressions of4EBP1, FOXO4, atrogin-1and p-FOXO4/FOXO4were decreased in light chicks (P<0.05).
     It can be concluded as follows:
     (1) The HW of chicks increased as breeders ages before molting. Most of chicks from peak breeders had HW less than45g, and most of chicks from late breeders had HW greater than45g.
     (2) Heavy chicks had a greater ADG than light chicks, which may be due to different growth rate of breast muscles, and there was no interaction between HW and gender.
     (3) Adding0.1%Met to the control diets did not affect the performance of heavy chicks, but improved that of light chicks and breast muscle development, which may be related to increased IGF-I concentration in breast muscle.
     (4) Increasing Met levels may promote breast muscle development of light chicks by upregulating mRNA expression of Myf5and MEF2B genes and downregulating that of MSTN gene, which be associated with increased MSTN DNA methylation.
     (5) Increasing Met levels may improve breast muscle growth of light chicks by upregulating IGF-I mRNA expression, which further activated TOR/4EBP1and FOXO4/atrogin-1pathway.
引文
[1]Decuypere E, Tona K, Bruggeman V, et al. The day-old chick:a crucial hinge between breeders and broilers[J]. World's Poultry Science Journal,2001,57(2):127-138.
    [2]Willemsen H, Everaert N, Witters A, et al. Critical assessment of chick quality measurements as an indicator of posthatch performance[J]. Poultry Science,2008,87(11):2358-2366.
    [3]Tona K, Bruggeman V, Onagbesan O, et al. Day-old chick quality:Relationship to hatching egg quality, adequate incubation practice and prediction of broiler performance[J]. Avian and Poultry Biology Reviews,2005,16(2):109-119.
    [4]Decuypere E, Michels H. Incubation temperature as a management tool:a review[J]. Worlds Poultry Science Journal,1992,48(1):28-38.
    [5]Deeming D. What is chick quality?[J]. World Poultry,2000,11 (2):34-35.
    [6]姜润深,李俊英,李慧锋,等.肉用鸡初生重对生长性状和屠宰性能的影响[J].中国畜牧杂志,2005,41(6):45-46.
    [7]蒋小龙,梁国雄,李述豪,等.雏鸡来源及初生重对肉鸡生产性能的影响[J].中国禽业导刊,2008,25(4):41.
    [8]Meijerhof R. Chick size matters[J]. World Poultry,2006,22(5):30-31.
    [9]Petek M, Orman A, Dikmen S, et al. Physical chick parameters and effects on growth performance in broiler[J]. Archiv Tierzucht,2010,53(1):108-115.
    [10]张尔刚,万伶俐,崔铭鼎,等.肉鸡早期与后期体重和胫长的相关分析[J].吉林农业科学,1992,(2):65-67.
    [11]Wolanski N J, Renema R A, Robinson F E, et al. Relationship between chick conformation and quality measures with early growth traits in males of eight selected pure or commercial broiler breeder strains[J]. Poultry Science,2006,85(8):1490-1497.
    [12]Wolanski N J, Renema R A, Robinson F E, et al. Relationships among egg characteristics, chick measurements, and early growth traits in ten broiler breeder strains[J]. Poultry Science,2007, 86(8):1784-1792.
    [13]Boerjan M L. Programs for single stage incubation and chick quality[J]. Avian and Poultry Biology Reviews,2002,13(4):237-238.
    [14]Tona K, Bamelis F, De Ketelaere B, et al. Effects of egg storage time on spread of hatch, chick quality, and chick juvenile growth[J]. Poultry Science,2003,82(5):736-741.
    [15]Mendes A, Paixao S, Restelatto R, et al. Effects of initial body weight and litter material on broiler production[J]. Revista Brasileira de Ciencia Avicola,2011,13(3):165-170.
    [16]Singh P M, Nagra S. Effect of day-old chick weight and gender on the performance of commercial broiler[J]. Indian Journal of Animal Sciences,2006,76(12):1043-1046.
    [17]Powell J, Bowman J. An estimate of maternal effects in early growth characteristics and their effects upon comparative tests of chicken varieties[J]. British Poultry Science,1964,5(2): 121-132.
    [18]Wilson H. Interrelationships of egg size, chick size, posthatching growth and hatchability[J]. World's Poultry Science Journal,1991,47(2):5-20.
    [19]Tona K, Onagbesan O, De Ketelaere B, et al. Effects of age of broiler breeders and egg storage on egg quality, hatchability, chick quality, chick weight, and chick posthatch growth to forty-two days[J]. Journal of Applied Poultry Research,2004,13(1):10-18.
    [20]Molenaar R, Reijrink I, Meijerhof R, et al. Relationship between hatchling length and weight on later productive performance in broilers[J]. World's Poultry Science Journal,2008,64(4): 599-603.
    [21]Vieira S L, Moran E T. Effects of egg of origin and chick post-hatch nutrition on broiler live performance and meat yields[J]. World's Poultry Science Journal,1999,55(2):125-142.
    [22]Lara L, Baiao N, Cancado S, et al. Effect of chick weight on performance and carcass yield of broilers[J]. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia,2005,57(6):799-804.
    [23]Leandro N S M, Cunha W C P, Stringhini J H, et al. Effect of broiler chicken initial weight on performance, carcass yield and economic viability[J]. Revista Brasileira de Zootecnia,2006, 35(6):2314-2321.
    [24]Sklan D, Heifetz S, Halevy O. Heavier chicks at hatch improves marketing body weight by enhancing skeletal muscle growth[J]. Poultry Science,2003,82(11):1778-1786.
    [25]黄金秀,罗绪刚,吕林,等.不同品种初生肉仔鸡卵黄囊耗用规律及其激素调节的研究[J].畜牧兽医学报,2008,39(2):233-239.
    [26]Carew L B, Machemer R H, Sharp R W, et al. Fat absorption by the very young chick[J]. Poultry Science,1972,51(3):738-742.
    [27]Nitsan Z, Dunnington E, Siegel P. Organ growth and digestive enzyme levels to fifteen days of age in lines of chickens differing in body weight[J]. Poultry Science,1991,70(10):2040-2048.
    [28]Joseph N, Lourens A, Moran E. The effects of suboptimal eggshell temperature during incubation on broiler chick quality, live performance, and further processing yield[J]. Poultry Science,2006,85(5):932-938.
    [29]Daly K R, Peterson R A. The effect of age of breeder hens on residual yolk fat, and serum glucose and triglyceride concentrations of day-old broiler chicks[J]. Poultry Science,1990, 69(8):1394-1398.
    [30]Turro I, Dunnington E A, Nitsan Z, et al. Effect of yolk sac removal at hatch on growth and feeding behavior in lines of chickens differing in body weight[J]. Growth, Development, and Aging,1994,58(2):105-112.
    [31]Peebles E, Keirs R, Bennett L, et al. Relationships among prehatch and posthatch physiological parameters in early nutrient restricted broilers hatched from eggs laid by young breeder hens[J]. Poultry Science,2005,84(3):454-461.
    [32]Shanawany M. Hatching weight in relation to egg weight in domestic birds[J]. World's Poultry Science Journal,1987,43(2):107-115.
    [33]Vieira S L, Moran E T. Broiler yields using chicks from egg weight extremes and diverse strains[J]. Journal of Applied Poultry Research,1998,7(4):339-346.
    [34]杨海明,王志跃,陈五湖,等.蛋重对孵化失重、羊水及尿囊液量、雏鸡初生重影响的研究[J].中国家禽,2005,9(1):12-14.
    [35]Traldi A B, Menten J F M, Silva C S, et al. What determines hatchling weight:breeder age or incubated egg weight?[J]. Revista Brasileira de CienciaAvicola,2011,13(4):283-285.
    [36]刘娟,戴国俊,陈晓敏,等.影响雏鸡初生重的因素分析[J].吉林畜牧兽医,1992,14(2):16-17.
    [37]Vieira S, Almeida J, Lima A, et al. Hatching distribution of eggs varying in weight and breeder age[J]. Revista Brasileira de Ciencia Avicola,2005,7(2):73-78.
    [38]Ulmer-Franco A M, Fasenko G M, O'Dea Christopher E E. Hatching egg characteristics, chick quality, and broiler performance at 2 breeder flock ages and from 3 egg weights[J]. Poultry Science,2010,89(12):2735-2742.
    [39]杜终亮,别忠龙,王淑兰.肉用种鸡蛋重与孵化率初生雏重的关系[J].当代畜牧,1993,(2):6-7.
    [40]Onbasilar E, Poyraz O, Cetin S. Effects of breeder age and stocking density on performance, carcass characteristics and some stress parameters of broilers[J]. Asian-Australasian Journal of Animal Sciences,2008,21(2):262-269.
    [41]Suarez M, Wilson H, Mather F, et al. Effect of strain and age of the broiler breeder female on incubation time and chick weight[J]. Poultry Science,1997,76(7):1029-1036.
    [42]van de Ven L J F, van Wagenberg A V, Groot Koerkamp P W G, et al. Effects of a combined hatching and brooding system on hatchability, chick weight, and mortality in broilers[J]. Poultry Science,2009,88(11):2273-2279.
    [43]van de Ven L J F, van Wagenberg A V, Debonne M, et al. Hatching system and time effects on broiler physiology and posthatch growth[J]. Poultry Science,2011,90(6):1267-1275.
    [44]Tona K, Bamelis F, De K, et al. Effect of induced molting on albumen quality, hatchability, and chick body weight from broiler breeders[J]. Poultry Science,2002,81(3):327-332.
    [45]Shalev B A, Pasternak H. Incremental changes in and distribution of chick weight with hen age in four poultry species[J]. British Poultry Science,1995,36(3):415-424.
    [46]Adams C, Bell D. A model relating egg weight and distribution to age of hen and season[J]. Journal of Applied Poultry Research,1998,7(1):35-44.
    [47]Leeson S. Breeder age has unanticipated influences on the performance of their progeny-Some unexpected benefits with older breeders[J]. Poultry International,2003,42(10):36-44.
    [48]Vieira S L, Moran E T. Broiler yields using chicks from extremes in breeder age and dietary propionate[J]. Journal of Applied Poultry Research,1998,7(3):320-327.
    [49]Cunha W, Leandro N, Stringhini J, et al. Effect of diet levels of methionine and initial weight of broiler chicks on the digestibility of pre starter rations[J]. Acta Scientiarum-Animal Sciences, 2004,26(2):217-223.
    [50]Gomes G A, Araujo L F, Prezzi J A, et al. Period of feeding a pre-starter diet for broiler chickens with different body weights at housing[J]. Revista Brasileira de Zootecnia,2008,37(10): 1802-1807.
    [51]Dos Santos T T, Corzo A, Kidd M T, et al. Influence of in ovo inoculation with various nutrients and egg size on broiler performance[J]. Journal of Applied Poultry Research,2010,19(1):1-12.
    [52]Chen Y P, Chen X, Zhang H, et al. Effects of dietary concentrations of methionine on growth performance and oxidative status of broiler chickens with different hatching weight[J]. British Poultry Science,2013,54(4):531-537.
    [53]瞿明仁,晏向华,黎观红,等.肉鸡蛋氨酸营养研究进展[J].饲料研究,1999,(12):12-14.
    [54]Bunchasak C. Role of dietary methionine in poultry production[J]. Journal of Poultry Science, 2009,46(3):169-179.
    [55]Sekiz S S, Scott M L, Nesheim M C. The effect of methionine deficiency on body weight, food and energy utilization in the chick[J]. Poultry Science,1975,54(4):1184-1188.
    [56]Barnes D M, Calvert C C, Klasing K C. Methionine deficiency decreases protein accretion and synthesis but not tRNA acylation in muscles of chicks[J]. Journal of Nutrition,1995,125(10): 2623-2630.
    [57]Carew L, McMurtry J, Alster F. Effects of methionine deficiencies on plasma levels of thyroid hormones, insulin-like growth factors-Ⅰ and -Ⅱ, liver and body weights, and feed intake in growing chickens[J]. Poultry Science,2003,82(12):1932-1938.
    [58]Hickling D, Guenter W, Jackson M E. The effects of dietary methionine and lysine on broiler chicken performance and breast meat yield[J]. Canadian Journal of Animal Science,1990,70(2): 673-678.
    [59]Kalbande V, Ravikanth K, Maini S, et al. Methionine supplementation options in poultry[J]. International Journal of Poultry Science,2009,8(6):588-591.
    [60]Ahmed M E, Abbas T E. Effects of dietary levels of methionine on broiler performance and carcass characteristics[J]. International Journal of Poultry Science,2011,10(2):147-151.
    [61]Saki A, Pour H A M, Ahmdi A, et al. Decreasing broiler crude protein requirement by methionine supplementation[J]. Pakistan Journal of Biological Sciences,2007,10(5):757-762.
    [62]Nukreaw R, Bunchasak C, Markvichitr K, et al. Effects of methionine supplementation in low-protein diets and subsequent re-feeding on growth performance, liver and serum lipid profile, body composition and carcass quality of broiler chickens at 42 days of age[J]. Journal of Poultry Science,2011,48(4):229-238.
    [63]张建,甘悦宁,宋志芳,等.低蛋白日粮添加蛋氨酸对肉鸡生产性能及屠宰性能的影响[J].饲料研究,2013,(2):45-47.
    [64]Khajali F, Moghaddam H N. Methionine supplementation of low-protein broiler diets:Influence upon growth performance and efficiency of protein utilization[J]. International Journal of Poultry Science,2006,5(6):569-573.
    [65]Del Vesco A P, Gasparino E, Oliveira Neto A R, et al. Effect of methionine supplementation on mitochondrial genes expression in the breast muscle and liver of broilers[J]. Livestock Science, 2013,151(2-3):284-291.
    [66]Wallis I R. Dietary supplements of methionine increase breast meat yield and decrease abdominal fat in growing broiler chickens[J]. Australian Journal of Experimental Agriculture, 1999,39(2):131-141.
    [67]Corzo A, Kidd M, Dozier W, et al. Protein expression of pectoralis major muscle in chickens in response to dietary methionine status[J]. British Journal of Nutrition,2006,95(4):703-708.
    [68]Zhai W, Araujo L F, Burgess S C, et al. Protein expression in pectoral skeletal muscle of chickens as influenced by dietary methionine[J]. Poultry Science,2012,91(10):2548-2555.
    [69]Muramatsu T, Kato M, Tasaki I, et al. Enhanced whole-body protein synthesis by methionine and arginine supplementation in protein-starved chicks[J]. British Journal of Nutrition,1986, 55(3):635-641.
    [70]Metayer S, Seiliez I, Collin A, et al. Mechanisms through which sulfur amino acids control protein metabolism and oxidative status[J]. Journal of Nutritional Biochemistry,2008,19(4): 207-215.
    [71]Tesseraud S, Everaert N, Boussaid-Om Ezzine S, et al. Manipulating tissue metabolism by amino acids[J]. World's Poultry Science Journal,2011,67(2):243-252.
    [72]Brosnan J T, Brosnan M E. The sulfur-containing amino acids:an overview[J]. Journal of Nutrition,2006,136(6):1636S-1640S.
    [73]Attia Y, Hassan R, Shehatta M. Growth, carcass quality and serum constituents of slow growing chicks as affected by betaine addition to diets containing 2. Different levels of methionine[J]. International Journal of Poultry Science,2005,4(11):856-865.
    [74]Zhan X A, Li J X, Xu Z R, et al. Effects of methionine and betaine supplementation on growth performance, carcase composition and metabolism of lipids in male broilers[J]. British Poultry Science,2006,47(5):576-580.
    [75]Bouyeh M, Gevorgyan O K. Influence of excess lysine and methionine on cholesterol, fat and performance of broiler chicks[J]. Journal of Animal and Veterinary Advances,2011,10(12): 1546-1550.
    [76]Al-Mayah A A S. Immune response of broiler chicks to DL-methionine supplementation at different ages[J]. International Journal of Poultry Science,2006,5(2):169-172.
    [77]Adeyemo G, Ologhobo A, Adebiyi O. The effect of graded levels of dietary methionine on the haematology and serum biochemistry of broilers[J]. International Journal of Poultry Science, 2010,9(2):158-161.
    [78]Kiraz S, Sengul T. Relationship between abdominal fat and methionine deficiency in broilers[J]. Czech Journal of Animal Science,2005,50(8):362-368.
    [79]刘升军,呙于明.日粮蛋氨酸及赖氨酸水平对雌性肉仔鸡胴体组成的影响[J].中国畜牧杂志,2001,37(2):5-8.
    [80]Andi M A. Effects of additional DL-methionine in broiler starter diet on blood lipids and abdominal fat[J]. African Journal of Biotechnology,2012,11(29):7579-7581.
    [81]Neto M G, Pesti G, Bakalli R. Influence of dietary protein level on the broiler chicken's response to methionine and betaine supplements[J]. Poultry Science,2000,79(10):1478-1484.
    [82]Rakangtong C, Bunchasak C. Effect of total sulfur amino acids in corn-cassava-soybean diets on growth performance, carcass yield and blood chemical profile of male broiler chickens from 1 to 42 days of age[J]. Animal Production Science,2011,51(3):198-203.
    [83]Levine R L, Moskovitz J, Stadtman E R. Oxidation of methionine in proteins:roles in antioxidant defense and cellular regulation[J]. IUBMB life,2000,50(4-5):301-307.
    [84]Luo S, Levine R L. Methionine in proteins defends against oxidative stress[J]. FASEB Journal, 2009,23(2):464-472.
    [85]刘文斐,刘伟龙,占秀安,等.不同形式蛋氨酸对肉种鸡生产性能、免疫指标及抗氧化功能的影响[J].动物营养学报,2013,25(9):2118-2125.
    [86]Nemeth K, Mezes M, Gaal T, et al. Effect of supplementation with methionine and different fat sources on the glutathione redox system of growing chickens[J]. Acta Veterinaria Hungarica, 2004,52(3):369-378.
    [87]Swennen Q, Geraert P-A, Mercier Y, et al. Effects of dietary protein content and 2-hydroxy-4-methylthiobutanoic acid or dl-methionine supplementation on performance and oxidative status of broiler chickens[J]. British Journal of Nutrition,2011,106(12):1845-1854.
    [88]Willemsen H, Swennen Q, Everaert N, et al. Effects of dietary supplementation of methionine and its hydroxy analog dl-2-hydroxy-4-methylthiobutanoic acid on growth performance, plasma hormone levels, and the redox status of broiler chickens exposed to high temperatures[J]. Poultry Science,2011,90(10):2311-2320.
    [89]Fang Y Z, Yang S, Wu G. Free radicals, antioxidants, and nutrition[J]. Nutrition,2002,18(10): 872-879.
    [90]Wu G, Fang Y Z, Yang S, et al. Glutathione metabolism and its implications for health[J]. Journal of Nutrition,2004,134(3):489-492.
    [91]Shoveller A K, Stoll B, Ball R O, et al. Nutritional and functional importance of intestinal sulfur amino acid metabolism[J]. Journal of Nutrition,2005,135(7):1609-1612.
    [92]Levine R L, Berlett B S, Moskovitz J, et al. Methionine residues may protect proteins from critical oxidative damage[J]. Mechanisms of Ageing and Development,1999,107(3):323-332.
    [93]Moskovitz J. Roles of methionine suldfoxide reductases in antioxidant defense, protein regulation and survival[J]. Current Pharmaceutical Design,2005,11(11):1451-1457.
    [94]Stadtman E R, Van Remmen H, Richardson A, et al. Methionine oxidation and aging[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics,2005,1703(2):135-140.
    [95]Levine R L, Mosoni L, Berlett B S, et al. Methionine residues as endogenous antioxidants in proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996,93(26):15036-15040.
    [96]Moskovitz J. Methionine sulfoxide reductases:ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics,2005,1703(2):213-219.
    [97]Weissbach H, Resnick L, Brot N. Methionine sulfoxide reductases:history and cellular role in protecting against oxidative damage[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics,2005,1703(2):203-212.
    [98]Petropoulos I, Friguet B. Protein maintenance in aging and replicative senescence:a role for the peptide methionine sulfoxide reductases[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics,2005,1703(2):261-266.
    [99]Li P, Yin Y L, Li D, et al. Amino acids and immune function[J]. British Journal of Nutrition, 2007,98(2):237-252.
    [100]吴邦元.蛋氨酸缺乏对雏鸡免疫器官及免疫功能影响的研究[D].雅安:四川农业大学,2011.
    [101]Tsiagbe V, Cook M, Harper A, et al. Enhanced immune responses in broiler chicks fed methionine-supplemented diets[J]. Poultry Science,1987,66(7):1147-1154.
    [102]Swain B K, Johri T S. Effect of supplemental methionine, choline and their combinations on the performance and immune response of broilers[J]. British Poultry Science,2000,41(1):83-88.
    [103]Rama Rao S V, Praharaj N K, Panda A K, et al. Interaction between genotype and dietary concentrations of methionine for immune function in commercial broilers[J]. British Poultry Science,2003,44(1):104-112.
    [104]Kinscherf R, Fischbach T, Mihm S, et al. Effect of glutathione depletion and oral N-acetyl-cysteine treatment on CD4+ and CD8+ cells[J]. FASEB Journal,1994,8(6):448-451.
    [105]Waterland R A. Assessing the effects of high methionine intake on DNA methylation[J]. Journal of Nutrition,2006,136(6 Suppl):1706S-1710S.
    [106]Razin A, Riggs A. DNA methylation and gene function[J]. Science,1980,210(4470):604-610.
    [107]Anderson O S, Sant K E, Dolinoy D C. Nutrition and epigenetics:an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation[J]. Journal of Nutritional Biochemistry, 2012,23(8):853-859.
    [108]Bird A P. CpG-rich islands and the function of DNA methylation[J]. Nature,1985,321(6067): 209-213.
    [109]Eden S, Cedar H. Role of DNA methylation in the regulation of transcription[J]. Current Opinion in Genetics & Development,1994,4(2):255-259.
    [110]宫时玉,蒋曹德,邓昌彦.DNA甲基化及其生物学功能[J].华中农业大学学报,2005,24(6):651-657.
    [111]Deaton A M, Bird A. CpG islands and the regulation of transcription[J]. Genes & Development, 2011,25(10):1010-1022.
    [112]Niculescu M D, Zeisel S H. Diet, methyl donors and DNA methylation:interactions between dietary folate, methionine and choline[J]. Journal of Nutrition,2002,132(8):2333S-2335S.
    [113]Sanchez-Roman I, Gomez A, Gomez J, et al. Forty percent methionine restriction lowers DNA methylation, complex I ROS generation, and oxidative damage to mtDNA and mitochondrial proteins in rat heart[J]. Journal of Bioenergetics and Biomembranes,2011,43(6):699-708.
    [114]Liu G, Zong K, Zhang L, et al. Dietary methionine affect meat quality and myostatin gene exon 1 region methylation in skeletal muscle tissues of broilers[J]. Agricultural Sciences in China, 2010,9(9):1338-1346.
    [115]Devlin A M, Arning E, Bottiglieri T, et al. Effect of Mthfr genotype on diet-induced hyperhomocysteinemia and vascular function in mice[J]. Blood,2004,103(7):2624-2629.
    [116]Maenz D D, Engele-Schaan C M. Methionine and 2-hydroxy-4-methylthiobutanoic acid are partially converted to nonabsorbed compounds during passage through the small intestine and heat exposure does not affect small intestinal absorption of methionine sources in broiler chicks[J]. Journal of Nutrition,1996,126(5):1438-1444.
    [117]罗发洪.蛋氨酸及其羟基类似物的吸收和代谢[J].中国饲料,2007,(2):27-29.
    [118]Maenz D D, Engele-Schaan C M. Methionine and 2-hydroxy-4-methylthiobutanoic acid are transported by distinct Na (+)-dependent and H (+)-dependent systems in the brush border membrane of the chick intestinal epithelium[J]. Journal of Nutrition,1996,126(2):529-536.
    [119]Soriano-Garcia J F, Torras-Llort M, Ferrer R, et al. Multiple pathways for L-methionine transport in brush-border membrane vesicles from chicken jejunum[J]. Journal of Physiology, 1998,509(2):527-539.
    [120]Soriano-Garcia J F, Torras-Llort M, Moret6 M, et al. Regulation of L-methionine and L-lysine uptake in chicken jejunal brush-border membrane by dietary methionine[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,1999,277(6):R1654-R1661.
    [121]Knight C D, Dibner J J. Comparative absorption of 2-hydroxy-4-(methylthio)-butanoic acid and L-methionine in the broiler chick[J]. Journal of Nutrition,1984,114(11):2179-2186.
    [122]Noy Y, Sklan D. Uptake capacity in vitro for glucose and methionine and in situ for oleic acid in the proximal small intestine of posthatch chicks[J]. Poultry Science,1996,75(8):998-1002.
    [123]Dibner J, Ivey F. Capacity in the liver of the broiler chick for conversion of supplemental methionine activity to L-methionine[J]. Poultry Science,1992,71(4):700-708.
    [124]Dilger R, Baker D. DL-Methionine is as efficacious as L-methionine, but modest L-cystine excesses are anorexigenic in sulfur amino acid-deficient purified and practical-type diets fed to chicks[J]. Poultry Science,2007,86(11):2367-2374.
    [125]Dibner J J, Knight C D. Conversion of 2-hydroxy-4-(methylthio) butanoic acid to L-methionine in the chick:a stereospecific pathway [J]. Journal of Nutrition,1984,114(9):1716-1723.
    [126]D'Aniello A, D'Onofrio G, Pischetola M, et al. Biological role of D-amino acid oxidase and D-aspartate oxidase. Effects of D-amino acids[J]. Journal of Biological Chemistry,1993, 268(36):26941-26949.
    [127]Brachct P, Puigserver A. Regional differences for the D-amino acid oxidase-catalysed oxidation of D-methionine in chicken small intestine[J]. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry,1992,101(4):509-511.
    [128]Finkelstein J D. Methionine metabolism in mammals[J]. Journal of Nutritional Biochemistry, 1990,1(5):228-237.
    [129]Stipanuk M H. Metabolism of sulfur-containing amino acids[J]. Annual Review of Nutrition, 1986,6(1):179-209.
    [130]计峰,武书庚,张海军,等.蛋氨酸来源调控机体蛋氨酸代谢的研究进展[J].中国畜牧杂志,2011,47(19):74-78.
    [131]Finkelstein J. The metabolism of homocysteine:pathways and regulation[J]. European Journal of Pediatrics,1998,157(2):S40-S44.
    [132]Ishibashi T, Kametaka M. Methionine requirements of chickens with various body weights[J]. Agricultural and Biological Chemistry,1985,49(12):3493-3500.
    [133]Pack M, Schutte J. Sulfur amino acid requirement of broiler chicks from fourteen to thirty-eight days of age.2. Economic evaluation[J]. Poultry Science,1995,74(3):488-493.
    [134]Schutte J, Pack M. Sulfur amino acid requirement of broiler chicks from fourteen to thirty-eight days of age.1. Performance and carcass yield[J]. Poultry Science,1995,74(3):480-487.
    [135]Lumpkins B S, Batal A B, Baker D H. Variations in the digestible sulfur amino acid requirement of broiler chickens due to sex, growth criteria, rearing environment, and processing yield characteristics[J]. Poultry Science,2007,86(2):325-330.
    [136]Kalinowski A, Moran E, Wyatt C. Methionine and cystine requirements of slow-and fast-feathering male broilers from zero to three weeks of age[J]. Poultry Science,2003,82(9): 1423-1427.
    [137]Kalinowski A, Moran E, Wyatt C. Methionine and cystine requirements of slow-and fast-feathering broiler males from three to six weeks of age[J]. Poultry Science,2003,82(9): 1428-1437.
    [138]Raju N S, Reddy P S, Reddy P. Effect of methionine supplementation to the maize soya diet on the broiler performance[J]. Indian Journal of Animal Nutrition,2001,18(1):102-105.
    [139]Mulyantini N, Ulrikus R, Bryden W, et al. Different levels of digestible methionine on performance of broiler starter[J]. Animal Production,2011,12(1):6-11.
    [140]Albino L F T, Silva S H M d, Vargas Junior J G, et al. Methionine+ cystine levels for broilers from 1 to 21 and from 22 to 42 days of age[J]. Revista Brasileira de Zootecnia,1999,28(3): 519-525.
    [141]Graber G, Scott H, Baker D. Sulfur amino acid nutrition of the growing chick:Effect of age on the dietary methionine requirement J]. Poultry Science,1971,50(3):854-858.
    [142]Dozier W A, Kidd M T, Corzo A. Dietary amino acid responses of broiler chickens[J]. Journal of Applied Poultry Research,2008,17(1):157-167.
    [143]Tsiagbe V, Cook M, Harper A, et al. Efficacy of cysteine in replacing methionine in the immune responses of broiler chicks[J]. Poultry Science,1987,66(7):1138-1146.
    [144]Baker D, Fernandez S, Webel D, et al. Sulfur amino acid requirement and cystine replacement value of broiler chicks during the period three to six weeks posthatching[J]. Poultry Science, 1996,75(6):737-742.
    [145]占秀安,许梓荣-甜菜碱在肉鸡体内供甲基代谢及其节约蛋氨酸效应机制[J].中国粮油学报,2004,19(3):78-81.
    [146]Sun H, Yang W, Yang Z, et al. Effects of betaine supplementation to methionine deficient diet on growth performance and carcass characteristics of broilers[J]. American Journal of Animal and Veterinary Sciences,2008,3(3):78-84.
    [147]Rama Rao S, Raju M, Panda A, et al. Effect of supplementing betaine on performance, carcass traits and immune responses in broiler chicken fed diets containing different concentrations of methionine[J]. Asian Australasian Journal of Animal Science,2011,24(5):662-669.
    [148]Lukid M, Jokic Z, Petricevic V, et al. The effect of full substitution of supplemental methionine with betaine in broiler nutrition on production and slaughter results[J]. Biotechnology in Animal Husbandry,2012,28(2):361-368.
    [149]Miles R, Ruiz N, Harms R. The interrelationship between methionine, choline, and sulfate in broiler diets[J]. Poultry Science,1983,62(3):495-498.
    [150]Pillai P, Fanatico A, Beers K, et al. Homocysteine remethylation in young broilers fed varying levels of methionine, choline, and betaine[J]. Poultry Science,2006,85(1):90-95.
    [151]Pillai P, Fanatico A, Blair M, et al. Homocysteine remethylation in broilers fed surfeit choline or betaine and varying levels and sources of methionine from eight to twenty-two days of age[J]. Poultry Science,2006,85(10):1729-1736.
    [152]王宏,霍启光.动物营养中胆碱同其它甲基供体间的关系[J].动物营养学报,1999,11(2):1-5.
    [153]Waldroup P W, Motl M A, Yan F, et al. Effects of betaine and choline on response to methionine supplementation to broiler diets formulated to industry standards[J]. Journal of Applied Poultry Research,2006,15(1):58-71.
    [154]Esteve-Garcia E, Mack S. The effect of DL-methionine and betaine on growth performance and carcass characteristics in broilers[J]. Animal Feed Science and Technology,2000,87(1):85-93.
    [155]McDevitt R M, Mack S, Wallis I R. Can betaine partially replace or enhance the effect of methionine by improving broiler growth and carcase characteristics?[J]. British Poultry Science, 2000,41(4):473-480.
    [156]Baker D, Halpin K, Czarnecki G, et al. The choline-methionine interrelationship for growth of the chick[J]. Poultry Science,1983,62(1):133-137.
    [157]Derilo Y L, Balnave D. The choline and sulphur amino acid requirements of broiler chickens fed on semi-purified diets[J]. British Poultry Science,1980,21(6):479-487.
    [158]Sasse C E, Baker D H. Sulfur utilization by the chick with emphasis on the effect of inorganic sulfate on the cystine-methionine interrelationship[J]. Journal of Nutrition,1974,104(2): 244-251.
    [159]Plavnik Y, Bornstein S. The sparing action of inorganic sulphate on sulphur amino acids in practical broiler diets:The replacement of some of the supplementary methionine in broiler finisher diets[J]. British Poultry Science,1978,19(2):159-167.
    [160]Bornstein S, Plavnik Y. The sparing action of inorganic sulphate on sulphur amino acids in practical broiler diets:Preliminary trials with young chicks 1[J]. British Poultry Science,1977, 18(1):19-31.
    [161]Patel M, McGinnis J. Effect of procaine penicillin on methionine requirement of broiler chicks[J]. Poultry Science,1980,59(1):110-114.
    [162]Patel M, Bishawi K, Nam C, et al. Effect of drug additives and type of diet on methionine requirement for growth, feed efficiency, and feathering of broilers reared in floor pens[J]. Poultry Science,1980,59(9):2111-2120.
    [163]Morris T, Gous R, Abebe S. Effects of dietary protein concentration on the response of growing chicks to methionine[J]. British Poultry Science,1992,33(4):795-803.
    [164]Bornstein S, Lipstein B. Methionine supplementation of practical broiler rations[J]. British Poultry Science,1966,7(4):273-284.
    [165]Fatufe A, Rodehutscord M. Growth, body composition, and marginal efficiency of methionine utilization are affected by nonessential amino acid nitrogen supplementation in male broiler chicken[J]. Poultry Science,2005,84(10):1584-1592.
    [166]戴洪伟.21~42日龄肉仔鸡蛋氨酸需求量的研究[D].杨凌:西北农林科技大学,2003.
    [167]Chamruspollert M, Pesti G, Bakalli R. Determination of the methionine requirement of male and female broiler chicks using an indirect amino acid oxidation method[J]. Poultry Science,2002, 81(7):1004-1013.
    [168]Mehri M. Development of artificial neural network models based on experimental data of response surface methodology to establish the nutritional requirements of digestible lysine, methionine, and threonine in broiler chicks[J]. Poultry Science,2012,91(12):3280-3285.
    [169]Balnave D, Oliva A. Responses of finishing broilers at high temperatures to dietary methionine source and supplementation levels[J]. Crop and Pasture Science,1990,41(3):557-564.
    [170]Chamruspollert M, Pesti G M, Bakalli R I. Influence of temperature on the arginine and methionine requirements of young broiler chicks[J]. Journal of Applied Poultry Research,2004, 13(4):628-638.
    [171]Aftab U, Ashraf M. Methionine+ cystine requirement of broiler chickens fed low-density diets under tropical conditions[J]. Tropical Animal Health and Production,2009,41(3):363-369.
    [172]Ojano-Dirain C, Waldroup P. Evaluation of lysine, methionine and threonine needs of broilers three to six week of age under moderate temperature stress[J]. International Journal of Poultry Science,2002,1(1):16-21.
    [173]Klasing K C, Barnes D M. Decreased amino acid requirements of growing chicks due to immunologic stress[J]. Journal of Nutrition,1988,118(9):1158-1164.
    [174]陈小莉,蔡东联,杨庆,等.高蛋氨酸饲料对大鼠血清,肝脏和骨骼肌氨基酸代谢的影响[J].第二军医大学学报,2002,23(9):1014-1016.
    [175]Baker D H. Comparative species utilization and toxicity of sulfur amino acids[J]. Journal of Nutrition,2006,136(6):1670S-1675S.
    [176]Garlick P J. Toxicity of methionine in humans[J]. Journal of Nutrition,2006,136(6): 1722S-1725S.
    [177]Toue S, Kodama R, Amao M, et al. Screening of toxicity biomarkers for methionine excess in rats[J]. Journal of Nutrition,2006,136(6):1716S-1721S.
    [178]Han Y, Baker D. Effects of excess methionine or lysine for broilers fed a corn-soybean meal diet[J]. Poultry Science,1993,72(6):1070-1074.
    [179]Elagib H A A, Elzubeir E. The effect of feeding different levels of methionine and two levels of energy on broiler performance during heat stress[J]. Pakistan Journal of Nutrition,2012,11(9): 739-742.
    [180]Mirzaaghatabar F, Saki A A, Zamani P, et al. Effect of different levels of diet methionine and metabolisable energy on broiler performance and immune system[J]. Food and Agricultural Immunology,2011,22(2):93-103.
    [181]Gomez J, Caro P, Sanchez I, et al. Effect of methionine dietary supplementation on mitochondrial oxygen radical generation and oxidative DNA damage in rat liver and heart[J]. Journal of Bioenergetics and Biomembranes,2009,41(3):309-321.
    [182]Noy Y, Sklan D. Posthatch development in poultry[J]. Journal of Applied Poultry Research, 1997,6(3):344-354.
    [183]Uni Z, Ganot S, Sklan D. Posthatch development of mucosal function in the broiler small intestine[J]. Poultry Science,1998,77(1):75-82.
    [184]Acar N, Moran E, Mulvaney D. Breast muscle development of commercial broilers from hatching to twelve weeks of age[J]. Poultry Science,1993,72(2):317-325.
    [185]Scheuermann G, Bilgili S, Hess J, et al. Breast muscle development in commercial broiler chickens[J]. Poultry Science,2003,82(10):1648-1658.
    [186]Bentzinger C F, Wang Y X, Rudnicki M A. Building muscle:molecular regulation of myogenesis[J]. Cold Spring Harbor Perspectives in Biology,2012,4(2):a008342.
    [187]Rudnicki M A, Jaenisch R. The MyoD family of transcription factors and skeletal myogenesis[J]. Bioessays,1995,17(3):203-209.
    [188]Thomas M, Langley B, Berry C, et al. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation[J]. Journal of Biological Chemistry,2000, 275(51):40235-40243.
    [189]刘燕,杨琳.影响肌肉生成的调控因子[J].饲料工业,2007,28(7):17-22.
    [190]Davis R L, Weintraub H, Lassar A B. Expression of a single transfected cDNA converts fibroblasts to myoblasts[J]. Cell,1987,51(6):987-1000.
    [191]Edmondson D, Olson E. A gene with homology to the myc similarity region of MyoDl is expressed during myogenesis and is sufficient to activate the muscle differentiation program[J]. Genes & Development,1989,3(5):628-640.
    [192]Rhodes S J, Konieczny S F. Identification of MRF4:a new member of the muscle regulatory factor gene family[J]. Genes & Development,1989,3(12b):2050-2061.
    [193]Miner J H, Wold B. Herculin, a fourth member of the MyoD family of myogenic regulatory genes[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990,87(3):1089-1093.
    [194]Massari M E, Murre C. Helix-loop-helix proteins:regulators of transcription in eucaryotic organisms[J]. Molecular and Cellular Biology,2000,20(2):429-440.
    [195]Bober E, Lyons G, Braun T, et al. The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development[J]. Journal of Cell Biology,1991,113(6): 1255-1265.
    [196]Montarras D, Chelly J, Bober E, et al. Developmental patterns in the expression of Myf5, MyoD, myogenin, and MRF4 during myogenesis[J]. The New Biologist,1991,3(6):592-600.
    [197]Ott M-O, Bober E, Lyons G, et al. Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo[J]. Development,1991,111(4): 1097-1107.
    [198]Smith T H, Block N E, Rhodes S J, et al. A unique pattern of expression of the four muscle regulatory factor proteins distinguishes somitic from embryonic, fetal and newborn mouse myogenic cells[J]. Development,1993,117(3):1125-1133.
    [199]Kitzmann M, Carnac G, Vandromme M, et al. The muscle regulatory factors MyoD and myf-5 undergo distinct cell cycle-specific expression in muscle cells[J]. Journal of Cell Biology,1998, 142(6):1447-1459.
    [200]孙文浩,朱庆.生肌决定因子Myf5基因的研究进展[J].黑龙江畜牧兽医,2008,(7):28-30.
    [201]Mastroyiannopoulos N P, Nicolaou P, Anayasa M, et al. Down-regulation of myogenin can reverse terminal muscle cell differentiation[J]. PLoS One,2012,7(1):e29896.
    [202]Valdez M R, Richardson J A, Klein W H, et al. Failure of Myf5 to support myogenic differentiation without myogenin, MyoD, and MRF4[J]. Developmental Biology,2000,219(2): 287-298.
    [203]Myer A, Olson E N, Klein W H. MyoD cannot compensate for the absence of myogenin during skeletal muscle differentiation in murine embryonic stem cells[J]. Developmental Biology,2001, 229(2):340-350.
    [204]Weintraub H. The MyoD family and myogenesis:redundancy, networks, and thresholds[J]. Cell, 1993,75(7):1241-1244.
    [205]Rudnicki M A, Schnegelsberg P N J, Stead R H, et al. MyoD or Myf-5 is required for the formation of skeletal muscle[J]. Cell,1993,75(7):1351-1359.
    [206]Rudnicki M A, Braun T, Hinuma S, et al. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development[J]. Cell, 1992,71(3):383-390.
    [207]Gensch N, Borchardt T, Schneider A, et al. Different autonomous myogenic cell populations revealed by ablation of Myf5-expressing cells during mouse embryogenesis[J]. Development, 2008,135(9):1597-1604.
    [208]Rawls A, Morris J H, Rudnicki M, et al. Myogenin's functions do not overlap with those of MyoD or Myf-5 during mouse embryogenesis[J]. Developmental Biology,1995,172(1):37-50.
    [209]Rawls A, Valdez M R, Zhang W, et al. Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice[J]. Development,1998,125(13):2349-2358.
    [210]Hasty P, Bradley A, Morris J H, et al. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene[J]. Nature,1993,364(6437):501-506.
    [211]Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, et al. Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice[J]. Nature,2004,431(7007):466-471.
    [212]王东林,毛宝龄.生肌调节因子及其作用机理[J].国外医学:分子生物学分册,1995,17(4):157-160.
    [213]Day K, Paterson B, Yablonka-Reuveni Z. A distinct profile of myogenic regulatory factor detection within Pax7+ cells at S phase supports a unique role of Myf5 during posthatch chicken myogenesis[J]. Developmental Dynamics,2009,238(4):1001-1009.
    [214]Asakura A, Fujisawa-Sehara A, Komiya T, et al. MyoD and myogenin act on the chicken myosin light-chain 1 gene as distinct transcriptional factors[J]. Molecular and Cellular Biology, 1993,13(11):7153-7162.
    [215]Ishibashi J, Perry R L, Asakura A, et al. MyoD induces myogenic differentiation through cooperation of its NH2-and COOH-terminal regions[J]. Journal of Cell Biology,2005,171(3): 471-482.
    [216]Megeney L A, Rudnicki M A. Determination versus differentiation and the MyoD family of transcription factors[J]. Biochemistry and Cell Biology,1995,73(9-10):723-732.
    [217]Zanou N, Gailly P. Skeletal muscle hypertrophy and regeneration:interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways[J]. Cellular and Molecular Life Sciences,2013, Epublication ahead of print.
    [218]Al-Musawi S L, Lock F, Simbi B H, et al. Muscle specific differences in the regulation of myogenic differentiation in chickens genetically selected for divergent growth rates[J]. Differentiation,2011,82(3):127-135.
    [219]Kalbe C, Berard J, Porm M, et al. Maternal L-arginine supplementation during early gestation affects foetal skeletal myogenesis in pigs[J]. Livestock Science,2013, Epublication ahead of print.
    [220]Hughes S M, Taylor J M, Tapscott S J, et al. Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones[J]. Development,1993,118(4):1137-1147.
    [221]Sato K, Aoki M, Kondo R, et al. Administration of insulin to newly hatched chicks improves growth performance via impairment of MyoD gene expression and enhancement of cell proliferation in chicken myoblasts[J]. General and Comparative Endocrinology,2012,175(3): 457-463.
    [222]Friday B B, Mitchell P O, Kegley K M, et al. Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD[J]. Differentiation,2003,71(3):217-227.
    [223]Florini J R, Ewton D Z, Roof S L. Insulin-like growth factor-I stimulates terminal myogenic differentiation by induction of myogenin gene expression[J]. Molecular Endocrinology,1991, 5(5):718-724.
    [224]Hsu H H, Zdanowicz M M, Agarwal V R, et al. Expression of myogenic regulatory factors in normal and dystrophic mice:effects of IGF-1 treatment[J]. Biochemical and Molecular Medicine,1997,60(2):142-148.
    [225]Xu Q, Wu Z. The insulin-like growth factor-phosphatidylinositol 3-kinase-Akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived RD cells[J]. Journal of Biological Chemistry,2000,275(47): 36750-36757.
    [226]Liu H H, Wang J W, Chen X, et al. In ovo administration of rhIGF-1 to duck eggs affects the expression of myogenic transcription factors and muscle mass during late embryo development[J]. Journal of Applied Physiology,2011,111(6):1789-1797.
    [227]Miyake M, Hayashi S, Sato T, et al. Myostatin and MyoD family expression in skeletal muscle of IGF-1 knockout mice[J]. Cell Biology International,2007,31(10):1274-1279.
    [228]Sun L, Liu L, Yang X-J, et al. Akt binds prohibitin 2 and relieves its repression of MyoD and muscle differentiation[J]. Journal of Cell Science,2004,117(14):3021-3029.
    [229]Sun Y, Ge Y, Drnevich J, et al. Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis[J]. Journal of Cell Biology,2010,189(7):1157-1169.
    [230]Chen J F, Mandel E M, Thomson J M, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nature Genetics,2005,38(2):228-233.
    [231]Townley-Tilson W H D, Callis T E, Wang D. MicroRNAs 1,133, and 206:Critical factors of skeletal and cardiac muscle development, function, and disease[J]. International Journal of Biochemistry and Cell Biology,2010,42(8):1252-1255.
    [232]Powell D J, McFarland D C, Cowieson A J, et al. The effect of nutritional status on myogenic satellite cell proliferation and differentiation[J]. Poultry Science,2013,92(8):2163-2173.
    [233]Velleman S, Nestor K, Coy C, et al. Effect of posthatch feed restriction on broiler breast muscle development and muscle transcriptional regulatory factor gene and heparan sulfate proteoglycan expression[J]. International Journal of Poultry Science,2010,9(5):417-425.
    [234]Drummond M J, Glynn E L, Fry C S, et al. Essential amino acids increase microRNA-499,-208b, and-23a and downregulate myostatin and myocyte enhancer factor 2C mRNA expression in human skeletal muscle[J]. Journal of Nutrition,2009,139(12):2279-2284.
    [235]Alami-Durante H, Wrutniak-Cabello C, Kaushik S J, et al. Skeletal muscle cellularity and expression of myogenic regulatory factors and myosin heavy chains in rainbow trout (Oncorhynchus mykiss):Effects of changes in dietary plant protein sources and amino acid profiles[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2010,156(4):561-568.
    [236]Alami-Durante H, Cluzeaud M, Bazin D, et al. Dietary cholecalciferol regulates the recruitment and growth of skeletal muscle fibers and the expressions of myogenic regulatory factors and the myosin heavy chain in European sea bass larvae[J]. Journal of Nutrition,2011,141(12): 2146-2151.
    [237]Averous J, Gabillard J C, Seiliez I, et al. Leucine limitation regulates myf5 and myoD expression and inhibits myoblast differentiation [J]. Experimental Cell Research,2012,318(3): 217-227.
    [238]Halevy O, Krispin A, Leshem Y, et al. Early-age heat exposure affects skeletal muscle satellite cell proliferation and differentiation in chicks[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2001,281(1):R302-R309.
    [239]Halevy O, Piestun Y, Rozenboim I, et al. In ovo exposure to monochromatic green light promotes skeletal muscle cell proliferation and affects myofiber growth in posthatch chicks[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2006, 290(4):R1062-R1070.
    [240]Slawinska A, Brzeziriska J, Siwek M, et al. Expression of myogenic genes in chickens stimulated in ovo with light and temperature[J]. Reproductive Biology,2013,13(2):161-165.
    [241]程波,李利,王林杰,等.MEF2基因家族的研究进展[J].中国畜牧杂志,2012,48(15):70-74.
    [242]Olson E N, Perry M, Schulz R A. Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors[J]. Developmental Biology,1995,172(1):2-14.
    [243]McKinsey T A, Zhang C L, Olson E N. MEF2:a calcium-dependent regulator of cell division, differentiation and death[J]. Trends in Biochemical Sciences,2002,27(1):40-47.
    [244]Potthoff M J, Olson E N. MEF2:a central regulator of diverse developmental programs[J]. Development,2007,134(23):4131-4140.
    [245]Wu Y, Dey R, Han A, et al. Structure of the MADS-box MEF2 domain of MEF2A bound to DNA and its implication for myocardin recruitment[J]. Journal of Molecular Biology,2010, 397(2):520-533.
    [246]Edmondson D G, Lyons G E, Martin J F, et al. Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis[J]. Development,1994,120(5): 1251-1263.
    [247]Arnold M A, Kim Y, Czubryt M P, et al. MEF2C transcription factor controls chondrocyte hypertrophy and bone development[J]. Developmental Cell,2007,12(3):377-389.
    [248]Martin J F, Schwarz J J, Olson E N. Myocyte enhancer factor (MEF) 2C:a tissue-restricted member of the MEF-2 family of transcription factors[J]. Proceedings of the National Academy of Sciences of the United States of America,1993,90(11):5282-5286.
    [249]McDermott J, Cardoso M, Yu Y, et al. hMEF2C gene encodes skeletal muscle-and brain-specific transcription factors[J]. Molecular and Cellular Biology,1993,13(4):2564-2577.
    [250]Molkentin J D, Olson E N. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors[J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93(18):9366-9373.
    [251]Brand N J. Myocyte enhancer factor 2 (MEF2)[J]. International Journal of Biochemistry and Cell Biology,1997,29(12):1467-1470.
    [252]程震龙,朱大海,张志谦.MEF2与肌肉发生[J].遗传,2002,24(5):581-585.
    [253]Molkentin J D, Black B L, Martin J F, et al. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins[J]. Cell,1995,83(7):1125-1136.
    [254]Cserjesi P, Olson E N. Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products[J]. Molecular and Cellular Biology,1991, 11(10):4854-4862.
    [255]Wang D Z, Valdez M R, McAnally J, et al. The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development[J]. Development, 2001,128(22):4623-4633.
    [256]Dodou E, Xu S M, Black B L. mef2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo[J]. Mechanisms of Development,2003, 120(9):1021-1032.
    [257]el Azzouzi H, van Oort R J, van der Nagel R, et al. MEF2 transcriptional activity maintains mitochondrial adaptation in cardiac pressure overload[J]. European Journal of Heart Failure, 2010,12(1):4-12.
    [258]Zhou Y, Liu Y, Jiang X, et al. Polymorphism of chicken myocyte-specific enhancer-binding factor 2A gene and its association with chicken carcass traits[J]. Molecular Biology Reports, 2010,37(1):587-594.
    [259]Mora S, Yang C, Ryder J W, et al. The MEF2A and MEF2D isoforms are differentially regulated in muscle and adipose tissue during states of insulin deficiency[J]. Endocrinology,2001,142(5): 1999-2004.
    [260]Katoh Y, Molkentin J D, Dave V, et al. MEF2B is a component of a smooth muscle-specific complex that binds an A/T-rich element important for smooth muscle myosin heavy chain gene expression[J]. Journal of Biological Chemistry,1998,273(3):1511-1518.
    [261]Lyons G, Micales B, Schwarz J, et al. Expression of mef2 genes in the mouse central nervous system suggests a role in neuronal maturation[J]. Journal of Neuroscience,1995,15(8): 5727-5738.
    [262]Molkentin J D, Firulli A B, Black B L, et al. MEF2B is a potent transactivator expressed in early myogenic lineages[J]. Molecular and Cellular Biology,1996,16(7):3814-3824.
    [263]Sanchez-Calderon H, Rodriguez-de la Rosa L, Milo M, et al. RNA microarray analysis in prenatal mouse cochlea reveals novel IGF-I target genes:implication of MEF2 and FOXM1 transcription factors[J]. PLoS One,2010,5(1):e8699.
    [264]Butts B, Linseman D, Le S, et al. Insulin-like growth factor-I suppresses degradation of the pro-survival transcription factor myocyte enhancer factor 2D (MEF2D) during neuronal apoptosis[J]. Hormone and Metabolic Research,2003,35(11-12):763.
    [265]Munoz J P, Collao A, Chiong M, et al. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling[J]. Biochemical and Biophysical Research Communications,2009,388(1):155-160.
    [266]Wu H, Naya F J, McKinsey T A, et al. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type[J]. EMBO Journal,2000,19(9):1963-1973.
    [267]Shalizi A, Gaudilliere B, Yuan Z, et al. A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation[J]. Science,2006,311(5763):1012-1017.
    [268]Mao Z, Wiedmann M. Calcineurin enhances MEF2 DNA binding activity in calcium-dependent survival of cerebellar granule neurons[J]. Journal of Biological Chemistry,1999,274(43): 31102-31107.
    [269]Wu H, Rothermel B, Kanatous S, et al. Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway[J]. The EMBO Journal,2001,20(22):6414-6423.
    [270]Youn H D, Grozinger C M, Liu J O. Calcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4[J]. Journal of Biological Chemistry,2000,275(29): 22563-22567.
    [271]Haberland M, Arnold M A, McAnally J, et al. Regulation of HDAC9 gene expression by MEF2 establishes a negative-feedback loop in the transcriptional circuitry of muscle differentiation[J]. Molecular and Cellular Biology,2007,27(2):518-525.
    [272]Chen Z, Liang S, Zhao Y, et al. miR-92b regulates Mef2 levels through a negative-feedback circuit during Drosophila muscle development[J]. Development,2012,139(19):3543-3552.
    [273]Chinchilla A, Lozano E, Daimi H, et al. MicroRNA profiling during mouse ventricular maturation:a role for miR-27 modulating Mef2c expression[J]. Cardiovascular Research,2011, 89(1):98-108.
    [274]Seok H Y, Tatsuguchi M, Callis T E, et al. miR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation[J]. Journal of Biological Chemistry,2011,286(41): 35339-35346.
    [275]Wang L, Chen X, Zheng Y, et al. MiR-23a inhibits myogenic differentiation through down regulation of fast myosin heavy chain isoforms[J]. Experimental Cell Research,2012,318(18): 2324-2334.
    [276]McPherron A C, Lawler A M, Lee S-J. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member[J]. Nature,1997,387(6628):83-90.
    [277]Amthor H, Huang R, McKinnell I, et al. The regulation and action of myostatin as a negative regulator of muscle development during avian embryogenesis[J]. Developmental Biology,2002, 251(2):241-257.
    [278]Rios R, Carneiro I, Arce V M, et al. Myostatin is an inhibitor of myogenic differentiation[J]. American Journal of Physiology-Cell Physiology,2002,282(5):C993-C999.
    [279]Bellinge R, Liberles D, Iaschi S, et al. Myostatin and its implications on animal breeding:a review[J]. Animal Genetics,2005,36(1):1-6.
    [280]戴晔,候水生,刘小林.Myostatin基因研究进展[J].畜牧兽医杂志,2005,24(6):12-14.
    [281]McPherron A C, Lee S-J. Double muscling in cattle due to mutations in the myostatin gene[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(23): 12457-12461.
    [282]Kocamis H, Killefer J. Myostatin expression and possible functions in animal muscle growth[J]. Domestic Animal Endocrinology,2002,23(4):447-454.
    [283]Ji S, Losinski R L, Cornelius S G, et al. Myostatin expression in porcine tissues:tissue specificity and developmental and postnatal regulation[J]. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology,1998,275(4):R1265-R1273.
    [284]Sharma M, Kambadur R, Matthews K G, et al. Myostatin, a transforming growth factor-β superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct[J]. Journal of Cellular Physiology,1999,180(1):1-9.
    [285]Kubota K, Sato F, Aramaki S, et al. Ubiquitous expression of myostatin in chicken embryonic tissues:its high expression in testis and ovary[J]. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology,2007,148(3):550-555.
    [286]Taketa Y, Nagai Y, Ogasawara H, et al. Differential expression of myostatin and its receptor in the porcine anterior pituitary gland[J]. Animal Science Journal,2008,79(3):382-390.
    [287]Ciarmela P, Wiater E, Smith S M, et al. Presence, actions, and regulation of myostatin in rat uterus and myometrial cells[J]. Endocrinology,2009,150(2):906-914.
    [288]Jiao J, Yuan T, Zhou Y, et al. Analysis of myostatin and its related factors in various porcine tissues[J]. Journal of Animal Science,2011,89(10):3099-3106.
    [289]Castelhano-Barbosa E C, Gabriel J E, Alvares L E, et al. Temporal and spatial expression of the myostatin gene during chicken embryo development[J]. Growth, Development, and Aging,2005, 69(1):3-12.
    [290]Sundaresan N R, Saxena V K, Singh R, et al. Expression profile of myostatin mRNA during the embryonic organogenesis of domestic chicken (Gallus gallus domesticus)[J]. Research in Veterinary Science,2008,85(1):86-91.
    [291]Kocamis H, Kirkpatrick-Keller D, Richter J, et al. The ontogeny of myostatin, follistatin and activin-B mRNA expression during chicken embryonic development[J]. Growth, Development, and Aging,1999,63(4):143-150.
    [292]Patruno M, Caliaro F, Maccatrozzo L, et al. Myostatin shows a specific expression pattern in pig skeletal and extraocular muscles during pre- and post-natal growth[J]. Differentiation,2008, 76(2):168-181.
    [293]杜荣,秦健,崔丽春,等.肌肉生长抑制素基因在畜禽肌肉发育调控中的研究进展[J].中国家禽,2009,31(10):34-36.
    [294]Otto A, Matsakas A, Patel K. Developmental role for myostatin in regulating myogenesis[J]. Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry,2010,10(4):195-203.
    [295]Huang Z, Chen X, Chen D. Myostatin:a novel insight into its role in metabolism, signal pathways, and expression regulation[J]. Cellular Signalling,2011,23(9):1441-1446.
    [296]Elliott B, Renshaw D, Getting S, et al. The central role of myostatin in skeletal muscle and whole body homeostasis[J]. Acta Physiologica,2012,205(3):324-340.
    [297]Lee S J, McPherron A C. Regulation of myostatin activity and muscle growth[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(16):9306-9311.
    [298]Lin J, Arnold H B, Della-Fera M A, et al. Myostatin knockout in mice increases myogenesis and decreases adipogenesis[J]. Biochemical and Biophysical Research Communications,2002, 291(3):701-706.
    [299]Welle S, Bhatt K, Pinkert C A, et al. Muscle growth after postdevelopmental myostatin gene knockout[J]. American Journal of Physiology-Endocrinology and Metabolism,2007,292(4): E985-E991.
    [300]Reardon K A, Davis J, Kapsa R M, et al. Myostatin, insulin-like growth factor-1, and leukemia inhibitory factor mRNAs are upregulated in chronic human disuse muscle atrophy[J]. Muscle & Nerve,2001,24(7):893-899.
    [301]Ma K, Mallidis C, Bhasin S, et al. Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression[J]. American Journal of Physiology-Endocrinology and Metabolism,2003,285(2):E363-E371.
    [302]Reisz-Porszasz S, Bhasin S, Artaza J N, et al. Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin[J]. American Journal of Physiology-Endocrinology and Metabolism,2003,285(4):E876-E888.
    [303]Wang M, Yu H, Kim Y S, et al. Myostatin facilitates slow and inhibits fast myosin heavy chain expression during myogenic differentiation[J]. Biochemical and Biophysical Research Communications,2012,426(1):83-88.
    [304]Joulia D, Bernardi H, Garandel V, et al. Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin[J]. Experimental Cell Research,2003,286(2): 263-275.
    [305]Yang W, Zhang Y, Li Y, et al. Myostatin induces cyclin Dl degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/AKT/GSK-3β pathway and is antagonized by insulin-like growth factor 1[J]. Journal of Biological Chemistry,2007,282(6):3799-3808.
    [306]McCroskery S, Thomas M, Maxwell L, et al. Myostatin negatively regulates satellite cell activation and self-renewal[J]. Journal of Cell Biology,2003,162(6):1135-1147.
    [307]Taylor W E, Bhasin S, Artaza J, et al. Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells[J]. American Journal of Physiology-Endocrinology and Metabolism, 2001,280(2):E221-E228.
    [308]McKoy G, Bicknell K A, Patel K, et al. Developmental expression of myostatin in cardiomyocytes and its effect on foetal and neonatal rat cardiomyocyte proliferation[J]. Cardiovascular Research,2007,74(2):304-312.
    [309]Langley B, Thomas M, Bishop A, et al. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression[J]. Journal of Biological Chemistry,2002,277(51): 49831-49840.
    [310]Gao F, Kishida T, Ejima A, et al. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells[J]. Biochemical and Biophysical Research Communications,2013,431(2):309-314.
    [311]Hennebry A, Berry C, Siriett V, et al. Myostatin regulates fiber-type composition of skeletal muscle by regulating MEF2 and MyoD gene expression[J]. American Journal of Physiology: Cell Physiology,2009,296(3):C525-C534.
    [312]Li J, Deng J, Yu S, et al. The virtual element in proximal promoter of porcine myostatin is regulated by myocyte enhancer factor 2C[J]. Biochemical and Biophysical Research Communications,2012,419(2):175-181.
    [313]Wang B W, Chang H, Kuan P, et al. Angiotensin Ⅱ activates myostatin expression in cultured rat neonatal cardiomyocytes via p38 MAP kinase and myocyte enhance factor 2 pathway[J]. Journal of Endocrinology,2008,197(1):85-93.
    [314]Allen D L, Cleary A S, Speaker K J, et al. Myostatin, activin receptor Ⅱb, and follistatin-like-3 gene expression are altered in adipose tissue and skeletal muscle of obese mice[J]. American Journal of Physiology-Endocrinology And Metabolism,2008,294(5):E918-E927.
    [315]McPherron A C, Lee S J. Suppression of body fat accumulation in myostatin-deficient mice[J]. Journal of Clinical Investigation,2002,109(5):595-601.
    [316]Gonzalez-Cadavid N F, Bhasin S. Role of myostatin in metabolism[J]. Current Opinion in Clinical Nutrition & Metabolic Care,2004,7(4):451-457.
    [317]Artaza J N, Bhasin S, Magee T R, et al. Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T (1/2) mesenchymal multipotent cells[J]. Endocrinology,2005,146(8): 3547-3557.
    [318]Gilson H, Schakman O, Combaret L, et al. Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy[J]. Endocrinology,2007,148(1):452-460.
    [319]Chen Y, Cao L, Ye J, et al. Upregulation of myostatin gene expression in streptozotocin-induced type 1 diabetes mice is attenuated by insulin[J]. Biochemical and Biophysical Research Communications,2009,388(1):112-116.
    [320]Kurokawa M, Sato F, Aramaki S, et al. Monitor of the myostatin autocrine action during differentiation of embryonic chicken myoblasts into myotubes:effect of IGF-I[J]. Molecular and Cellular Biochemistry,2009,331(1-2):193-199.
    [321]Shyu K-G, Ko W-H, Yang W-S, et al. Insulin-like growth factor-1 mediates stretch-induced upregulation of myostatin expression in neonatal rat cardiomyocytes[J]. Cardiovascular Research,2005,68(3):405-414.
    [322]Allen D L, Loh A S. Posttranscriptional mechanisms involving microRNA-27a and b contribute to fast-specific and glucocorticoid-mediated myostatin expression in skeletal muscle[J]. American Journal of Physiology-Cell Physiology,2011,300(1):C124-137.
    [323]Huang Z, Chen X, Yu B, et al. MicroRNA-27a promotes myoblast proliferation by targeting myostatin[J]. Biochemical and Biophysical Research Communications,2012,423(2):265-269.
    [324]Guernec A, Chevalier B, Duclos M J. Nutrient supply enhances both IGF-I and MSTN mRNA levels in chicken skeletal muscle[J]. Domestic Animal Endocrinology,2004,26(2):143-154.
    [325]Yang Y X, Guo J, Jin Z, et al. Lysine restriction and realimentation affected growth, blood profiles and expression of genes related to protein and fat metabolism in weaned pigs[J]. Journal of Animal Physiology and Animal Nutrition,2009,93(6):732-743.
    [326]Salehian B, Mahabadi V, Bilas J, et al. The effect of glutamine on prevention of glucocorticoid-induced skeletal muscle atrophy is associated with myostatin suppression[J]. Metabolism,2006,55(9):1239-1247.
    [327]Gabriel J E, Alvares L E, Gobet M C, et al. Expression of MyoD, myogenin, myostatin and Hsp70 transcripts in chicken embryos submitted to mild cold or heat[J]. Journal of Thermal Biology,2003,28(4):261-269.
    [328]Noll M. Evolution and role of Pax genes[J]. Current Opinion in Genetics & Development,1993, 3(4):595-605.
    [329]Dahl E, Koseki H, Balling R. Pax genes and organogenesis[J]. Bioessays,1997,19(9):755-765.
    [330]Wang Q, Fang W H, Krupinski J, et al. Pax genes in embryogenesis and oncogenesis[J]. Journal of Cellular and Molecular Medicine,2008,12(6a):2281-2294.
    [331]Chi N, Epstein J A. Getting your Pax straight:Pax proteins in development and disease[J]. Trends in Genetics,2002,18(1):41-47.
    [332]郑江,邓忠良.pax7对肌肉形成作用的研究进展[J].重庆医科大学学报,2007,32(6):667-669.
    [333]Lang D, Powell S K, Plummer R S, et al. PAX genes:Roles in development, pathophysiology, and cancer[J]. Biochemical Pharmacology,2007,73(1):1-14.
    [334]Buckingham M, Bajard L, Chang T, et al. The formation of skeletal muscle:from somite to limb[J]. Journal of Anatomy,2003,202(1):59-68.
    [335]Kassar-Duchossoy L, Giacone E, Gayraud-Morel B, et al. Pax3/Pax7 mark a novel population of primitive myogenic cells during development[J]. Genes & Development,2005,19(12): 1426-1431.
    [336]Brzoska E, Przewozniak M, Grabowska I, et al. Pax3 and Pax7 expression during myoblast differentiation in vitro and fast and slow muscle regeneration in vivo[J]. Cell Biology International,2009,33(4):483-492.
    [337]Seale P, Sabourin L A, Girgis-Gabardo A, et al. Pax7 Is required for the specification of myogenic satellite cells[J]. Cell,2000,102(6):777-786.
    [338]Tajbakhsh S, Rocancourt D, Cossu G, et al. Redefining the genetic hierarchies controlling skeletal myogenesis:Pax-3 and Myf-5 act upstream of MyoD[J]. Cell,1997,89(1):127-138.
    [339]Zammit P S, Relaix F, Nagata Y, et al. Pax7 and myogenic progression in skeletal muscle satellite cells[J]. Journal of Cell Science,2006,119(9):1824-1832.
    [340]Buckingham M. Skeletal muscle progenitor cells and the role of Pax genes[J]. Comptes Rendus Biologies,2007,330(6-7):530-533.
    [341]Bajard L, Relaix F, Lagha M, et al. A novel genetic hierarchy functions during hypaxial myogenesis:Pax3 directly activates Myf5 in muscle progenitor cells in the limb[J]. Genes & Development,2006,20(17):2450-2464.
    [342]Olguin H C, Olwin B B. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells:a potential mechanism for self-renewal[J]. Developmental Biology,2004,275(2): 375-388.
    [343]Calhabeu F, Hayashi S, Morgan J E, et al. Alveolar rhabdomyosarcoma-associated proteins PAX3/FOXO1A and PAX7/FOXO1A suppress the transcriptional activity of MyoD-target genes in muscle stem cells[J]. Oncogene,2013,32(5):651-662.
    [344]曾凡星,朱晗,赵华,等.外源性IGF-I对大鼠运动骨骼肌mTOR及下游信号的影响[J].北京体育大学学报,2011,34(4):47-50.
    [345]Hunter T. Protein kinases and phosphatases:the yin and yang of protein phosphorylation and signaling[J]. Cell,1995,80(2):225-236.
    [346]Chambard J C, Lefloch R, Pouyssegur J, et al. ERK implication in cell cycle regulation[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,2007,1773(8):1299-1310.
    [347]张勇,李欣蔚,朱宇旌,等.细胞外信号调节激酶信号途径及其与动物肌肉生长发育的关系[J].动物营养学报,2012,24(2):191-197.
    [348]Boulton T G, Nye S H, Robbins D J, et al. ERKs:A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF[J]. Cell,1991, 65(4):663-675.
    [349]Wong C H, Cheng C Y. Mitogen-activated protein kinases, adherens junction dynamics, and spermatogenesis:A review of recent data[J]. Developmental Biology,2005,286(1):1-15.
    [350]Kolch W. Meaningful relationships:the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions[J]. Biochemical Journal,2000,351(2):289-305.
    [351]Meloche S, Pouyssegur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1-to S-phase transition[J]. Oncogene,2007,26(22):3227-3239.
    [352]Tamemoto H, Kadowaki T, Tobe K, et al. Biphasic activation of two mitogen-activated protein kinases during the cell cycle in mammalian cells[J]. Journal of Biological Chemistry,1992, 267(28):20293-20297.
    [353]Wright J H, Munar E, Jameson D R, et al. Mitogen-activated protein kinase kinase activity is required for the G2/M transition of the cell cycle in mammalian fibroblasts[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(20):11335-11340.
    [354]Li J, Johnson S E. ERK2 is required for efficient terminal differentiation of skeletal myoblasts[J]. Biochemical and Biophysical Research Communications,2006,345(4): 1425-1433.
    [355]Rommel C, Clarke B, Zimmermann S, et al. Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt[J]. Science,1999,286(5445):1738-1741.
    [356]Roth R J, Le A M, Zhang L, et al. MAPK phosphatase-1 facilitates the loss of oxidative myofibers associated with obesity in mice[J]. Journal of Clinical Investigation,2009,119(12): 3817.
    [357]Shi H, Scheffler J M, Pleitner J M, et al. Modulation of skeletal muscle fiber type by mitogen-activated protein kinase signaling[J]. FASEB Journal,2008,22(8):2990-3000.
    [358]孟思进,余龙江,曹二来.mTOR介导的骨骼肌蛋白质翻译调控[J].现代生物医学进展,2009,9(6):1157-1160.
    [359]姜伟,王修启,束刚,等.雷帕霉素靶蛋白(mTOR)结构功能及其对骨骼肌蛋白质合成影响的研究进展[J].中国畜牧兽医,2010,37(6):21-25.
    [360]Ge Y, Chen J. Mammalian target of rapamycin (mTOR) signaling network in skeletal myogenesis[J]. Journal of Biological Chemistry,2012,287(52):43928-43935.
    [361]Schiaffino S, Mammucari C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway:insights from genetic models[J]. Skeletal muscle,2011,1(1):4.
    [362]Gonzalez E, McGraw T E. The Akt kinases:isoform specificity in metabolism and cancer[J]. Cell Cycle,2009,8(16):2502-2508.
    [363]Bodine S C, Stitt T N, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo[J]. Nature Cell Biology,2001, 3(11):1014-1019.
    [364]Pestova T V, Kolupaeva V G, Lomakin I B, et al. Molecular mechanisms of translation initiation in eukaryotes[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(13):7029-7036.
    [365]Torrazza R M, Suryawan A, Gazzaneo M C, et al. Leucine supplementation of a low-protein meal increases skeletal muscle and visceral tissue protein synthesis in neonatal pigs by stimulating mTOR-dependent translation initiation[J]. Journal of Nutrition,2010,140(12): 2145-2152.
    [366]Kimball S R, Jefferson L S, Nguyen H V, et al. Feeding stimulates protein synthesis in muscle and liver of neonatal pigs through an mTOR-dependent process[J]. American Journal of Physiology-Endocrinology and Metabolism,2000,279(5):E1080-E1087.
    [367]Amirouche A, Durieux A-C, Banzet S, et al. Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle[J]. Endocrinology,2009,150(1):286-294.
    [368]崔旻,赵勇FoxO转录因子[J].中国生物工程杂志,2004,24(3):40-43.
    [369]Burgering B M T. A brief introduction to FOXOlogy[J]. Oncogene,2008,27(16):2258-2262.
    [370]朱宇旌,于治姣,张勇,等FoxO转录因子的活性调控及其对骨骼肌生长发育的调节[J].动物营养学报,2013,25(4):677-684.
    [371]Furuyama T, Nakazawa T, Nakano I, et al. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues[J]. Biochemical Journal,2000,349(2):629-634.
    [372]Jacobs F M, van der Heide L P, Wijchers P J, et al. Fox06, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics[J]. Journal of Biological Chemistry,2003, 278(38):35959-35967.
    [373]Foletta V, White L, Larsen A, et al. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy[J]. Pflugers Archiv,2011,461(3):325-335.
    [374]Attaix D, Baracos V E. MAFbx/Atrogin-1 expression is a poor index of muscle proteolysis[J]. Current Opinion in Clinical Nutrition & Metabolic Care,2010,13(3):223-224.
    [375]Stitt T N, Drujan D, Clarke B A, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors[J]. Molecular Cell,2004,14(3):395-403.
    [376]Latres E, Amini A R, Amini A A, et al. Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway[J]. Journal of Biological Chemistry,2005,280(4): 2737-2744.
    [377]Southgate R J, Neill B, Prelovsek O, et al. FOXO1 regulates the expression of 4E-BP1 and inhibits mTOR signaling in mammalian skeletal muscle[J]. Journal of Biological Chemistry, 2007,282(29):21176-21186.
    [378]Luo J, Chen D, Yu B. Effects of different dietary protein sources on expression of genes related to protein metabolism in growing rats[J]. British Journal of Nutrition,2010,104(10): 1421-1428.
    [379]Moylan J S, Smith J D, Chambers M A, et al. TNF induction of atrogin-1/MAFbx mRNA depends on Foxo4 expression but not AKT-Foxol/3 signaling[J]. American Journal of Physiology:Cell Physiology,2008,295(4):C986-C993.
    [380]Wilson H R, Suarez M E. The use of egg weight and chick weight coefficients of variation as quality indicators in hatchery management[J]. Journal of Applied Poultry Research,1993,2(3): 227-231.
    [381]Shanawany M M. Inter-relationship between egg weight, parental age and embryonic development[J]. British Poultry Science,1984,25(4):449-455.
    [382]张丽英.饲料分析及饲料质量检测技术[M].北京:中国农业大学出版社,2007.
    [383]Pinchasov Y. Relationship between the weight of hatching eggs and subsequent early performance of broiler chicks[J]. British Poultry Science,1991,32(1):109-115.
    [384]Buyse J, Janssens G P J, Decuypere E. The effects of dietary L-carnitine supplementation on the performance, organ weights and circulating hormone and metabolite concentrations of broiler chickens reared under a normal or low temperature schedule[J]. British Poultry Science,2001, 42(2):230-241.
    [385]Noble R C, Cocchi. M. Lipid metabolism and the neonatal chicken[J]. Progress in Lipid Research,1990,29(2):107-140.
    [386]Beccavin C, Chevalier B, Cogburn L, et al. Insulin-like growth factors and body growth in chickens divergently selected for high or low growth rate[J]. Journal of Endocrinology,2001, 168(2):297-236.
    [387]Duclos M J, Molette C, Guernec A, et al. Cellular aspects of breast muscle development in chickens with high or low growth rate[J]. Archiv Tierzucht,2006,49(1):147-151.
    [388]Bowes V A, Julian R J, Stirtzinger T. Comparison of serum biochemical profiles of male broilers with female broilers and White Leghorn chickens[J]. Canadian Journal of Veterinary Research, 1989,53(1):7-11.
    [389]Leenstra F R, Decuypere E, Beuving G, et al. Concentrations of hormones, glucose, triglycerides and free fatty acids in the plasma of broiler chickens selected for weight gain or food conversion[J]. British Poultry Science,1991,32(3):619-632.
    [390]Filipovic N, Stojevic Z, Milinkovic-Tur S, et al. Changes in concentration and fractions of blood serum proteins of chickens during fattening[J]. Veterinarski Arhiv,2007,77(4):319-326.
    [391]Piotrowska A, Burlikowska K, Szymeczko R. Changes in blood chemistry in broiler chickens during the fattening period[J]. Folia Biologica (Krakow),2011,59(3-4):183-187.
    [392]Krasnodebska-Depta A, Koncicki A. Physiological values of selected serum biochemical indices in broiler chickens[J]. Medycyna Weterynaryjna,2000,56(7):456-460.
    [393]Adams G R, Haddad F. The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy [J]. Journal of Applied Physiology,1996,81(6):2509-2516.
    [394]Goddard C, Wilkie R S, Dunn I C. The relationship between insulin-like growth factor-1, growth hormone, thyroid hormones and insulin in chickens selected for growth[J]. Domestic Animal Endocrinology,1988,5(2):165-176.
    [395]Noy Y, Sklan D. Yolk and exogenous feed utilization in the posthatch chick[J]. Poultry Science, 2001,80(10):1490-1495.
    [396]Preston C M, McCracken K J, Bedford M R. Effect of wheat content, fat source and enzyme supplementation on diet metabolisability and broiler performance [J]. British Poultry Science, 2001,42(5):625-632.
    [397]Danicke S, Jeroch H, Bottcher W, et al. Interactions between dietary fat type and enzyme supplementation in broiler diets with high pentosan contents:effects on precaecal and total tract digestibility of fatty acids, metabolizability of gross energy, digesta viscosity and weights of small intestine[J]. Animal Feed Science and Technology,2000,84(3-4):279-294.
    [398]Wallis I R, Balnave D. The influence of environmental temperature, age and sex on the digestibility of amino acids in growing broiler chickens[J]. British Poultry Science,1984,25(3): 401-407.
    [399]Ten Doeschate R, Scheele C, Schreurs V, et al. Digestibility studies in broiler chickens: influence of genotype, age, sex and method of determination[J]. British Poultry Science,1993, 34(1):131-146.
    [400]Ravindran V, Wu Y B, Hendriks W H. Effects of sex and dietary phosphorus level on the apparent metabolizable energy and nutrient digestibility in broiler chickens[J]. Archives of Animal Nutrition,2004,58(5):405-411.
    [401]Kim E J, Corzo A. Interactive effects of age, sex, and strain on apparent ileal amino acid digestibility of soybean meal and an animal by-product blend in broilers[J]. Poultry Science, 2012,91(4):908-917.
    [402]Gracia M I, Lazaro R, A L M, et al. Influence of enzyme supplementation of diets and cooking-flaking of maize on digestive traits and growth performance of broilers from 1 to 21 days of age[J]. Animal Feed Science and Technology,2009,150(3-4):303-315.
    [403]Olukosi O A, Cowieson A J, Adeola O. Age-related influence of a cocktail of xylanase, amylase, and protease or phytase individually or in combination in broilers[J]. Poultry Science,2007, 86(1):77-86.
    [404]Mahagna M, Nir I, Larbier M, et al. Effect of age and exogenous amylase and protease on development of the digestive tract, pancreatic enzyme activities and digestibility of nutrients in young meat-type chicks[J]. Reproduction Nutrition Development,1995,35(2):201-212.
    [405]Maiorka A, Santin E, Silva A, et al. Effect of broiler breeder age on pancreas enzymes activity and digestive tract weight of embryos and chicks[J]. Revista Brasileira de Ciencia Avicola,2004, 6(1):19-22.
    [406]Nitsan Z, Ben-Avraham G, Zoref Z, et al. Growth and development of the digestive organs and some enzymes in broiler chicks after hatching[J]. British Poultry Science,1991,32(3):515-523.
    [407]Pinheiro D F, Cruz V C, Sartori J R, et al. Effect of early feed restriction and enzyme supplementation on digestive enzyme activities in broilers[J]. Poultry Science,2004,83(9): 1544-1550.
    [408]Johnson L, Chandler A. RNA and DNA of gastric and duodenal mucosa in antrectomized and gastrin-treated rats[J]. American Journal of Physiology,1973,224(4):937-940.
    [409]Zhang Y C, Li F C. Effect of dietary methionine on growth performance and insulin-like growth factor-Ⅰ mRNA expression of growing meat rabbits[J]. Journal of Animal Physiology and Animal Nutrition,2010,94(6):803-809.
    [410]蒋正宇.外源a-淀粉酶对肉鸡消化器官发育、内源酶活性的影响及后续效应的研究[D].南京:南京农业大学,2006.
    [411]王曼.丙酮酸肌酸对肉鸡脂肪代谢和蛋白质代谢的影响[D].南京:南京农业大学,2010.
    [412]Tesseraud S, Peresson R, Lopes J, et al. Dietary lysine deficiency greatly affects muscle and liver protein turnover in growing chickens[J]. British Journal of Nutrition,1996,75(6):853-865.
    [413]Guernec A, Berri C, Chevalier B, et al. Muscle development, insulin-like growth factor-I and myostatin mRNA levels in chickens selected for increased breast muscle yield[J]. Growth Hormone & IGF Research,2003,13(1):8-18.
    [414]Miller R A, Buehner G, Chang Y, et al. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance[J]. Aging Cell,2005,4(3):119-125.
    [415]Nagao K, Oki M, Tsukada A, et al. Alleviation of body weight loss by dietary methionine is independent of insulin-like growth factor-I in protein-starved young chickens[J]. Animal Science Journal,2011,82(4):560-564.
    [416]Brunetti A, Goldfine I D. Role of myogenin in myoblast differentiation and its regulation by fibroblast growth factor[J]. Journal of Biological Chemistry,1990,265(11):5960-5963.
    [417]Whittemore L-A, Song K, Li X, et al. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength[J]. Biochemical and Biophysical Research Communications,2003, 300(4):965-971.
    [418]Relaix F, Rocancourt D, Mansouri A. Divergent functions of murine Pax3 and Pax7 in limb muscle development[J]. Genes & Development,2004,18(9):1088-1105.
    [419]Moran E T. Response of broiler strains differing in body fat to inadequate methionine:live performance and processing yields[J]. Poultry Science,1994,73(7):1116-1126.
    [420]Wen C, Wang L C, Zhou Y M, et al. Effect of enzyme preparation on egg production, nutrient retention, digestive enzyme activities and pancreatic enzyme messenger RNA expression of late-phase laying hens[J]. Animal Feed Science and Technology,2012,172(3-4):180-186.
    [421]Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002,3(7):0034.0031-0034.0011.
    [422]Chen J, Wang M, Kong Y, et al. Comparison of the novel compounds creatine and pyruvateon lipid and protein metabolism in broiler chickens[J]. Animal,2011,5(7):1082-1089.
    [423]Alvares L E, Mantoani A, Corrente J E, et al. Standard-curve competitive RT-PCR quantification of myogenic regulatory factors in chicken embryos[J]. Brazilian Journal of Medical and Biological Research,2003,36(12):1629-1641.
    [424]Kogut M H, Iqbal M, He H, et al. Expression and function of Toll-like receptors in chicken heterophils[J]. Developmental & Comparative Immunology,2005,29(9):791-807.
    [425]Wang X Q, Jiang W, Tan H Z, et al. Effects of breed and dietary nutrient density on the growth performance, blood metabolite, and genes expression of target of rapamycin (TOR) signalling pathway of female broiler chickens[J]. Journal of Animal Physiology and Animal Nutrition, 2013,97(4):797-806.
    [426]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method.[J]. Methods,2001,25(4):402-408.
    [427]Andres V, Walsh K. Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis[J]. The Journal of cell biology,1996,132(4):657-666.
    [428]Garikipati D K, Rodgers B D. Myostatin inhibits myosatellite cell proliferation and consequently activates differentiation:evidence for endocrine-regulated transcript processing[J]. Journal of Endocrinology,2012,215(1):177-187.
    [429]Wang Q, McPherron A C. Myostatin inhibition induces muscle fibre hypertrophy prior to satellite cell activation[J]. Journal of Physiology,2012,590(9):2151-2165.
    [430]Morisaki T, Sermsuvitayawong K, Byun S-H, et al. Mouse Mef2b gene:unique member of MEF2 gene family[J]. Journal of Biochemistry,1997,122(5):939-946.
    [431]Liu H H, Wang J W, Zhang R P, et al. In ovo feeding of IGF-1 to ducks influences neonatal skeletal muscle hypertrophy and muscle mass growth upon satellite cell activation[J]. Journal of Cellular Physiology,2012,227(4):1465-1475.
    [432]Cooper R N, Tajbakhsh S, Mouly V, et al. In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle[J]. Journal of Cell Science,1999,112(17):2895-2901.
    [433]宗凯.日粮中蛋氨酸和赖氨酸水平对肉鸡生产性能及基因组甲基化的影响[D].合肥:合肥工业大学,2010.
    [434]McMurtry J P. Nutritional and developmental roles of insulin-like growth factors in poultry[J]. Journal of Nutrition,1998,128(2):302S-305S.
    [435]Adams G R. Invited Review:Autocrine/paracrine IGF-I and skeletal muscle adaptation[J]. Journal of Applied Physiology,2002,93(3):1159-1167.
    [436]Duan C. Specifying the cellular responses to IGF signals:roles of IGF-binding proteins[J]. Journal of Endocrinology,2002,175(1):41-54.
    [437]Laviola L, Natalicchio A, Giorgino F. The IGF-I signaling pathway[J]. Current Pharmaceutical Design,2007,13(7):663-669.
    [438]Sandri M, Barberi L, Bijlsma A, et al. Signalling pathways regulating muscle mass in ageing skeletal muscle. The role of the IGFI-Akt-mTOR-FoxO pathway[J]. Biogerontology,2013, 1-21.
    [439]Metayer-Coustard S, Mameri H, Seiliez I, et al. Methionine deprivation regulates the S6K1 pathway and protein synthesis in avian QM7 myoblasts without activating the GCN2/eIF2 alpha cascade[J]. Journal of Nutrition,2010,140(9):1539-1545.
    [440]Li Y, Yuan L, Yang X, et al. Effect of early feed restriction on myofibre types and expression of growth-related genes in the gastrocnemius muscle of crossbred broiler chickens[J]. British Journal of Nutrition,2007,98(2):310-319.
    [441]Boyd Y, Haynes A, Bumstead N. Orthologs of seven genes (AKT1, CDC42BPB, DIO3, EIF5, JAG2, KLC, NDUFB1) from human chromosome 14q32 map to distal chicken chromosome 5[J]. Mammalian Genome,2002,13(2):120-122.
    [442]王远孝IUGR猪的生长与肠道发育及L-精氨酸和大豆卵磷脂的营养调控研究[D].南京:南京农业大学,2011.
    [443]Bower N I, Johnston I A. Transcriptional regulation of the IGF signaling pathway by amino acids and insulin-like growth factors during myogenesis in Atlantic salmon[J]. PLoS One,2010, 5(6):e11100.
    [444]Li Y, Yang X, Ni Y, et al. Early-age feed restriction affects viability and gene expression of satellite cells isolated from the gastrocnemius muscle of broiler chicks[J]. Journal of Animal Science and Biotechnology,2012,3(1):33.
    [445]Han B, Tong J, Zhu M J, et al. Insulin-like growth factor-1 (IGF-1) and leucine activate pig myogenic satellite cells through mammalian target of rapamycin (mTOR) pathway [J]. Molecular Reproduction and Development,2008,75(5):810-817.
    [446]Tesseraud S, Abbas M, Duchene S, et al. Mechanisms involved in the nutritional regulation of mRNA translation:features of the avian model[J]. Nutrition Research Reviews,2006,19(1): 104-116.
    [447]Gingras A C, Kennedy S G, O'Leary M A, et al.4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt (PKB) signaling pathway[J]. Genes & Development, 1998,12(4):502-513.
    [448]Demontis F, Perrimon N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging[J]. Cell,2010,143(5):813-825.
    [449]Tesseraud S, Metayer-Coustard S, Boussaid S, et al. Insulin and amino acid availability regulate atrogin-1 in avian QT6 cells[J]. Biochemical and Biophysical Research Communications,2007, 357(1):181-186.
    [450]Nakashima K, Yakabe Y, Yamazaki M, et al. Effects of fasting and refeeding on expression of atrogin-1 and Akt/FOXO signaling pathway in skeletal muscle of chicks[J]. Bioscience, Biotechnology, and Biochemistry,2006,70(11):2775-2778.
    [451]Tesseraud S, Bouvarel I, Collin A, et al. Daily variations in dietary lysine content alter the expression of genes related to proteolysis in chicken Pectoralis major muscle[J]. Journal of Nutrition,2009,139(1):38-43.
    [452]Sandri M, Sandri C, Gilbert A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy[J]. Cell,2004,117(3):399-412.
    [453]Jones N C, Fedorov Y V, Rosenthal R S, et al. ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion[J]. Journal of Cellular Physiology, 2001,186(1):104-115.
    [454]Mammucari C, Schiaffino S, Sandri M. Downstream of Akt:FoxO3 and mTOR in the regulation of autophagy in skeletal muscle[J]. Autophagy,2008,4(4):524-526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700