紧急控制与校正控制的协调优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跨大区电网互联和电力市场化的推进在为我国经济建设与发展提供强有力支持的同时,也对电力系统的安全、稳定与可靠性运行带来了新的挑战。而电力系统的安全、稳定与国家建设与稳定休戚相关,因此,如何防御大停电灾难,保证电网安全、稳定、优质的运行就成为一个重大和迫切的课题。
     闭环离散控制是电力系统在大扰动后保持运行可靠性的主要手段,包括切机、切负荷、解列等等,可以分为以故障驱动的紧急控制(EC)及由受扰轨迹驱动的校正控制(CC)两类。当前对二者的研究主要集中在如何以最小的控制量或控制代价来满足安全稳定约束,方案的制定依赖于系统仿真和工程经验,决策过程都是在确定的运行工况、模型参数及故障场景下,孤立进行的。
     闭环离散控制的决策要素包括系统模型与参数、工况、预想故障集、目标函数、约束条件、控制变量与控制时机,其优化决策离不开可靠、高效的安全稳定量化分析算法。扩展等面积准则(Extended Equal Area Criterion)提出了高维受扰轨迹摆次稳定性的概念以及评估每摆稳定裕度的量化方法,深刻的揭示了非自治非线性多机电力系统暂态稳定性的机理和规律,并能提供满足工程实用要求的稳定裕度指标。本文利用基于EEAC理论的电力系统安全稳定量化分析与优化决策软件包FASTEST,从兼顾电力系统安全性与经济性的角度出发,对EC优化、CC优化及二者的协调展开了较为系统的研究。
     EC是故障驱动的前馈控制,时间滞后很小,控制性价比高;但由于其决策表是按典型场景预先准备的,实际场景与之失配可能引起严重过控或欠控。CC是轨迹驱动的反馈控制,其执行时刻在不安全现象出现以后,其性价比要差;但反馈控制律可以消除过控及欠控问题。本文以切机、切负荷和解列措施为例,深入比较了EC与CC在启动判据、动作时机、控制代价、控制律及控制精度等方面的不同,讨论了它们在确定工况及故障下的优化决策。
     电力系统本身是随机的,各种随机因素按受扰场景可分为工况类和故障类两种。不同地点和类型的故障对稳定性的破坏程度不同,即使相同的故障,在不同的电网结构、机组组合、母线注入和系统备用下的控制代价也不同。按典型的工况和故障的确定性仿真及保守原则制定控制策略,其决策不但不经济,还有可能带来危险的负效应。以旋转备用水平及频率特性为例,分析了随机因素对某实际电网频率安全性的影响。
     若用EC来应对小概率高风险的不确定因素,则在大多情况下将发生过控;若用CC来应对概率大的不确定因素,则机会成本很高。应基于风险概念来协调这两种在物理和经济特性上都互补的控制方式。配置EC以减轻CC的强度,追加CC来减轻EC的保守性,并避免系统在预先未考虑到的严重故障下崩溃。二者的协调非但关系到防御体系的强壮性,也影响到防御行为的经济性。以某实际电网为例,考虑切除时间和负荷模型的不确定性,对其切机方案进行协调优化,仿真结果表明优化后的控制方案风险代价显著减小。
     切负荷(LS)控制既可由故障驱动(即紧急LS),也可由轨迹驱动(即校正LS)。大量不确定因素突出了它们之间协调的重要性。这是一个时变系统的动态规划问题,需要处理各类稳定性约束、高维混合决策空间中的寻优及控制措施之间的非线性交互等难题,只能采用解耦优化-聚合协调的方法求解。首先用稳定性量化分析软件FASTEST分析不确定因素下的稳定性,然后分别优化故障驱动的LS及轨迹驱动的LS,在优化其中之一时,将另一个的最新迭代结果作为仿真的外部场景,迭代到预想故障集的风险总代价不再明显减小为止。考虑某实际系统的预想故障、负荷模型和负荷水平等不确定因素,仿真证实该协调优化方法在保证系统稳定性的前提下,显著减少了控制的风险。
     解列控制既可由故障驱动(即第二道防线中的故障解列),也可由轨迹驱动(即第三道防线中的失步解列)。对于完全确定性的理想情况,只需要考虑故障解列,以减少对系统的冲击;但客观存在的不确定因素模糊了连锁解列的充要条件,突出了失步解列及两者协调的重要性。将解列后,使各孤立子系统稳定的最小控制代价与故障概率的乘积之和作为解列风险,并按该指标协调两种解列方案。采用“在线预算,实时匹配”的方法提高故障解列的自适应性;由控制中心站、就地主站和解列装置组成自适应失步解列系统。其中,控制中心站负责应对振荡中心的转移;就地主站按断面功率或风险代价在线判断最优的解列割集。通过仿真验证了其有效性。
The advancement of interconnected power grids and electricity markets provides strong supports for economic construction and development of our country. Meanwhile, it also brings new challenges to security, stability and reliability of power systems. Because security and stability of power systems are closely related to construction and stability of our country, it is imperative to develop new strategies to defend power systems blackouts, ensure security, stability and economical operation of power grids.
     Closed-loop discrete control is the main means of maintaining operational reliability of power systems after large disturbance, including generator tripping, load shedding, splitting, and so on. These measures can be divided into fault-driven emergency control and trajectory-driven correction control. Current researches focus on how to minimize control quantity or control cost of meeting stability constraints. Control schemes rely on system simulations and engineering experiences, and the decision-making is carried on with deterministic operation conditions, models, parameters, and fault scenarios.
     The decision-making factors of closed-loop discrete control include models and parameters, operation conditions, assumed faults, objective functions, constraints, control variables and execution time. Control strategies can not be optimized without reliable and efficient security and stability quantitative analysis algorithms. Extended Equal Area Criterion proposes the swing stability concept of high dimensional disturbed trajectories and the methods of assessing stability margin of every swing. It profoundly reveals transient stability mechanism and law of non-autonomous and nonlinear multi-machine power systems. Considering security and economy of power systems, the dissertation optimizes EC and CC, and coordinates them by using FASTEST software package.
     EC is a feed-forward control driven by faults. Its lag time is very small and cost-performance ratio is large. But its decision tables are made according to typical scenarios. The scenario errors maybe lead to serious over-control or deficient-control. CC is a feed-back control driven by trajectories. It is executed after insecure phenomena occur, so its cost-performance ratio is small. But its feed-back law can avoid over-control and deficient-control. The dissertation compares the criterion, execution time, cost and precision of EC and CC, as well as their generator tripping, load shedding and network splitting actions. Their optimized strategies with deterministic operation conditions and faults are also discussed.
     Power systems are random. Diverse stochastic factors are divided according to operation conditions and faults. Faults with different locations and types impact on stability of power systems differently. The control costs of same type faults are different when they occur at different grid topologies, unit commitment, injection power and system reserve. It is not economical and maybe brings about negative control effects to make control strategies by deterministic simulation with typical conditions and faults according to conservative principles. With consideration of non-determinism of tie-line power, clearing time, load level and load models, the influence of stochastic factors on power angle stability, frequency security and voltage security is analyzed by simulations on a Chinese power systems.
     If an emergency control is used to cope with uncertain factors occurring in small probability and high risk, it will most likely lead to over-controlled results in most of operational scenarios. If correction control is used in this case to cope with the factors that have a large probability to occur, the cost would be high. It is emphasized that the coordination of these two control modes with complementary characteristics physically as well as economically should be based on risk analysis. EC can reduce control strength of CC; CC can alleviate conservatism of EC and avoid power systems blackouts under unpredicted serious faults. Their coordination can improve adaptability and economy of defend systems. Considering the non-determinism of clearing time and load model, simulation studies undertaken on a power system show that the risk cost of optimized generator tripping scheme is reduced obviously.
     Load shedding can be driven by either faults (emergency load shedding) or trajectories (corrective load shedding). To deal with many non-deterministic factors, it is important to coordinate them. According to a decoupling-optimization and global-coordination framework, power system stability and security are analyzed with FASTEST software package considering the non-deterministic factors, and then fault-driven load shedding and trajectory-driven load shedding are optimized respectively and interactively. During the course of optimizing one of them, the newest results of another are taken as constrained scenarios. Iteration is conducted until the total risk of all assumed faults is not reduced obviously. With consideration of the non-deterministic factors of the assumed faults, load model and load level, simulation studies undertaken on a power system show that the optimal coordinative load shedding scheme reduces the risk cost obviously with a premise of maintaining stability and security of the power system.
     Splitting can be driven by either faults (fault-driven splitting performed at the second defense line), or trajectories (out-of-step splitting performed at the third defense line). Under absolutely deterministic conditions, only fault-driven splitting is needed to reduce impact on power systems. However, there are many of non-deterministic factors which weaken the necessity of fault-driven splitting but emphasize out-of-step splitting and the importance of coordinating them. Multiplying the control cost of all isolated sub-systems with the splitting probability is newly defined as the risk cost of splitting control proposed as an index in this paper, and the coordination is also based on this index. Then "on-line pre-decision and real-time match" is used to improve the adaptability of faults-driven splitting. The paper also proposes an adaptive out-of-step system that consists of a control center, local splitting stations and splitting devices. The control center would detect the location of an oscillation center automatically, and coordinate fault-driven splitting and out-of-step splitting according to the splitting risk. Local splitting stations would be responsible for on-line selecting the cutting sets of the power grid. Simulation studies undertaken on power systems show that this optimal and coordinative splitting scheme is effective and practical.
     This project is jointly supported by National Science Foundation of China (No. 50595413) and State Grid Corporation of China (No. SGKJ[2007]98&187&2009). Except for theoretical value, it is also expect to provide practical decision-making tools for interconnection and marketization of china power grids by improving in engineering earlier.
引文
[1]王梅义,吴竞昌,蒙定中.大电网系统技术.北京:中国电力出版社,1995,1-5.
    [2]薛禹胜.综合防御由偶然故障演化为电力灾难——北美“8·14”大停电的警示.电力系统自动化,2003,27(18):1-5.37.
    [3]鲁宗相.解析莫斯科大停电.中国电力企业管理,2005,29(14):29-31.
    [4]陈向宜,陈允平,李春艳,等.构建大电网安全防御体系.电力系统自动化,2007,31(1):4-8.
    [5]唐斯庆,张弥,李建设.等.海南电网“9·26”大面积停电事故的分析与总结.电力系统自动化,2006,30(1):1-7,16.
    [6]薛禹胜.运动稳定性量化理论——非自治非线性多刚体系统的稳定性分析.南京:江苏科学技术出版社,1999,122-124.
    [7]IEEE Task Force on Terms and Definitions.Proposed Terms and Definitions for Power System Stability.IEEE Trans on PAS,1982,101(7).
    [8]BYERLY R T,KIMBARK E W.Stability of Large Power System.IEEE Press,1974.
    [9]DL755-2001.电力系统安全稳定导则.北京:中国电力出版社,2001.
    [10]夏道止.电力系统分析.北京:中国电力出版社.1995,45-46.
    [11]张雪敏,梅生伟,卢强.基于功率切换的紧急控制算法研究.电网技术,2006,30(13):26-31.
    [12]张瑞琪,闵勇,侯凯元.电力系统切机/切负荷紧急控制方案的研究.电力系统自动化,2003,27(18):6-12.
    [13]CHUNG C Y,WANG K W,NIU R.Power system stabilizer(PSS) design by probabilistic sensitivity indexes(PSIs).IEEE Trans on Power Systems,17(3):688-693.
    [14]王成山,余旭阳.一种临界故障切除时间概率分布的求解方法.中国电机工程学报,2004,24(1):6-10.
    [15]李文沅,卢继平.暂态稳定概率评估的蒙特卡罗方法.中国电机工程学报,2005,25(10):18-23.
    [16]VAAHEDI E,LI W,CHIA T,et al.Large scale probabilistic transient stability assessment using BC Hydro's on-line tool.IEEE Trans on Power Systems,2000,15(2):661-667.
    [17]戴剑锋,朱凌志,周双喜,等.基于风险的低压减载策略问题研究.中国电机工程学报,2006,26(19):18-22.
    [18]徐箭.陈允平.风险指标在提高传输功率极限中的应用.高电压技术,2006,32(7):105-108.
    [19]陆波,唐国庆.基于风险的安全评估方法在电力系统中的应用.电力系统自动化,2000,24(22):61-64.
    [20]JIANG Y,MCCALLEY J D,VAN V T.Risk-based resource optimization for transmission system maintenance.IEEE Trans on Power Systems,2006,21(3):1191-1200.
    [21]余旭阳.电力系统暂态稳定概率分析及控制的研究[博士学位论文].天津:天津大学,2003,9-11.
    [22]黄家裕.陈礼义,孙德昌.电力系统数字仿真.北京:中国电力出版社,1995,1-3.
    [23]陈礼义,顾强.电力系统数字仿真及其发展.电力系统自动化,1999,23(23):1-6.
    [24]李广凯,李庚银.电力系统仿真软什综述.电气电子教学学报,2005,27(3):62-66.
    [25]KULKARNI A,PAI M A.Parallel computation of power system dynamic using multi-step methods.Electrical Power & Energy Systems,1992,14(1):33-38.
    [26]CHAI J S,ZHU N,BOSE A,et al.Parallel newton type methods for power system stability analysis using local and shared member multi-processors.1EEE Trans on Power Systems,1991,16(4):1539-1545.
    [27]LASCALA M,SBRIZZAI R,TORELLI F.A Pipelines-in-time parallel algorithm for transient stability analysis.IEEE Trans on Power Systems,1990,16(2):715-722.
    [28]汪宗芳,陈德树,何仰赞.大规模电力系统暂态稳定性实时仿真及快速判断.中国电机工程学报,1993,13(6):13-19.
    [29]AYLETT P D.The energy integral criterion of transient stability limits of power systems.Proceedings of IEE,1958,105(8):527-536.
    [3o]GLESS G E.Direct method of Lyapunov applied to transient power system stability.IEEE Trans on Power Apparatus and Systems,1966,85(2):159-168.
    [31]ATHAY T A,PODMORE R,VIRMANI S.A practical method for the direct analysis of transient stability.IEEE Trans on Power Apparatus and Systems,1979,98(2):573-584.
    [32]ATHAY T A.Practical methods for the direct analysis of transient stability.IEEE Trans on Power Apparatus and Systems,1979,98(2):573-584.
    [33]FOUND A A,STANTO S E.Transient stability of multi-machine power system.IEEE Trans on Power Apparatus and Systems,1981,100(7):3408-3424.
    [34]CHUNG T S,FANG D Z.A fast approach to transient stability estimation using an improved Potential Energy Boundary Surface method.Electric Power System Research,1995,34(1):47-55.
    [35]LLAMAS A,LOPEZ J D,MILI L,et al.Clarifications of the BCU method for transient stability analysis.IEEE Trans on Power Systems,1995,10(1):210-216.
    [36]薛禹肚.EEAC与直接法的机理比较:(一)受扰程度函数.电力系统自动化,2001,25(11):6-11.
    [37]薛禹胜.EEAC与直接法的机理比较:(二)壁垒点与观察点.电力系统自动化,2001,25(12):1-7,23.
    [38]薛禹胜.EEAC与直接法的机理比较:(三)定性判稳与定量分析.电力系统自动化,2001,25(13):1-5,25.
    [39]薛禹胜.EEAC与直接法的机理比较:(四)回顺与瞻望.电力系统自动化,2001,25(14):1-6.
    [40]孙增圻,张再兴,邓志东.智能控制理论与技术.北京:清华大学出版社,2004,1-7.
    [41]焦李成.神经网络计算.西交:西安电子科技大学出版社,1993.
    [42]PANG K,PRABHAKARA F S.Security evaluation in power system using pattern recognition.IEEE Trans on Power Apparatus and Systems,1975,94(5):1789-1805.
    [43]HAKIMMASFIFIADI H,HEYCDT G T.Fast transient security assessment.IEEE Trans on Power Apparatus and Systems,1983,102(12):3816-3824.
    [44]SOBAJIC J,PAO Y H.Artificial neural-net based dynamic security assessment for electric power systems.IEEE Trans on Power Systems,1989,4(1):220-228.
    [45]PAO Y H,SOBAJIC D J.Combined use of unsupervised and supervised learning for dynamic security assessment.IEEE Trans on Power Systems.1991,7(2):878-884.
    [46]WEHENKEL L,CUTSEM T V,PAVELLA M.An artificial intelligence framework for on-line transient stability assessment of power systems.IEEE Trans on Power Systems,1989,4(2):789-797.
    [47]WEHENKEL L,PAVELLA M,EUXIBIE E,et al.Decision tree based transient stability method a case study.IEEE Trans on Power Systems,1994,9(1):459-466.
    [48]鞠平,马大强.电力系统概率稳定性分析.电力系统自动化,1990,14(3):18-23.
    [49]鞠平,吴耕扬,李扬.电力系统概率稳定的基本定理及算法.中国电机工程学报,1991,11(6):17-25.
    [50]崔凯,房大中,钟德成.电力系统暂态稳定性概率评估方法研究.电网技术,2005,29(1):44-49.
    [51]BILLINTON R,KURUGANTY P R S.A probabilistic index for transient stability//Proceedings of IEEE Power Engineering Society Winter Meeting:Jan29-Feb3,1978,195-206,New York,USA.
    [52]BILLINTON R,KURUGANTY P R S.A probabilistic index for transient stability.IEEE Trans on Power Apparatus and Systems,1980,99(1):195-206.
    [53]BILLINTON R,KURUGANTY P R S.Probabilistic assessment of transient stability in a practical multimachine system.IEEE Trans on Power Apparatus and Systems,1981,100(7):3634-3671.
    [54]ANDERSON P M,TIMKO K J.A probabilistic model of power system disturbances.IEEE Trans on Circuits and Systems,1982,29(11):789-796.
    [55]ANDERSON P M,BOSE A.A probabilistic approach to power system stability analysis.IEEE Trans on Power Apparatus and Systems,1983,102(8):2430-2439.
    [56]王成山,余旭阳.基于能量函数的暂态稳定概率分析方法.电力系统自动化,2003,27(6):5-9.
    [57]吴红斌,丁明,李生虎.发电机和负荷模型对暂态稳定性影响的概率分析.中国电机工程学报,2004,28(1):19-21,47.
    [58]丁明,黄凯,李生虎.交直流混合系统的概率稳定性分析.中国电机工程学报,2002,22(8):11-16.
    [59]刘强,薛禹胜,Zhaoyang Dong,et al.基于稳定域及条什概率的暂态稳定不确定性分析.电力系统自动化,2007,31(19):1-6.
    [60]刘福斌,基于风险的电力系统安全评估、决策和市场运作[博士学位论文].南京:东南大学,2003,7-11.
    [61]李辉华,苏慧文.金融风险识别与对策.北京:北京经济学院出版社,1996,21-23.
    [62]WILLIAMS C A,SMITH M L,YOUNG P C.风险管理与保险.北京:经济科学出版社,2000,11-13.
    [63]刘强.暂态稳定不确定性分析[博士学位论文].南京:东南大学,2007,5-7.
    [64]DY-L1ACCO T E.Control centers are here to stay.IEEE Computer Applications in Power,2002,15(4):18-23.
    [65]LIU C C,JUNG J,HEYDT G T et al.The strategic power infrastructure defense(SPID)system:a conceptual design.IEEE Control System Magazine,2002,20(4):40-52.
    [66]郭志忠.电网自愈控制方案.电力系统自动化,2005,29(10):85-91.
    [67]AMIN M.Toward self-healing energy infrastructure systems.IEEE Computer Applications in Power,2001,14(1):20-29.
    [68]薛禹胜.时空协调的大停电防御框架:(一)从孤立防线到综合防御.电力系统自动化,2006,30(1):8-16.
    [69]薛禹胜.时空协调的大停电防御框架:(二)广域信息、在线量化分析和自适应优化控制.电力系统自动化.2006,30(2):1-10.
    [70]薛禹肚.时空协调的大停电防御框架:(三)各道防线内部的优化和不同防线之间的协调.电力系统自动化,2006,30(3):1-10,106.
    [71]MAKAROV Y V,RESHETOV V I,STROEV V A,et al.Blackout prevention in the United States,Europe,and Russia.Proceedings of the IEEE,2005,93(11):1942-1955.
    [72]张保会.加强继电保护与紧急控制系统的研究提高互联电网安全防御能力.中国电机工程学报,2004,24(7):1-6.
    [73]王克球,张保会,王立永等.安全稳定控制系统的经济效益评价.电网技术,2007,31(6):31-37.
    [74]KUNDUR P.电力系统稳定与控制.北京:中国电力出版社.2002,755-757.
    [75]袁季修.电力系统安全稳定控制.北京:中国电力出版社.2003.73-75.
    [76]鲍颜红,徐泰山,需昭军.等.暂态稳定控制切机负效应问题的2个实例.电力系统自动化,2006,30(6):12-15.
    [77]PALANISWAMY K A,SHAMA J.MISRA K B.Optimum load shedding taking into account of voltage and frequency characteristics of loads.IEEE Trans on Power Apparatus and Systems,1985,104(6):1342-1348.
    [78]韩桢祥.电力系统稳定.北京:中国电力出版社,1995,136-138.
    [79]高鹏,王建全,甘德强,等.电力系统失步解列综述.电力系统自动化,2005,29(19):90-96.
    [80]EDWARDS L,GREGORY J D,OSBORN D L,et al.Turbine fast valving to aid system stability:benefits and other consideration.IEEE Trans on Power Systems,1986,1(1):143-153.
    [81]TAYLOR C W,LEFEBVRE S.HVDC controls for system dynamic performance.IEEE Trans on Power Systems,1991,6(2):743-752.
    [82]SHERKAT V R,THORP J S,THOMAS R J.The impact of dynamic braking on shaft torques.IEEE Trans on Power Apparatus and Systems,1980,99(6):2253-2264.
    [83]IEEE Power System Engineering Committee Report.A Description of Discrete Supplementary controls for Stability.IEEE Yrans on Power Apparatus and Systems,1978,97(1):149-157.
    [84]GOMES P,CARDOSO J R.Reducing blackout risk by system protection schemes-detection and mitigation of critical system conditions//Proceedings CIGRE 2006,Aug 27-Sepl,2006,Paris,France.
    [85]电力部电力系统安全稳定控制调查组.电力系统安全稳定控制开发应用调查综述.电力系统自动化,1998,22(9):5-8.
    [86]宋锦海,李雪明,姬长安.安全稳定控制装置的发展现状及展望.电力系统自动化,2005,29(23):91-96.
    [87]石访,李碧君.稳定分析与控制在现代电网发展中面临的挑战及其对策.电网与水力 发电进展.2008,24(2):15-18.
    [88]KOSTEREV D N,TAYLO C W,MITTELSTADT W A.Model validation for the august 10,1996 WSCC system outage.IEEE Trans on Power Systems,1999,14(3):967-979.
    [89]DEISE J,UBOIS J,FANNA R,et al.EWR under voltage load shedding scheme.IEEE Trans on Power Systems,1997,12(4):1446-1454.
    [90]HSU Y Y,KUO H C.Fuzzy-set based contingency ranking.IEEE Trans on Power Systems,1992,7(3):1189-1196.
    [91]CHANG C L,HSY Y Y.A new approach to dynamic contingency selection.IEEE Trans on Power Systems,1990,5(4):1542-1528.
    [92]白雪峰,倪以信.电力系统动态安全分析综述.电网技术,2004,28(16):14-20.
    [93]毕兆东,王建全,韩祯祥.基于数值积分法灵敏度的快速切负荷算法.电网技术,2002,26(8):4-7,43.
    [94]陈永红,薛禹胜.区域紧急控制的优化算法.中国电力,2000,33(1):44-48.
    [95]余贻鑫,刘辉,曾沅.基于实用动态安全域的紧急控制策略.电力系统自动化,2004,28(6):6-10.
    [96]徐泰山,李碧君,鲍颜红,等.考虑暂态安全性的低频低压减载量的全局优化.电力系统自动化,2003,27(22):12-15.
    [97]LARSSON M,KARLSSON D.Coordinated system protection scheme against voltage collapse using heuristic search and predictive control.IEEE Trans on Power Systems,2003,18(3):1001-1006.
    [98]薛禹胜,刘强,DONG Zhaoyang,等.关于暂态稳定不确定性分析的评述.电力系统自动化,2007,31(14):1-6,75.
    [99]王建全,王伟胜,朱振青,等.电力系统最优切负荷算法.电力系统自动化,1997,21(3):33-35,38.
    [100]孙元章,赵枚,黎雄,等.考虑发电机励磁控制的电力系统暂态稳定分析.电力系统自动化,2001,25(18):1-6.
    [101]OHURA Y,MATSUZAWA K,OHTSUKA H,et al.Development of a generation tripping system for transient stability augmentation based on the energy function method.IEEE Trans on Power Systems,1986,1(3):68-77.
    [102]MIRANDA V,FIDALGO J N,LOPES J A,et al.Real time preventive actions for transient stability enhancement with a hybrid neural network optimization approach.IEEE Trans on Power Systems,1995,10(2):1029-1035.
    [103]YAMASHIRO S.On-line secure-economy preventive control of power systems by pattern recognition.IEEE Trans on Power Systems,1986,1(3):214-219.
    [104]徐泰山,薛禹胜.暂态频率偏移可接受性的定量分析.电力系统自动化,2002,26(19):7-10.
    [105]XUE Y.An emergency control framework for transient security of large power systems.International Symposium on Power Systems,Singapore,March,1993,165-169.
    [106]方勇杰,范文涛,陈永红,等.在线预决策的暂态稳定控制系统.电力系统自动化,1999,23(1):8-11,44.
    [107]方勇杰,戴永荣,李雷,等.OPS-1在线预决策的暂态稳定控制系统.电力系统自动化,2000,24(3):56-59.
    [108]赵霞,周家启,胡小正,等.暂态稳定性分析中的确定性方法和概率性方法.电力系统自动化,2006,30(6):100-103.
    [109]刘海涛,程林,孙元章等.基于实时运行条件的元件停运因素分析与停运率建模.电力系统自动化,2007,31(7):6-11.
    [110]李文沅.电力系统风险评估.北京:科学出版社,2006,3-8.
    [111]冉立,任震,李正然.并行分解法用于交直流并联系统概率稳定性计算.重庆大学学报,1991,14(6):15-21.
    [112]甘德强,王锡凡,王小璐.电力系统概率暂态稳定性的分析.中国电力,1994,27(4):32-35.
    [113]付川,余贻鑫,王东涛.电力系统暂态稳定概率.电力系统自动化,2006,30(1):24-28,40.
    [114]赖业宁,薛禹胜.电力市场的风险管理.电力系统自动化,2001,25(14):1-6.
    [115]薛禹胜,李威.关于暂态稳定控制决策优化方法的思考.电力系统自动化,2003,27(10):15-21.
    [116]薛禹胜,李威,HILL D J.暂态稳定混合控制的优化:(一)单一失稳模式的故障集.电力系统自动化,2003,27(20):6-10.
    [117]李威,薛禹胜,HILL D J.暂态稳定混合控制的优化:(二)不同失稳模式的故障集.电力系统自动化,2003,27(21):7-10,29.
    [118]KARADY G G,GU J.A hybrid method for generator tripping.IEEE Trans on Power Systems,2002,17(4):1102-1107.
    [119]刘玉田.杜正春,夏道止.应用神经网络决定电力系统暂态稳定切机控制规律.电力系统自动化,1994,18(5):9-13.
    [120]SUN Y Z,LI X,SONG Y H.A new Lyapunov function for transient stability analysis of controlled power systems//Proceedings of IEEE Power Engineering Society Winter Meeting:Vol 2,Jan 23-27,2000,Singapore,1325-1330.
    [121]Tong J Z,CHIANG H D,CONNEEN T P.A sensitivity-based BCU method for fast derivation of stability limits in electric power systems.IEEE Trans on Power Systems,1993,8(4):1418-1428.
    [122]余志文,白雪峰,郭志忠,等.大容量远距离输电网暂态稳定控制方法的探讨.电力系统自动化,2003,27(4):57-60,65.
    [123]DL428-91.电力系统自动低频减负荷技术规定.北京:中国电力出版社,1991,1-2.
    [124]TERZIJA V V.Adaptive under-frequency load shedding based on the magnitude of the disturbance estimation.IEEE Trans on Power Systems,2006,21(3):1260-1266.
    [125]WANG P,BILLINTON R.Optimum toad shedding technique to reduce the total customer interruption cost in a distribution system,IEE Proceedings:Generation,Transmission and Distribution,2000,147(1):51-56.
    [126]任先成,薛禹胜,WU Q H,等.低频低压切负荷布点及轮次的优化与协调.电力系统自动化,2009,已录用.
    [127]GREWAL G S,KONOWALEC J W,HAKIM M.Optimization of a load shedding scheme.IEEE Industry Applications Magazine,1998,4(4):25-30.
    [128]秦明亮,杨秀朝.减少低频减载方案过切的措施研究.电网技术,2002,26(3):83-86.
    [129]TAYLOR C W,NASSlEF F R,CRESAP R L.Northwest power pool transient stability and load shedding controls for generation load imbalances.IEEE Trans on Power Apparatus and Systems,1981,100(7):3486-3495.
    [130]DELFINO B,MASSUCCO S.MORINI A,et al.Implementation and comparison of different under-frequency load-shedding schemes//Proceedings of IEEE Power Engineering Society Summer Meeting:Vol 1,July 15-19.2001,Vancouver.Canada.307-312.
    [131]薛禹胜,任先成,WU Q H,等.关于低频低压切负荷决策优化协调的评述.电力系统自动化,2009,33(19):100-107.
    [132]TAYLOR C W.Concepts of under-voltage load shedding for voltage stability.IEEE Trans on Power Delivery,1992.7(2):480-488.
    [133]任先成,薛禹胜,WU Q H,等.低频低压切负荷的控制负效应及其机理.电力系统自动化,2009,33(10):1-5,53.
    [134]OHURA Y,SUZUKI M,YANAGIHASHI K,et al.A predictive out-of-step protection system based on observation of the phase difference between substations.IEEE Trans on Power Delivery,1990,5(4):1695-1704.
    [135]FAUCON O,DOUSSET L.Coordinated defense plan protects against transient instabilities.IEEE Computer Applications in Power,1997,10(3):22-26.
    [136]潘贞存,桑在中,戴方涛,等.电网自动解列的新判据.电力系统自动化,1995,19(7):34-37.
    [137]宗洪良,任祖怡,郑玉平,等.基于ucosφ的失步解列装置.电力系统自动化.2003,27(19):83-85.
    [138]VITTAL V,OH T,FOUAD A A.Apparent impedance correlation of transient energy margin and time simulation.IEEE Trans on Power Systems,1988,3(2):455-461.
    [139]高鹏,王建全,周文平,等.基于无功功率捕捉失步解列断面的理论研究.电力系统自动化,2005,29(5):15-20.
    [140]宗洪良,孙光辉,刘志,等.大型电力系统失步解列装置的协调方案.电力系统自动化,2003,27(22):72-75.
    [141]方勇杰.电力系统的自适应解列控制.电力系统自动化,2007,31(20):41-44,48.
    [142]丁明,黄凯,李生虎.概率暂态稳定研究中紧急控制措施的模拟及效果分析.电工技术学报,2002,17(5):72-90.
    [143]朱道立.大系统优化理论与应用.上海:上海交通大学出版社,1987,1-3.
    [144]熊小伏,周永忠,周家启.计及负荷频率特性的低频减载方案研究.中国电机工程学报,2005,25(19):48-51.
    [145]ARNBORG S,ANDERSSON G,HILL D J,et al.On influence of load modeling for under-voltage load shedding studies.IEEE Trans on Power Systems,1998,13(2):395-400.
    [146]VOURNAS C D,KRASSAS N D.Voltage stability as affected by static load characteristics. IEE Proceedings:Generation.Transmission and Distribution,1993,140(3):221-228.
    [147]刘红进,袁越,戴宏伟.等.多代理系统及其在电力系统中的应用.电力系统自动化,2001,25(19),45-52.
    [148]WANG X,SHAO W,VITTAL V.Adaptive corrective control strategies for preventing power system blackouts//Proceeding of the 15th Power Systems Computation Conference,August 22-26,2005,Liege,Belgium,1-6.
    [149]SUN K,ZHENG D,LU Q.Splitting strategies for islanding operation of large-scale power systems using OBDD-based methods.IEEE Trans on Power Systems,2003,18(2):912-923.
    [1] YUAN Jixiu. Security and stability control for power systems. Beijing: China Electric Power Press. 2003.
    [2] XUE Yusheng. WANG Da, WU Q H. et al. A review on optimization and coordination of emergency control and correction control. Automation of Electric Power Systems. 2009. 33(?):?-?.
    
    [3] ZHAO Xia, ZHOU Jiaqi. HU Xiaozheng. et al. Deterministic and probabilistic approaches in transient stability studies. Automation of Electric Power Systems. 2006. 30(6): 100-103.
    [4] XUE Yusheng. LIU Qiang. Dong Zhaoyang. et al. A review of non-deterministic analysis for power system transient stability. Automation of Electric Power Systems. 2007, 31(14): 1-6, 75.
    [5] XUE Yusheng. Quantitative study of general motion stability and an example on power system stability. Nanjing: Jiangsu Science and Technology Press. 1999.
    [6] CHEN Yonghong. XUE Yusheng. Optimal algorithm for regional emergency control. Electric Power. 2000. 33(1): 44-48.
    [7] YU Yixin. LIU Hui, ZENG Yuan. A novel emergency control strategy based on practical dynamic security regions. Automation of Electric Power Systems. 2004, 28(6): 6-10.
    [8] XU Taishan. LI Bijun. BAO Yanhong, et al. Optimal parameter-setting of under-frequency and under-voltage load shedding for transient security. Automation of Electric Power Systems. 2003. 27(22): 12-15.
    [9] REN Xiancheng. XUE Yusheng. WU Q H. et al. Optimization and coordination of UF/UVLS placement and multi-step load shedding. Automation of Electric Power Systems. 2009. 33(?):?-?.
    [10] WANG Jianquan. WANG Weisheng. ZHU Zhenqing. et al. Optimal load-shedding algorithm in power system. Automation of Electric Power Systems. 1997. 21(3): 33-35. 38.
    [11] BILLINTON R. KURUGANTY P R S. A probabilistic index for transient stability. IEEE Trans on Power Apparatus and Systems. 1980. 99(1): 195-206.
    [12] FU Chuan. YU Yixin. WANG Dongtao. Transient stability probability of power system. Automation of Electric Power Systems. 2006. 30(1): 24-28.40.
    [13] TAYLOR C W. Concepts of under-voltage load shedding for voltage stability. IEEE Trans on Power Delivery. 1992, 7(2): 480-488.
    [14] XIONG Xiaofu. ZHOU Yongzhong. ZHOU Jiaqi. Study of under-frequency load shedding scheme based on load frequency characteristics. Proceedings of the CSEE. 2005.25(19): 48-51.
    [15] XUE Yusheng. REN Xiancheng. WU Q H. et al. A review on the optimization and coordination of under frequency/voltage load shedding. Automation of Electric Power Systems. 2009. 33(?): ?-? .
    [16] DL755-2001. Guide and standard of power system security and stability control. Beijing: China Electric Power Press. 2001.
    [17] WANG Meiyi. WU Jingchang. MENG Dingzhong. System technology for large power systems. Beijing: China Electric Power Press. 1995.
    [18] ARNBORG S. ANDERSSON G HILL D J. et al. On influence of load modeling for under-voltage load shedding studies. IEEE Trans on Power Systems. 1998. 13(2): 395-400.
    [19] VOURNAS C D. KRASSAS N D. Voltage stability as affected by static load characteristics. IEE Proceedings: Generation, Transmission and Distribution. 1993. 140(3): 221-228.
    [1] HAN Zhenxiang. Power system stability. Beijing: China Electric Power Press. 1995.
    [2] DL755-2001. Guide and standard of power system security and stability control. Beijing: China Electric Power Press. 2001.
    [3] XUE Yusheng. WANG Da. WU Q H, et al. A review on optimisation and coordination of emergency control and correction control. Automation of Electric Power Systems. 2009. 33(?): ?-?.
    [4] FAUCON O, DOUSSET L. Coordinated defense plan protects against transient instabilities. IEEE Computer Applications in Power. 1997. 10(3): 22-26.
    [5] GAO Peng. WANG Jianquan. GAN Deqiang. et al. Review on power system out-of-step separation. Automation of Electric Power Systems, 2005, 29(19): 90-96.
    [6] PAN Zhencun. SANG Zaizhong. DAI Fangtao. et al. A new criterion for power system automatic separation. Automation of Electric Power Systems. 1995. 19(7): 34-37.
    [7] ZONG Hongliang. REN Zuyi. ZHENG Yuping, et al. An out-of-step splitting device based on the changing track of the voltage of oscillation center. Automation of Electric Power Systems. 2003, 27(19): 83-85.
    [8] VITTAL V. OH T. FOUAD A A. Apparent impedance correlation of transient energy margin and time simulation. IEEE Trans on Power Systems. 1988. 3(2): 455-461.
    [9] WANG Meiyi. WU Jingchang, MENG Dingzhong. System technology for large power systems. Beijing: China Electric Power Press. 1995.
    [10] XUE Yusheng. Space-time cooperative framework for defending blackouts: part III optimization and coordination of defense-lines. Automation of Electric Power Systems. 2006. 30(3): 1-10.106.
    [11] Xue Y. An emergency control framework for transient security of large power systems. International Symposium on Power Systems. Singapore. March 1993
    [12] ZONG Hongliang. Sun Guanghui, Liu Zhi. et al. Coordination of out-of-step protection equipment in large power systems. Automation of Electric Power Systems. 2003. 27(22): 72-75.
    [13] FANG Yongjie. Adaptive islanding control of power systems. Automation of Electric Power Systems. 2007. 31(20): 41-44, 48.
    [14] LIU Hongjin. YUAN Yue. DAI Hongwei. et al. Multi-agent system and its application in power systems. Automation of Electric Power Systems. 2001. 25(19): 45-52.
    [15] WANG X. SHAO W. VITTAL V. Adaptive corrective control strategies for preventing power system blackouts// Proceeding of the 15th Power Systems Computation Conference. August 22-26. 2005. Liege, Belgium.
    [16] SUN K. ZHENG D. LU Q. Splitting strategies for islanding operation of large-scale power systems using OBDD-based methods. IEEE Trans on Power Systems. 2003. 18(2): 912-923.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700