B.R3菌株生物制氢系统发酵条件与化学增强技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厌氧发酵生物制氢技术可将高浓度的有机废水和生物质(如复合固体废弃物、阴沟底泥等)等作为原材料(底物)进行氢气制取,这既可以解决环境问题又能产生氢气,同时由于其反应简单、可持续、稳定产氢、产氢速率高、反应器的设计、操作、管理简单方便等特点而越来越受到世界的关注。
     本文依据厌氧发酵生物制氢的产氢机理,研究了高效产氢菌种Biohydrogenbacterium R3sp.nov(以下简称B.R3)在间歇实验条件下的发酵产氢效能,以及不同发酵条件(包括起始pH值、温度、生物质底物等)、有机氮源、无机氮源、磷酸盐、以及各种金属离子及其浓度对其产氢发酵效能的影响作用,同时研究了在连续流实验条件下,高效产氢菌种B.R3以糖蜜废水为底物的连续发酵产氢效能。研究结果表明:
     起始pH值和温度对细胞生长和产氢量具有较明显的影响,与国内外学者的研究结果相比,当起始pH值为5.5时,B.R3的细胞干重和产氢量分别达到最大值0.63g/L和34.2mmol/L。当温度为30℃时B.R3的细胞干重与比产氢率达到最大值0.66g/L和1.0145molH2/mol葡萄糖,此时乙醇和乙酸的产量分别为3067.95mg/L与2554.57mg/L,低于或高于这个温度时,产氢率和细胞生长都会受到抑制。
     B.R3以葡萄糖、绵白糖、白砂糖、红糖、面粉、牛奶、玉米面、淀粉、糖蜜和琼脂分别为底物进行发酵产氢试验的结果表明,当以葡萄糖作为底物时,生物气体和氢气产量较高分别为187.5mol/L和89.28mol/L,氢气含量为47.62%,当以面粉、牛奶、玉米粉、淀粉和琼脂作为发酵底物时,B.R3的发酵产氢量极低,然而以牛奶、玉米粉作为底物时,B.R3的氢气含量却相对较高(36.92%和43.75%)。大部分学者的研究结果都显示糖类物质具有较高的产氢能力,而纤维类物质需要经过一定酸处理、碱处理等预处理方式才能被菌种利用产氢,因此不适宜作为生物制氢的底物选择,但是本文认为虽然目前这类物质作为发酵产氢底物时的产氢效率不高,但由于其含有较丰富的碳水化合物从而具有较高的产氢潜力,并且在我国农业大国的国情下,还是十分具有研究价值的,这样既可做到废弃物处理同时也满足了能源物质——-H2的生产。
     纯菌种在连续流条件下进行发酵产氢的研究相对混合菌种而言比较少,且实验时体积相对较小,因此本文以B.R3进行连续流厌氧发酵生物制氢,实验时总体积为20L,实验证明通过控制适宜的实验条件,可实现CSTR反应器连续产氢。实验进行时以有机负荷为4kgCOD/L·d启动,运行至第23d时有机负荷降为3kgCOD/L·d,运行至第49d时有机负荷降低为2kgCOD/L·d,运行过程中氢气产量与含量、末端发酵产物以及有机等随着反应器时间的运行而呈现不同变化。反应器运行1-23d时氢气产量与含量呈现波动性上升趋势,在这个阶段内当反应器运行至第23d时气体产量达到最大值24.904L/d;当反应器运行至第23~48d时,反应器内的产气量与氢气含量都比较稳定且较高,当反应器运行至第28d时,产气量达到最大值26.39L/d;当反应器运行至第49~61d时,反应器内的产气量与氢气含量都开始下降,当反应器运行至第51d时氢气产量降低到最低值0.90L/d,随着反应器的继续运行以及NaHCO3的添加,B.R3的产气量与氢气含量缓慢上升趋势。
     氮元素及对B.R3产氢发酵效能的影响研究结果显示有机氮源对B.R3的生长及产氢效能的促进作用大大高于无机氮源对其的促进作用。酵母粉是较有效的氮源提供者,能够更好的促进B.R3的细胞生长和发酵产氢。无机氮源对发酵产氢细菌的发酵产氢效能促进作用不明显,因此在培养基中加入有机氮源(尤其是酵母粉)对于提高B.R3的发酵产氢效能是十分必要的。
     磷元素及对B.R3产氢发酵效能的影响研究结果显示磷酸氢二钾对B.R3的生长及产氢效能都具有良好的促进作用,在反应器内起始pH值为5.5,温度为30℃并且以酵母粉作为氮源时,当磷酸氢二钾浓度为1.5g/L时,B.R3的生物气体产量、氢气产量以及产氢率都达到最大值,分别为4960mL/L-培养基,2107.5mL/L·培养基和1.93mol H2/mol葡萄糖。磷酸氢二钾对培养基中的pH值具有较好的缓冲作用,当培养基内添加了磷酸氢二钾时其pH值始终维持在3.0~5.0范围内。
     磷酸盐缓冲溶液对B.R3的发酵产氢效能以及缓冲培养基终pH值同样也具有较良好的促进作用,当磷酸盐缓冲溶液浓度为0.15mol时,B.R3的生物气体、氢气产量和平均产氢速率分别达到最大值3860mL/L-培养基,1832.7mL H2/L·培养基和2.6324mmol H2/g·cell-h。
     综合对比NH4HCO3、NaHCO3、Na2CO3、K2HPO4、KH2PO4、NaH2PO4和Na2HPO4对B.R3产氢效能的影响,反应器内添加了Na2HPO4与K2HPO4的B.R3的氢气产量与氢气含量达到最高值,分别为1978.56mL/L培养基、44.1%与2160.9mL/L-培养基、45.8%。
     金属离子对产氢菌种发酵产氢效能的影响实验表明,在反应器内起始pH值为5.5,温度为30℃并且以酵母粉作为氮源条件下,当CoCl2浓度为0.05mg/L,B.R3的氢气产量达到最大值为205mL/L·培养基,当添加Fe粉浓度为200mg/L时,B.R3的氢气产量达到最大值为315mL/L-培养基,当添加Fe2+浓度为40mg/L时,B.R3的氢气产量达到最大值为281mL/L·培养基,当添加Cu2+浓度为0.03mg/L时,B.R3产氢量达到最大值192mL/L·培养基,当添加Zn2+浓度为0.2mg/L时,B.R3产氢量达到最大值144.2mL/L·培养基。
The anaerobic fermentation biohydrogen production can make use of the high concentration organic waste and biomass (such as complex solid waste, sewage sludge and so on) as raw material to produce hydrogen. This technology has caught more and more focus since it can operate easily, produce hydrogen efficiency and sustainly, but the most important is that this technology can not only solve the environment problem but also produce hydrogen.
     This paper investigated the hydrogen production efficiency of Biohydrogenbacterium R3sp.nov (B.R3in single) in batch condition and the promotion of different fermentation condition (including initial pH, temperature, biomass etc.), organic nitrogen, inorganic nitrogen, phosphate and metal ions on hydrogen production efficiency and cell growth to it according to the principle of anaerobic fermentation biohydrogen production. We also investigated the efficiency of B.R3in continuous stirred tank reactor (CSTR) which makes molasses as substrate. The results are as followed in simply.
     The results indicated that pH and temperature had a noticeable effect on the cell growth and hydrogen production. The dry cell weight and hydrogen production yield got the maximum of0.63g/L and34.2mmol/L respectively when the initial pH was5.5. The final pHs in the culture were always kept at3.0-4.0. Temperature affected the maximum cell growth and specific hydrogen production ration (SHPR) and they got the maximum of0.66g/L and1.01mol H2/mol glucose respectively at the temperature of30℃. Whether the pH and temperature are lower or higher, hydrogen production and biomass will be inhibited gradually.
     The biogas, hydrogen production and the hydrogen concentrations were187.5mol/L,89.28mol/L and47.62%respectively when was used the glucose as subtract. The hydrogen concentrations were36.92%and43.75%while the biogas and hydrogen production yield were relatively lower than those when the milk and maize flour were used as subtract. This indicated that the milk and maize flour have the capacity of hydrogen production although the hydrogen production rations were low since they have the rich carbonate. Many reachers' investigation shows that the carbohydrate has high hydrogen producing ablitity. While the cellulose must be pretreated by acid or alkali so they thought it's not suit for hydrogen production. But China waste huge amount of cellulose every so we think it is valuable because this can treat the waste and produce hydrogen at the same time.
     The reacher of bacteria in continuous condition is less than that of mixed culture relatively. The B.R3can produce hydrogen continuously in the right condition. The CSTR was set up at the initial COD of4kgCOD/L-d and it dropped to3kgCOD/L-d at the23th day while it dropped to2kgCOD/L·d at the49th day. The hydrogen production, concentration and end liquid fermentation fluctuated with the operation of CSTR. The hydrogen production and concentration increased when the CSTR operated at1th~23th day and the hydrogen production yield got the maximum of24.904L/d. The hydrogen production yield and concentration kept stable and got the maximum of26.39L/d at the28th day. The hydrogen production yield and concentration dropped to the minimum of0.90L/d at the51th day and they were increasing slowly with the NaHCO3and the operation of CSTR.
     The performance of organic nitrogen resource to B.R3on cell growth and hydrogen production was better than that of inorganic nitrogen resource. The yeast powder was most beneficial to promote cell growth and hydrogen production among all those nitrogen resources. So it's essential for B.R3to dose organic nitrogen (epically yeast powder) to promote the hydrogen production.
     K2HPO4can promote the hydrogen production and maintain the pH in medium of B.R3well. When the initial pH was5.5, the temperature was30℃and the yeast power as nitrogen provider, the biogas production yield, hydrogen production yield and hydrogen production ration got the maximum of4960mL/L·culture,2107.5mL/L·culture,1.93mol H2/mol glucose when the concentration of K2HPO4was1.5g/L. The pH in medium always maintained3.0-5.0since the K2HPO4can buffer the medium well.
     The phosphate buffer solution (PBS) can promote the hydrogen production and buffer the pH in the medium efficiency to B.R3The biogas and hydrogen production yield and average hydrogen production ration got the maximum of3860mL/L·culture,1832.7mLH2/L·culture and2.6324mmol H2/g·cell·h when the concentration of PBS was0.15mol.
     Compare the promotion to B.R3of NH4HCO3, NaHCO3, Na2CO3, K2HPO4, KH2PO4, NaH2PO4and Na2HPO4comprehensive, the hydrogen production yield and hydrogen concentration got the maximum of1978.56mL/L·culture,44.1%,2160.9mL/L·culture and45.8%when Na2HPO4and K2HPO4was dosed in medium.
     The hydrogen production yield got the maximum of205mL/L·culture,315mL/L·culture,281mL/L·culture,192mL/L·culture,144.2mL/L·culture respectively at the concentration of CoCl2at0.05mg/L, Fe粉at200mg/L, Fe2+at40mg/L, Cu2+at0.03mg/L, Zn2+at0.2mg/L.
引文
[1]Zuoyu S, FuShui L, Xinghua L, Baigang S, DaWei S. Research and development of hydrogen fuelled engines in China. International Journal of Hydrogen Energy,2012,37(1):664-681
    [2]Olga B, Pavel S. Production of hydrogen from renewable resources and its effectiveness. International Journal of Hydrogen Energy,2012,37(16):11563-11578
    [3]刘关君,李永峰,陈红.绿色能源.哈尔滨:哈尔滨工业大学出版社,2012,20~35
    [4]钱伯章,朱建芳.氢气生产的技术进展.天然气与石油,2009,27(1):44~49
    [5]卢风.人、环境与自然.广东:广东人民出版社,2011,15~102
    [6]毛宗强.氢能——21世纪的绿色能源.北京:化学工业出版社,2005,135~157
    [7]李原,邓隐北.氢能汽车的研制与发展.河南交通科技.1996,(1):47~50
    [8]周善元.21世纪的洁净新能源——氢能.江西能源.2000,(3):11~13
    [9]宋永昌,由文辉,王祥荣.城市生态学.上海:华东师范大学出版社,2000,145~231
    [10]Benemann J. Hydrogen Biotechnology:Progress and ProsPects. N at. Biotechnol,1996, (14):1101-1103
    [11]Nakamura H. Uber die photosynthese bei der schwefelfreren purpurbakterie rhodobacillus palustris.I. Beitrae zur stoffwechselphysiologie der purpubak-terirn. Acta phytochimica. 1937,(9):189-229
    [12]中国工业气体工业协会氢气专业委员会成立大会暨2000年年会议文集.中国工业气体工业协会氢气专业委员会秘书处编印,2000,(4):60~64
    [13]Nakamura T. Hydrogen production from water utilizing solar heat at high temperatures. Solar Energy,1977,19(5):467-475
    [14]Lewis F.A, Lewis I, McKee S.G. Correlations of the relationships between hydrogen content, hydrogen chemical potential and electrical resistivity for palladium alloy-hydrogen systems: Possible catastrophe theory representation of relationships. Journal of the Less Common Metals, 1984,101:503-521
    [15]刘冰峰,光发酵细菌的选育及其与暗发酵细菌耦合产氢研究,博士学位论文.2010,8-22
    [16]杨素萍,赵春贵,李建波等.高效选育产氢细菌的研究.山东大学学报(理学版),2002,27(4):353~358
    [17]朱核光,史家梁.生物产氢技术研究进展.应用与环境生物学报,2002,8(1):98~104
    [18]Prakasham R.S, Brahmaiah P, Sathish T, Sambasiva Rao K.R.S. Fermentative biohydrogen production by mixed anaerobic consortia:Impact of glucose to xylose ratio. International Journal of Hydrogen Energy,2009,34(23):9354-9361
    [19]Kotay SM, Das D. Biohydrogen as a renewable energy resource-prospects and potentials.Int J Hydrogen Energy,2008,33:258-263
    [20]Wang L, Zhou Q, Li FT. Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production. Biomass Bioenergy,2006,30(2):177-182
    [21]Horiuchi J, Shimizu T, Tada K, Kanno T, Kobayashi M. Selective Production of Organic Acids in Anaerobic Acid Reactor by pH Control. Bioresour Technol,2009,82:209-213
    [22]Lin C. Y, Chang R. C. Hydrogen Production during the Anaerobic Acidogenic Conversion of Glucose. J Chem Technol Biotechnol,1999,74:498-500
    [23]Nanqi R, Li J, Li B, Wang Y, Liu S. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. International Journal of Hydrogen Energy,2006; 31:2147-2157
    [24]Gadhamshetty V, Johnson D. C, Nirmalakhandan N, Smith G. B, Deng S. Feasibility of biohydrogen production at low temperatures in unbuffered reactors. International Journal of Hydrogen Energy,2009,34(3):1233-1243
    [25]Chang J. S, Lee K. S, Lin P. J. Biohydrogen Production with Fixed-Bed Bioreactors. Int J Hydrogen Energy,2002,27:1167-1174
    [26]Ding J, Wang X, Zhou X, Ren N, Guo W. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production. Bioresource Technology,2010,101(18):7005-7023
    [27]王修垣,谢树华.有斜面法分离厌氧细菌微生物.微生物学通报,1994,21(2):119-120
    [28]Lin C. Y, Lay C. H. Effects of Carbonate and Phosphate Concentrations on Hydrogen Production Using Anaerobic Sewage Sludge Microflora. Int J Hydrogen Energy,2004,29:275-281
    [29]卢圣栋.现代分子生物学实验指南.北京:中国协和医科大学出版社,2004,33~42
    [30]Palazzi E, Fabiano B, Perego P. Process Development of Continuous Hydrogen Production by Enterobacter Aerogenes in a Packed Column Reactor. Bioprocess Engineering,2010,22:205-211
    [31]Defeng X, Nanqi R, Aaijie W, Fang M. Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense YUAN-3 under non-sterile condition. Int J Hydrogen Energy, 2008,33:1489-1495
    [32]You KO, Eun HS, Kim JR, Park SH. Fermentative Biohydrogen Production by a New Chemoheterotrotrophic Bacterium Citrobacter sp. Y 19. Int J Hydrogen Energy,2003, 28:1353-1359
    [33]OThong S, Prasertsan P, Karakashev D, Angelidaki Ⅰ. Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. Int J Hydrogen Energy,2008,33:1204-1214
    [34]Pandey A, Sinha P, Kotay SM, Das D. Isolation and evaluation of a high H2-producing lab isolate from cow dung. Int J Hydrogen Energy,2009(34):7483-7488
    [35]Wang XJ, Ren NQ, Xiang WS, Guo WQ. Influence of gaseous end-products inhibition and nutrient limitations on the growth and hydrogen production by hydrogen producing fermentative bacterial B49. Int J Hydrogen Energy,2007,33:1153-1163
    [36]葛菁萍,刘国明,孙红兵,杨晓峰,凌宏志,平文祥.响应面法优化玉米芯半纤维素水解条件.中国农学通报,2011,27(18):64~68
    [37]许洪铭,龚倩云.纤维素水解方法的研究.农产品加工,2010(5):79~80
    [38]Julien M, Serge H, Christopher H, Laurent B, Fabrice F, Philippe T. Effect of pH on glucose and starch fermentation in batch and sequenced-batch mode with a recently isolated strain of hydrogen-producing Clostridium butyricum CWBI1009. International Journal of Hydrogen Energy, 2010,35(8):3371-3378
    [39]王东阳.乙醇型发酵制氢工艺启动及生物强化运行定向调控研究.哈尔滨工业大学博士论文.2010,56~87
    [40]岳莉然,李永峰等.产氢细菌对不同单双糖的发酵产氢利用与效能.太阳能学报,2009,30(4):542~545
    [41]Romero Aguilar M.A, Fdez-Guelfo L.A, Alvarez-Gallego C.J, Romero Garcia L.I. Effect of HRT on hydrogen production and organic matter solubilization in acidogenic anaerobic digestion of OFMSW. Chemical Engineering Journal,2013,219(1):443-449
    [42]KyungWon J, DongHoon K, SangHyoun K, HangSik S. Bioreactor design for continuous dark fermentative hydrogen production. Bioresource Technology,2011,102(18):8612-8620
    [43]Xiayun L, Tuo Z, Qi X, Huabin Y, Guanghua Z, Xiaojing L. Different effects of temperature on supramolecular protein and non-protein materials in hydrogen storage. International Journal of Hydrogen Energy,2013,38(2):991-998
    [44]Lakhveer S, Faisal SM, Ahmad A, Mohd H, Rahim A, Mimi S, Zularisam A.W. Application of polyethylene glycol immobilized Clostridium sp. LS2 for continuous hydrogen production from palm oil mill effluent in upflow anaerobic sludge blanket reactor. Biochemical Engineering Journal,2013,70(15):158-165
    [45]Zahedi S, Sales D, Romero L.I, Solera R. Hydrogen production from the organic fraction of municipal solid waste in anaerobic thermophilic acidogenesis:Influence of organic loading rate and microbial content of the solid waste. Bioresource Technology,2013,129:85-91
    [46]Tanisho S, Ishiwata Y. Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks. International Journal of Hydrogen Energy,1995, 20(7):541-545
    [47]Peters J.W, Lanzilotta W.N, Lemon B.J, Seeefldt L.C. X-Ray Cyrstal Structure of the Fe-Only Hydrogenase (Cpl) from Colsrtidium Paseturinaum to 1.8 Angstrom Resolution. Science,1998, 282:1853-1858
    [48]Michael W, Stiefel E.I. Biological Hydrogen Production:Not so Elementary. Science,1998, 282:1842-1843
    [49]John G. Ormerod, Kari S. Ormerod, Howard Gest. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Archives of Biochemistry and Biophysics,1961,94(3):449-463
    [50]Harry D, Peck Jr, Oliver H, Gest H. Comparative biochemistry of the biological reduction of fumaric acid. Biochimica et Biophysica Acta,1957,25:142-147
    [51]任南琪,王爱杰,马放.产酸发酵微生物生理生态学.北京:科学出版社,2005,144~189
    [52]李永峰,王璐,李建政等.利用Ethanoligenens harbinense产氢菌连续培养的CSTR的启动与运行.环境科学学报,2009,29(8):1624~1628
    [53]任南琪,丁杰,陈兆波.高浓度有机工业废水处理技术.北京:化学工业出版社,2012,167~195
    [54]宋安东.可再生能源的微生物转化技术.北京:科学出版社,2009,112-165
    [55]任南琪,王爱杰.厌氧生物技术原理与应用.北京:化学工业出版社,2005,167-202
    [56]刘敏,任南琪,刘艳玲等.初始条件对生物制氢反应器中顶极群落的影响.哈尔滨工业大学学报,2009,41(6):194~196
    [57]周德庆.微生物学教程(第二版).北京:高等教育出版社,2002,211-246
    [58]任南琪,周大石,马放.水污染控制微生物学.北京:化学工业出版社,2003:132~135
    [59]Julien M, Serge H, Christopher H, Laurent B, Fabrice F, Philippe T. Effect of pH on glucose and starch fermentation in batch and sequenced-batch mode with a recently isolated strain of hydrogen-producing Clostridium butyricum CWBI1009. International Journal of Hydrogen Energy, 2010,35(8):3371-3378
    [60]罗纪盛等合编.生物化学简明教程.北京:高等教育出版社,2006,34~65
    [61]Horiuchi J, Shimizu T, Tada K. Dynamic behavior in response to pH shift during anaerobic acid genesis with a chemstat culture. Biotech Tech,1999,13:155-157
    [62]Sanjukta S, Tanmaya N, Ram Kumar N., Vijayananth P., Banwari L. Impact of regulated pH on proto scale hydrogen production from xylose by an alkaline tolerant novel bacterial strain Enterobacter cloacae DT-1. International Journal of Hydrogen Energy,2013,38(6):Pages 2728-2737
    [63]Lin C Y, Lee C Y, Tseng I C. Biohydrogen production from sucrose using base-enriched anaerobic mixed microflora. Process Biochem,2006,41 (4):915-919
    [64]Carlos R, German B, Ivan A, Rolando C. Effect of the initial total solids concentration and initial pH on the bio-hydrogen production from cafeteria food waste. International Journal of Hydrogen Energy,2012,37(18):13288-13295
    [65]马溪平等.厌氧微生物学与污水处理.北京:化学工业出版社,2005,45-67
    [66]任南琪,赵庆良.水污染控制原理与技术.北京:清华大学出版社,2007,233~380
    [67]Gang W, Yang M, HanQing Y. Response surface analysis to evaluate the influence of pH, temperature and substrate concentration on the acidogenesis of sucrose-rich wastewater. Biochemical Engineering Journal,2005,23:175-184
    [68]Jiunn JL. Modeling and Optimization of Anaerobic Digested Sludge Converting Starch to Hydrogen. Biotechology and Bioengineering,2000,68:269-278
    [69]Infantes D, Gonzalez del Campo A, Villasenor J, Fernandez F.J. Influence of pH, temperature and volatile fatty acids on hydrogen production by acidogenic fermentation. International Journal of Hydrogen Energy,2011,36(24):15595-15601
    [70]蓝伟平,周兴求,伍健东.不同磷酸盐浓度对厌氧颗粒污泥发酵产氢的影响研究.中国沼气, 2012,30(4):7-10
    [71]孙亮,张朝升,张可方,荣宏伟,刘涛.不同磷源对厌氧活性污泥产生磷化氢的影响.中国给水排水,2012,28(21):89~91
    [72]Gustavo DV, Antonio de LR, Felipe AM, Elias RF. The buffer composition impacts the hydrogen production and the microbial community composition in non-axenic cultures. Biomass and Bioenergy,2011,35(7):3174-3181
    [73]Jack R. Ambler, Bruce E. Logan. Evaluation of stainless steel cathodes and a bicarbonate buffer for hydrogen production in microbial electrolysis cells using a new method for measuring gas production. International Journal of Hydrogen Energy,2011,36(1):160-166
    [74]Prawit K, Booki M, Irini A. Biohydrogen production from xylose at extreme thermophilic temperatures (70℃) by mixed culture fermentation. Water Research,2009(43):1414-1424
    [75]Thomas A. Kotsopoulos, Ioannis A. Fotidis, Nikolaos Tsolakis, Gerassimos G. Martzopoulos. Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70℃). Biomass and Bioenergy,2009,33(9):1168-1174
    [76]岳莉然.以赤糖为基质的生物制氢生态系统与工艺.东北林业大学博士论文.2011:46~89
    [77]Putri S, Noriaki W, Atsushi K, Noriyoshi T. Temperature and pH-dependent mechanism of hydrogen production from hydrothermal reactions of sulfide. International Journal of Hydrogen Energy,2012,37(24):18679-18687
    [78]魏明奎.微生物学.北京:中国轻工业出版社,2007:174~177
    [79]宫曼丽.连续流生物制氢反应器的定向启动及群落演替规律.哈尔滨工业大学博士论文.2006:65~87
    [80]Siriporn Y, Sompong OT, Poonsuk P. Effect of initial pH, nutrients and temperature on hydrogen production from palm oil mill effluent using thermotolerant consortia and corresponding microbial communities. International Journal of Hydrogen Energy,2012,37(18):13806-13814
    [81]Silvia R, Marcela S, Sandra G, Stella A. Kinetics of Escherichia coli inactivation employing hydrogen peroxide at varying temperatures, pH and concentrations. Food Control,2011.22(6): 920-932
    [82]Jianlong W, Wei W. Combined effects of temperature and pH on biohydrogen production by anaerobic digested sludge. Biomass and Bioenergy,2011,35(9):3896-3901
    [83]Xu L, ZhenZhen D, YongHong W, SiLiang Z. Enhancement of phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5 using fed-batch operation based on ORP level. International Journal of Hydrogen Energy,2011,36(20):12794-12802
    [84]秦智.生物制氢反应器发酵类型控制对策及生物强化作用研究.哈尔滨工业大学博士论文.2003,41~76
    [85]刘敏,任南琪,刘艳玲等.初始条件对生物制氢反应器中顶极群落的影响.哈尔滨工业大学学报,2009,41(6):194~196
    [86]Chiuyue L, Shiheu S. Heavy metal effects on fermentative hydrogen production using natural mixed microflora. International Journal of Hydrogen Energy,2008,33:587-593
    [87]Torres D, Llobet S, Pinilla J.L, Lazaro M.J, Suelves I, Moliner R. Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor. Journal of Natural Gas Chemistry,2012,21(4):367-373
    [88]Muhammad D, Fangbin C, Muhammad M J, Guoping Z, Feibo W. Alleviation of aluminum toxicity by hydrogen sulfide is related to elevated ATPase, and suppressed aluminum uptake and oxidative stress in barley. Journal of Hazardous Materials,2012,209:121-128
    [89]张艳梅,王晓慧,于浩强,盂平蕊.糖蜜的应用研究进展.化学工业与工程技术,2011,32(6):28~3l
    [90]王世雄,尹尚芬,郑锦玲.不同糖蜜对肉牛育肥效果的研究.中国牛业科学,2010,36(1):32~35
    [91]王新峰,潘晓亮,向春和等.添加甜菜糖蜜对绵羊瘤胃pH和NH3~N浓度的影响,中国饲料,2006,2:25~27
    [92]Temer Y, Fahmy A. Introducing molasses as a new additive in papermaking, TAPPI Journal. 2007,6(8):23-25
    [93]焦安英.甘蔗压榨汁制氢系统的工程控制对策及其微生物群落研究.东北林业大学博士论文.2011:32~66
    [94]范俊辉,冯文亮,邸胜苗等.利用甜菜糖蜜补料发酵生产丁醇.生物加工过程,2010,8(6):6-9
    [95]李知洪,肖冬光,梁音.以糖蜜为原料的酵母废水处理技术.酿酒科技,2010,7:86~88
    [96]杨芳,陈宁,张克旭.甘蔗糖蜜发酵生产谷氨酸的研究.现代食品科技,2006,22(3):45~47
    [97]Ozgv E, Mars A E, Peksei B. Biohydrogen production from beet molasses by sequential dark and photofermentetion. International Journal of Hydrogen Energy,2010,35:511-517
    [98]Mi JP, Ji HJ, Donghee P, Dae SL, Jong MP. Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses. International Journal of Hydrogen Energy,2010,35(12):6194-6202
    [99]Sevler G A, Ebru O, Inci E, Meral Y, Ufuk G Biohydrogen production in an outdoor panel photobioreactor on dark fermentation effluent of molasses. International Journal of Hydrogen Energy,2011,36(17):11360-11368
    [100]Jian ZL, Bai KL, GeFZ, Nan QR, Li XB, Jun GH. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). International Journal of Hydrogen Energy,2007,32(15):3274-3283
    [101]Yongfeng L, Nan QR, Chuanping Y, Lijie H, Guoxiang Z. Preliminary appraisal and H2-producing characters of a strain highly efficient H2-producing and acid-producing bacterium. China Environmental Science,2005,25(2):210-213
    [102]Nan QR, Dong Yang W, Chuanping Y, Wang L, Xu J L, Yongfeng L. Selection and isolation of hydrogen- producing fermentative bacteria with high yield and rate and its bioaugmentation process. International Journal of hydrogen energy,2010,35:2877-2882
    [103]国家环境保护总局,《水和废水检测分析方法》编委会.《水和废水检测分析方法》.北京: 中国环境科学出版社(第四版),2002:147~324
    [104]Jung GY, Kim JR, Park JY, Park SH. Hydrogen Production by a New Chemoheterotrophic Bacterium Citrobacter sp.19. Int.J. Hydrogen Energy,2002,27:601-610
    [105]王相晶.发酵产氢细菌B49生理特性及其固定化应用研究.哈尔滨工业大学博士学位论文.2003:24~5
    [106]Olav Hungnes, Grethe H Krogh, Ivar rstavik, Helvi Holm Samdal. Rapid identification of novel influenza virus genetic variants in surveillance by routine sequencing. International Congress Series,2004,1263:695-698
    [107]东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001:342~355
    [108]R.E.布坎南,N.E.吉本斯.伯杰氏细菌鉴定手册(第八版).北京:科学出版社,1984:233~253
    [109]焦安英等.环境分子生物学实验教程.哈尔滨工业大学出版社,2010:145~154
    [110]YongFeng L, NanQi R, Ying C, GuoXiang Z. Ecological mechanism of fermentative hydrogen production by bacteria. International Journal of Hydrogen Energy,2007, (32):755-760
    [111]Ji Hye J, Dae Sung L, Jong Moon P. The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Bioresource Technology,2008,99: 8485-8491
    [112]Mongi F, Edward C, GwangHoon G, William H, Amer A. Influence of initial pH on hydrogen production from cheese whey. Journal of Biotechnology,2005,120:402-409
    [113]任南琪,王宝贞.有机废水发酵法生物制氢技术.黑龙江科学技术出版社,1994:12~16
    [114]Lin M, Nanqi R, Xiping M, Aijie W, Fang M, Xiangjing W. Selection and improvement of culture for hydrogen producing bacteria. Journal of Harbin Institute of Technology,2003,35(4): 398-402
    [115]Yongfang Z, Jianquan S. Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. International Journal of Hydrogen Energy,2006,31: 441-446
    [116]Prawit K, Booki M, Irini Angelidaki. Biohydrogen production from xylose at extreme thermophilic temperatures (70 C) by mixed culture fermentation. Water Research,2009,43: 1414-1424
    [117]Hanne T, Prasad K, Jukka R. Hydrogen and methane production in extreme thermophilic conditions in two-stage (upflow anaerobic sludge bed) UASB reactor system. International Journal of Hydrogen Energy,2013,38(12):4997-5002
    [118]Xing Y, Ma HC, Fan YT. Cellulose-hydrogen production from corn stalk biomass by anaerobic fermentation. Chinese Science Bulletin,2009:54 (5):648-654
    [119]周明,许庆利,蓝平,亓伟,孙秀云,辛善志,颜涌捷.生物质制氢研究进展.吉林化工学院学报,2009,26(4):35~39
    [120]Zhiping Z, Jian-zhi Y, Yi W, Quanguo Z. The Optimization of the Ball Milling Pretreatment Process for Hydrogen Production from Straw Biomass. Biomass Chemical Engineering, 2012,46(1):19-22
    [121]任南琪,王爱杰,赵阳国.废水厌氧处理硫酸盐还原菌生态学.北京:化学工业出版社,2009:167~199
    [122]Taguchi F, Mizukami N, Saiti-Taki T, Hasegawa K. Hydrogen Production from Continuous Fermentation of Xylose during Growth of Colstridium sp. No.2. Can. J. Microbiol,1995, 41:536-540
    [123]Yokoi H, Ohkawara T. Hirose J, Hayashi S, Takasaki Y. Characteristics of Hydrogen Production by Aciduric Enterobacter aerogenes Strain HO-39. J. Ferment. Bioeng,1995,80(6):571-574
    [124]Zhang Z.P, Tay J.H, Show K.Y. Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. Int.J. Hydrogen Energy,2007,32:185-191
    [125]Kisaalita W.S, Lo K.V. Kinetics of Whey-Lactose Acidogenesis. Biotechnol Bioeng,1989, 33:623-630
    [126]Talabardon M, Schwitzgulebel J.P, Pleringer P. Anaerobic Thermophilic Fermentation for Acetic Acid Production from Milk Permeate. J Biotechnol,2000,76(1):83-92
    [127]Collet C, Schwitzgulebel JP, Pleringer P. Improvement of Acetate Production from Lactose By Growing Clostridium Thermolacticum in Mixed Batch Culture. J Appl Microbiol,2003,95(4): 824-831
    [128]Minnan L, Jinli H, Xiaobin W. Isolation and Characterization of a High H2 producing Strain Klebsiella oxytoca HP1 from a Hot Spring. Research in Microbiology,2005,156:76-81
    [129]刘敏,任南琪,丁杰等.糖蜜、淀粉与乳制品废水发酵法生物制氢.环境科学,2004,25(5):65-69
    [130]杏艳,马红翠,樊耀亭,侯红卫,陈景润.秸秆类生物质发酵法生物产氢的研究.科学通报,2009:54(5):648~654
    [131]Rodrigo A.B. Silva, Rodrigo H.O. Montes, Eduardo M. Richter, Rodrigo A.A. Munoz. Rapid and selective determination of hydrogen peroxide residues in milk by batch injection analysis with amperometric detection. Food Chemistry,2012,133(1):200-204
    [132]Celine DP, Geraud D, Zineddine C, Cecile C, Marie CM. Contribution of hydrogen peroxide to the inhibition of Staphylococcus aureus by Lactococcus garvieae in interaction with raw milk microbial community. Food Microbiology,2010,27(7):924-931
    [133]Madhav P, Nicholas P, David BJ, Charles IO, Kevin BH. Corn fiber gum and milk protein conjugates with improved emulsion stability. Carbohydrate Polymers,2010,81(2):476-483
    [134]Crocker L.M, DePeters E.J, Fadel J.G, Perez-Monti H, Taylor S.J, Wyckoff J.A, Zinn R.A. Influence of Processed Corn Grain in Diets of Dairy Cows on Digestion of Nutrients and Milk Composition. Journal of Dairy Science,1998,81(9):2394-2407
    [135]Lakhveer S, Muhammad FS, Anwar A, Mohd HA, Mimi S, Zularisam AW. Application of polyethylene glycol immobilized Clostridium sp. LS2 for continuous hydrogen production from palm oil mill effluent in upflow anaerobic sludge blanket reactor. Biochemical Engineering, 2013,70:158-165
    [136]Kun M, Hongxin Z, Chong Z, Yuan L, Xin-Hui X. Impairment of NADH dehydrogenase for increased hydrogen production and its effect on metabolic flux redistribution in wild strain and mutants of Enterobacter aerogenes. International Journal of Hydrogen Energy,2012,37(21): 15875-15885
    [137]Alissara R, Sureewan S, Irini A. Simultaneous production of hydrogen and ethanol from waste glycerol by Enterobacter aerogenes KKU-S1. International Journal of Hydrogen Energy, 2013,38(4):1813-1825
    [138]车振明.微生物学.武汉:华中科技大学出版社,2011:191~233
    [139]张蓉,邓天龙,廖梦霞.水环境中氨氮的分析方法进展.四川环境,2008,27(1):76~80
    [140]Nanqi R, Baozhen W. Hydrogen bioproduction of carbohydrate by anaerobic activated sludge process Proc In:Water Environ Fed Annu Conf Expo 68th Date,1995:145-153
    [141]Beckers L, Hiligsman S, Masset J, Hamilton C, Thonart P. Effects of Hydrogen Partial Pressure on Fermentative Biohydrogen Production by a Chemotropic Clostridium Bacterium in a New Horizontal Rotating Cylinder Reactor. Energy Procedia,2012,29:34-41
    [142]Show KY, Lee DJ, Tay JH, Lin C, Chang J.S. Biohydrogen production:Current perspectives and the way forward. International Journal of Hydrogen Energy,2012,37(20):15616-15631
    [143]Xiaofeng Y, Xinyu Z, Eberhard M, Kevin T. Finneran. Anthrahydroquinone-2,6-disulfonate increases the rate of hydrogen production during Clostridium beijerinckii fermentation with glucose, xylose, and cellobiose. International Journal of Hydrogen Energy,2012,37(16): 11701-11709
    [144]Patcharee I, Pramoch R, Weerachart N, Bandhit T, Jittipan C, Sumaeth C. Hydrogen production from alcohol wastewater by an anaerobic sequencing batch reactor under thermophilic operation: Nitrogen and phosphorous uptakes and transformation. International Journal of Hydrogen Energy, 2012,37(15):11104-11112
    [145]聂剑初,吴国利,张翼伸,杨绍钟,刘鸿铭.生物化学简明教程(第三版).北京:高等教育出版社,2004:166~201
    [146]李永峰,陈红,韩伟,王占青,徐菁利.磷酸盐对高效产氢菌种Biohydrogenbacterium.R3 sp.nov发酵产氢性能的影响和调控,黑龙江科学,2011,2(1):1~5
    [147]王宜磊.微生物学.北京:化学工业出版社,2010:177~204
    [148]孙军德,杨幼慧,赵春燕.微生物学.福建:东南大学出版社,2009:192~231
    [149]韩华君,罗蓉.生物学与生物化学基础.西安:中国人民解放军第四军医大学出版社,2010:189~214
    [150]Nico S, Patrik G, Antonio T. Reactivity of an electrophilic hypervalent iodine trifluoromethylation reagent with hydrogen phosphates-A mechanistic study. Journal of Fluorine Chemistry,2012,135:83-86
    [151]Wei H, Hong C, Anying J, Zhanqing W, Yongfeng L, Nanqi R. Biological fermentative hydrogen and ethanol production using continuous stirred tank reactor. International Journal of Hydrogen Energy,2012:37:843-847
    [152]洪天求,郝小龙,俞汉青.Na+离子浓度对厌氧发酵产氢气影响的实验研究.水处理技术,2004,30(5):270~275
    [153]Lihong H, Fangbai Z, Ning W, Rongrong C, Andrew TH. Nickel-based perovskite catalysts with iron-doping via self-combustion for hydrogen production in auto-thermal reforming of Ethanol. International Journal of Hydrogen Energy,2012,37(2):1272-1279
    [154]林明,任南琪,王爱杰,张颖,王相晶,马放.几种金属离子对高效产氢细菌产氢能力的促进作用.哈尔滨工业大学学报,2003,35(2):147~151
    [155]丁杰,任南琪,刘敏,丁兰.Fe和Fe2+对混合细菌产氢发酵的影响.环境科学,2004,25(4):48~53
    [156]Wei H, Bing W, Xiaoye L, Chunyu L, Liran Y, Yongfeng L. Fermentative Hydrogen Production from Molasses in an Activated Sludge Immobilized. Bioreactor International Journal of Energy Engineering,2012,2(1):28-31
    [157]汤岳琴,林军,王建华.生物吸附研究进展.四川环境,2001,20(2):12~17
    [158]Lei Z, Wenxiang O, Aimin L. Essential Role of Trace Elements in Continuous Anaerobic Digestion of Food Waste. Procedia Environmental Sciences,2012,16:102-111
    [159]张晓玲,刘剑,黄弘,高宁.钴离子与人体健康和微生物的关系.国际口腔医学杂志,2008,35(1):29~31
    [160]Chakkrit S, Pensri P, Tsuyoshi I, Alissara R. Co-digestion of food waste and sludge for hydrogen production by anaerobic mixed cultures:Statistical key factors optimization. International Journal of Hydrogen Energy,2011,36(21):14227-14237
    [161]林稚兰,田哲贤.微生物对重金属的抗性及解毒机理.微生物学通报,1998,25(1):36~39
    [162]Seyyed M, Mousavi E, Zhou W.J, Chan S.H. Energy analysis of an electrolytic-based selective CO oxidation system for on-board pure hydrogen production. International Journal of Hydrogen Energy,2013,38(1):188-196
    [163]Juner C, Yao Z, Zhitao X, Guotao W, Hailiang C, Teng H, Ping C. Enhanced hydrogen desorption from the Co-catalyzed LiBH4-Mg(BH4)2 eutectic composite. International Journal of Hydrogen Energy,2012,37(17):12425-12431
    [164]李永峰,陈红,韩伟,焦安英,杨传平.铁粉和二价铁离子对发酵产氢效能的影响,太阳能学报,2009,30(4):55l~557
    [165]方宁,赵丹,陈川,谭莹雪等.铁对反硝化脱硫运行效能影响.环境科技,2012,3:21~25
    [166]王勇,任南琪,孙寓姣.Fe对产氢发酵细菌发酵途径及产氢能力影响.太阳能学报,2003,24(2):222~225
    [167]Bui E T, Johnson P J. Identification and Characterization of [Fe]-hydrogenase in the Hydrogensomes of Trichomoans vaginalis.Mol. Biochem Parasitol,1996,76:305-310
    [168]任南琪,王宝贞.在高效产酸反应器中利用碳水化合物进行乙醇型发酵的研究.生物技术,1997,54(5):428~433
    [169]Debabrata D, Vezirogu TN. Hydrogen production by biological processes:a survey of literature. Hydrogen Energy,2001,26:13-28
    [170]Qiang L, Xiaolei Z, Zhao J, Aihua Z, Shanping C, Feng L, Jun T, Jianyong L, Guangren Q. Effect of carbonate on anaerobic acidogenesis and fermentative hydrogen production from glucose using leachate as supplementary culture under alkaline conditions. Bioresource Technology,2012,113:37-43
    [171]李永峰,任南琪,郑国香等.碳氮质量比对发酵细菌产氢性能的影响,化学工程,2005,33(4):41~43
    [172]赵阳国,任南琪,王爱杰,刘一威.铁元素对硫酸盐还原过程的影响及微生物群落响应.中国环境科学,2007,27(2):199~203
    [173]康勇,孔琦,冯颖等.COD与Fe粉对硫酸盐还原菌还原作用的影响.天津大学学报,2006,39(4):396~399
    [174]Yongfang Z, Guangzhen L, Jianquan S. Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations. International Journal of Hydrogen Energy,2005, 30:855-860
    [175]Zhenghong B, Weizhong D, Qian L. Effect of Fe/Cu ratio on the activity of Fe-Al-Cu catalysts for water gas shift reaction under hydrogen-rich atmosphere. International Journal of Hydrogen Energy,2012,37(1):951-955
    [176]Yuanqing W, Fangming J, Xu Z, Guodong Y, Zhenzi J. A novel method for producing hydrogen from water with Fe enhanced by HS-under mild hydrothermal conditions. International Journal of Hydrogen Energy,2013,38(2):760-768
    [177]Dabrock B, Bahl H, Gottschalk G Parameters affecting solvent production by Clostridium pasteurianum. Environ Microbiol,1992,58:1233-1239
    [178]Nanqi R, Jie D, Lan D, Min L, Yongfeng L, Hongxu B. Effect of Cu2+ concentration on hydrogen fermentationby mixed culture. Journal of Harbin Institute of Technology (New Series), 2004,11(1):11-16
    [179]Lin CY. Effects of heavy metals on acidogenesis in anaerobic digestion. Water Res,1993,27: 147-152
    [180]Myung SL, Joon YL, Daem WL, Dong JM, Kwan YL. The effect of Zn addition into NiFe2O4 catalyst for high-temperature shift reaction of natural gas reformate assuming no external steam addition. International Journal of Hydrogen Energy,2012,37(15):11218-11226
    [181]O-Thong S, Prasertsan P, Karakashev D, Angelidaki I. Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. Int J Hydrogen Energy,2008,33:1204-1214
    [182]Sandra E. Gomez-Mejiba, Zili Zhai, Hammad Akram, Quentin N. Pye, Kenneth Hensley, Biji T. Kurien, R. Hal Scofield, Dario C. Ramirez. Inhalation of environmental stressors & chronic inflammation:Autoimmunity and neurodegeneration. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2009,674(1):62-72
    [183]Bipro RD, Elsayed E, George N. Influence of iron on sulfide inhibition in dark biohydrogen fermentation. Bioresource Technology,2012,126:123-130
    [184]Xiangjing W, Nanqi R, Wenshen X. Efects of Iron on Hydrogen-producing Capacity, Hydrogenase and NADH-fd Reductase Activities of a Fermentative Hydrogen-producing Bacterial Strain B49. High Technology Letters,2004,10(4):69-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700