苹果渣固态发酵高蛋白产量菌株筛选及发酵条件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着苹果种植业和加工业的迅速发展,苹果渣的排放量也日趋增加,目前对苹果加工的废弃物——果渣还没有实现有效地综合利用,这不仅影响了苹果产业的可持续发展,也给产区环境造成了极大的污染。苹果渣富含多种营养物质,是良好的发酵原料。本论文以陕西省内苹果园和苹果加工工厂为采集地点,采集不同生长阶段的苹果成熟植株的茎、叶、花、幼果,同时采集了果园土壤、加工厂区土壤、生产线用水、堆积果渣等样本以分离环境微生物,从以上种植、加工贮藏、销售的环境中筛选出纤维素酶活性高的菌株,以及从常见食用菌中优选出能够高效利用苹果渣生长的菌种,以提高苹果渣固态发酵蛋白产量为目的,解决以往研究得到的发酵苹果渣存在的发酵不完全、蛋白含量不高、产物异味严重等问题,并且系统的研究了苹果渣单一菌种发酵和混合菌种发酵、自然发酵和人工发酵等的差异,考察了不同来源的氮源、无机盐等对发酵产物蛋白含量的影响,同时研究了原料配比、温度、接种量、接种比例等因素对产物的影响,确定了最佳苹果渣固态发酵的原料配方和工艺条件;在摇瓶发酵的基础上,研究30L固态罐的发酵条件,同时对固态发酵剂进行了研究。
     1.2008年2月至2008年10月期间,从陕西省关中及渭北地区3个县6个苹果种植园中采集了不同生长阶段的苹果成熟植株的茎、叶、花、幼果(品种为红富士)及根系土壤样本共计236份,采用组织分离法及土壤稀释平板分离法分离组织表面、体内及土壤中的微生物,经单孢分离及纯化培养后,共得到470个菌株,其中细菌268株,真菌202株。
     2.从市售苹果表皮、果汁加工厂的生产线、商品浓缩苹果汁和果渣堆积环境中采集土壤、水、果汁和果渣样本120份,采用经典的分离和纯化方法共得到207个菌株,其中细菌121株,真菌86株。
     3.对上述677株纯化后的菌株通过透明圈法进行初筛后,对筛选得到的76株菌株进行以纤维素酶活为指标的复筛,得到高产纤维素酶的菌株5株,经形态学初步鉴定,其分属于镰孢属Fusarium sp.,酵母属Saccharomyces sp.,木霉属Trichoderma sp.和曲霉属Aspergillus sp.。通过发酵苹果渣试验,对产品进行蛋白含量、感官指标等评价,确定菌株T23,T55,T62为优势菌株,均具有生长对数期较长,发酵周期内纤维素酶活性较高等优势。经过显微形态及ITS序列分析、同源性比较,依次鉴定为酿酒酵母Saccharomyces cerevisiae,产朊假丝酵母Candida utilis和黑曲霉Aspergillus niger,依次命名为酿酒酵母Saccharomycescerevisiae Y1N4,产朊假丝酵母Candida utilis Y2N3和黑曲霉Aspergillus nigerH1N3。
     4.对苹果干渣的主要组成成分进行了定量分析,其中粗纤维含量约为14.7%,粗蛋白含量约为4.2%,作为培养基原料在生产中需要添加氮源。
     5.通过单因素试验确定了苹果渣固态发酵的最佳摇瓶工艺:外加氮源为10%(质量含量)麸皮;灭菌采用常规方式,在实际生产中也可采用100℃,30min蒸煮灭菌;含水量为60%。本研究采用的黑曲霉、酿酒酵母、产朊假丝酵母,单菌发酵和混菌发酵均能显著提高产物蛋白含量,以混菌发酵苹果渣效果最佳,在发酵周期内蛋白含量、纤维素酶活性都有明显增长。本研究还考察了菌种的混合比例、混合种类、接种量及分段发酵对产物蛋白含量的影响,同时研究了温度和发酵时间的影响,得到以下结论:采用黑曲霉,酿酒酵母,产朊假丝酵母等量混合的方式接种,接种量为12%(培养基的质量百分比浓度),先接入黑曲霉发酵48h后接入两种酵母菌,得到的发酵苹果渣蛋白含量最高,可达34.9%。在摇瓶发酵的基础上,研究30L卧式固态发酵罐的发酵条件,当选择温度为27℃,通气速率为0.65 N.m3/h,接种量为600 mL(每5kg培养基),搅拌速度为15rpm时,产物蛋白质含量为最大值31.6%。发酵苹果渣饲料中氨基酸组分齐全,赖氨酸等必需氨基酸含量较高,同时富含酶类、核酸、维生素、无机盐和促进动物生长因子、生物学价值优于植物蛋白饲料,可以替代豆粕和鱼粉。另外,添加稻壳能够明显改善培养基的通气状况,添加纤维素酶也能明显增加原料粗纤维的降解效率,提高发酵产物的质量。
     6.培养四种食用菌凤尾菇Pleurotus sajor-caju、白灵菇Pleurotus nebrodensis、猴头菇Hericium erinaceus、茶树菇Agrocybe chaxinggu的试验结果表明,食用菌菌丝在苹果渣上生长旺盛,麸皮是苹果果渣发酵生产食用菌菌丝的理想氮源,优于尿素、硝酸铵和硫酸铵等合成氮源。发酵后苹果渣的蛋白含量由发酵前的4%左右提高到20%以上。以生长最为旺盛的凤尾菇为例,添加少量无机盐溶液(KH2PO4, MgSO4, ZnSO4),发酵处理能够进一步提高苹果渣的蛋白含量。MgSO4, K2HPO4和ZnSO4的含量分别为18g/kg、3g/kg和0.03g/kg时,接种凤尾菇的苹果渣发酵产物蛋白含量最高,可达26.178%。
     7.从六种供试物(甲基纤维素,B-环糊精,可溶性淀粉,壳聚糖,魔芋粉和麸皮)中,筛选最适合用于苹果渣固态发酵的发酵剂载体。试验结果表明,壳聚糖对酿酒酵母具有最强的吸附力,且发酵力的大小与六种载体对酿酒酵母吸附量的大小呈正相关,其次为β-环糊精,综合考虑成本及产品外观形状等,选择B-环糊精最为发酵剂的理想载体材料。考察温度、pH、时间、媒介等因素对B-环糊精与酵母吸附能力的关系,确定最佳吸附条件为:温度25℃,pH为6.5,吸附时长为12 h,溶液介质为0.01M的CaSO4时,冻干后其吸附力达到8.2×106 CFU/g,为工业化发酵生产提供理论依据。
The apple is the pomaceous fruit of the apple tree, species Malus domestica in the rose family (Rosaceae) and is a perennial. It is one of the most widely cultivated tree fruits, and the most widely known of the many members of genus Malus that are utilized by humans. Apple pomace is the solid residue that remains following extraction of juice from ground apples. With the development of apple planting and processing industry, the production of apple pomace has been increased in a large scale. About 1.1 million metric tons of apple pomace is produced per year in China. With the development of the world's apple juice concentrate industry, the proportion of China's apple juice concentrate increased and export enlarged. But the pomace's disposal is a serious problem being highly biodegradable. Since it is a rich source of acids, carbohydrates, fibers, minerals and vitamin C, its disposal as a waste in the environment is a huge loss of precious natural resources. Production of fermentation based products from apple pomace (AP) is one of the attractive options due to the supply of substrates almost at a throwaway price, minimum land requirements and manufacture independent of weather conditions.
     In this thesis, apple orchards, apple juice concentrate processing plants and a supermarket in Shaanxi province are the collection sites, for acquisition of different cultivates apple skin sample, different growth stages of apple tree stems, leaves, flowers, young fruit, and orchard soil in three county towns, as water and soil from factory environment, and fresh apple pomace. Microorganisms with high activity of cellolase have been selected from these samples; strains which can use apple pomace efficiently between same ordinary edible fungi have been selected too, for the purpose of increasing protein content in fermentation products, and solving the difficult problem encountered before, such as incomplete fermentation procedure, low content of protein and serious peculiar smell.
     In this thesis, fresh apple pomace is studied as a test material. Three species, which selected from plants and environmental samples, were used in the solid state fermentation (SSF) processing. Then the researches are carried out for the topics of single fungus and mixed fungi co-fermentation, single factor test and perpendicular tests, different nitrogen sources, natural fermentation and man-controlled fermentation, etc. After ascertaining conditions of flask fermentation,30L solid fermentation machine has been used for large scale fermentation. In addition, solid state fermentation agent has been studied for the first time in apple pomace fermentation.
     1. From February to October in the year of 2008,236 pieces of samples were collected from different growth stages of Fuji apple trees' stems, leaves, flowers, young fruit, and orchard soil in three county towns, methods of tissue isolation and soil dilute plate have been used to isolate microorganisms from epiphytic and endophytic of the plant tissues and soil samples.570 isolates were investigated after single spore isolating and purifying, including 268 bacterial isolates and 202 fungal ones.
     2.120 pieces of samples were collected from different cultivated apples, apple juice concentrates production line, and apple juice concentrates which were expanding bags, both and places where apple pomace piled.207 isolates were investigated after isolating and purifying from the soil, water, apple pomace samples, including 121 bacterial isolates and 86 fungal ones.
     3. After 677 isolates above-mentioned selected preliminary by clear zone method (CZM),76 isolates were obtained and among them,5 strains were the most prospective in biological production of cellulase, which had high enzyme activities. Morphological characteristics show that these strains belong to four species, Fusarium sp., Saccharomyces sp., Trichoderma sp. and Aspergillus sp., respectively. Strain T23, T55, T62 were defined as dominant strains for their long Logarithmic growth phase and high cellulase activity in fermentation period by protein content and sensory index. Morphological characteristics and internal transcribed spacer (ITS) sequences show that strains were Saccharomyces cerevisiae, Candida utilis, Aspergillus niger, and were named as Saccharomyces cerevisiae Y1N4, Candida utilis Y2N3 and Aspergillus niger H1N3, respectively.
     4. Determine the main components of apple pomace, the results showed that the content of crude fiber was 14.7%, the content of crude protein was 4.2%. Apple pomace was not good enough as a fermentation material for its lack of nitrogen.
     5. The best fermentation condition in flasks was determined by single factor test. The results showed as follows:nitrogen was 10% content of bran, normal Sterilization method and the condition of 100℃,30min was good enough for kill all the microbes and spores, and content of water was 60%. Saccharomyces cerevisiae Y1N4, Candida utilis Y2N3 and Aspergillus niger H1N3 used in this study can increase protein content in fermentation medium by single fungus fermentation and mixed fungi fermentation. In fermentation period, both protein content and cellelase activity increase obviously. The study include mix ratio of fungi, species of fungi, Vaccination quantity and section fermentation, as well as the influence of temperature and fermentation time. The results showed that:Saccharomyces cerevisiae Y1N4, Candida utilis Y2N3 and Aspergillus niger H1N3 were mixed equally for inoculum, the vaccination quantity was 12%, Aspergillus niger H1N3 can be inoculum in first, Saccharomyces cerevisiae Y1N4 and Candida utilis Y2N3 were inoculum after 48h, the yield of protein reached 34.9%. On basis of fermentation by flasks,30L Horizontal automatic solid state fermenter was used to investigate the optimum conditions in large scale fermentation. The results showed that:when temperature was 27℃, aeration speed was 0.65 N-m3/h, inoculum was 600mL, and agitation speed was 15rpm, protein content reached optimum value,31.6%. Fermented apple pomace had a complete amino acids component, rich in Lys and other essential amino acids. There also were plenty of enzymes, nucleic acids, vitamins, inorganic salt and growth factors, which were superior to same plant source protein feed, and can instead of soybean meal and fish meal. In addition, rice husk can improve the aeration situation in medium, cellulase can increase degradation of fiber in material, all these would improve the quality of fermented products.
     6. Cultivating four kinds of edible fungi Pleurotus sajor-caju, Pleurotus nebrodensis, Hericium erinaceus and Agrocybe chaxinggu in apple pomace medium, the results showed that all these fungi grew well, and nitrogen bran (nearly 10% content) was better than urea, ammonium nitrogen, and ammonium sulfate. Protein content in apple pomace increased from 4% (before fermentation) to 20% (after fermentation). Chose Pleurotus sajor-caju as material to evaluate the influence of protein content with inorganic salts (KH2PO4, MgSO4 and ZnSO4), the result showed that inorganic salts can improve the content of protein in fermentation products. The optimal yield of protein reached26.178% when KH2PO4, MgSO4 and ZnSO4 were 18g/kg,3g/kg and 0.03g/kg, respectively.
     7. Six tested materials including methyl cellulose,β-circle dextrin (CD), soluble starch, chitosan, konjac flour and bran, were investigated for screening the best property solid state fermentation vector used in apple pomace fermentation. Previous studies on SSF vectors have not yet been reported. The results showed that the optimum vector of the highest adsorption ability was chitosan. Fermentation ability (FA) was positive relation with the adsorption power for yeast cells, andβ-CD was the second optimum vector.β-CD was defined as the most ideal vector in SSF for the reason of costs and appearance of productions. The physical properties of the adsorbent were evaluated to better understand the adsorption process. The factors temperature, pH, time and medium were evaluated and the optimal conditions for Saccharomyces cerevisiae Y1N4 adsorption with vectors contained temperature of 25℃, pH of 6.5, adsorption time of 12h and medium of 0.01M CaSO4,β-CD adsorption ability of 8.2 X 106 CFU/g can be achieved.
引文
[1]宋安东.可再生能源的微生物转化技术[M].北京:科学出版社,2009:328.
    [2]陈洪章,徐建.现代固态发酵原理与应用[M].北京:化学工业出版社,2004:1-30.
    [3]Wolfe K., Wu X.Z., Liu R.H.. Antioxidant Activity of Apple Peels[J]. Journal of Agriculture and Food Chemistry.2003,51:609-614.
    [4]Guo L.D., Huang GR., Wang Y., et al. Molecular identification of white morphotype strains of endophytic fungi from Pinus tabulaeformis[J]. Mycology Research.2003,107 (6):680-688.
    [5]徐怀德,仇农学.苹果贮藏与加工[M].北京:化学工业出版社.2006:1-20.
    [6]钱关泽.苹果属(Malus Mill.)分类学研究[D].南京林业大学研究生博士学位论文.2005,5:1-34.
    [7]梁国鲁,李晓林.中国苹果属植物染色体研究[J].植物分类学报.1993,31(3):236-251.
    [8]Stebbins G.L.. Variation and Evolution in Plants [M]. New york:Cloumbia University Press.1954,168-183.
    [9]贺超兴.苹果属植物花粉形态特征及其分类学和进化意义[J].植物分类学报.1991,29(5):445-451.
    [10]李朝銮.蔷薇科原始属植物叶表皮解剖及其系统学意义[J].植物分类学报.1989,27(3):178-183.
    [11]吴征镒.中国植物志.中国科学出版社.2008,36:381.
    [12]张钊,林培钧.野苹果林(新疆森林)[M]..乌鲁木齐:新疆人民出版社.1990:166-170.
    [13]林培钧.天山伊犁野果林在人类生态和果树起源上的位置[J].农业考古.1993(3):28-30.
    [14]刘静,周庆如,孙海伟,等.新疆野生苹果表型多样性研究[J].果树学报.2004,21(4):285-288.
    [15]贾思勰著,石声汉校释.齐民要术今释[M].北京:中华书局.2009,6:1225.
    [16]王士性(明)著,周振鹤点校.五岳游草广志绎[M].北京:中华书局.2006,7:379.
    [17]四川省民俗学会.李调元研究[M]..成都:巴蜀书社.2007:370.
    [18]李时珍(明).本草纲目(校点本)[M].北京:人民卫生出版社.2004:3027.
    [19]王象普(明).二如亭群芳谱(影印本)[M].海口:海南出版社.,2001:379.
    [20]李育农.苹果学[M].北京:中国农业出版社.1999:15-104.
    [21]Mabberley D.J., Jarvis C.E., Juniper B.E.. The name of the apple [J]. Telopea. 2001,9(2):421-430.
    [22]杨洪强,束怀瑞.苹果根系研究[M].北京:科学出版社.2007:207.
    [23]陕西省果树研究所.苹果主要品种原色图谱[M].北京:农业出版社.1978:63.
    [24]马力伟,李艳.苹果产业发展中投入要素在生产中作用的实证分析——以陕西省洛川县为例[J].安徽农业科学.2009,37(9):4303-4304.
    [25]席瑞卿,赵晓进,张考学,等.不同施肥水平对苹果产量、品质及养分平衡的影响[J].西北农业学报.2010,19(2):141-145.
    [26]Wang K.Q., Wang S.L.. Soil microbial properties and nutrients in pure and mixed Chinese fir plantations [J]. Journal of Forest Research.2008,19(2):131-135.
    [27]张元龙,万金精.小麦根际微生物的研究II.微嗜氮细菌在根际的分布及其对小麦幼苗生长的影响[J].微生物学报.1964,10(2):222-227.
    [28]龚国淑,朱继熹,冷怀琼.苹果繁殖器官附生微生物区系的初步研究[J].四川农业大学学报,1991,9(2):262-268
    [29]周德庆.普通微生物学(第二版)[M].北京:高教出版社.2006:1-10.
    [30]张学君,徐盈,王建营.苹果表面微生物数量及其与两种主要病菌的关系[J].果树科学.1995,12(4):232-236
    [31]M.T.马迪根,J.M.马丁克著,李明春,杨文博译.Brock biology of microorganisms [M].科学出版社.2009:1467.
    [32]瞿礼嘉.植物生物技术[M].北京:科学出版社.2007:25-50.
    [33]邢来君,李明春.普通真菌学[M].北京:高等教育出版社.1999:36.
    [34]刘琳,孙磊,张瑞英,等.春兰根中可分泌吲哚乙酸的内生细菌多样性[J].生物多样性.2010,18(2):195-200.
    [35]姜成林,徐丽华.微生物资源开发利用[M].北京:中国轻工业出版社.2001,4.
    [36]Petini O.. Microbial Ecology of Tree Leaves [M]. New York:Springer-Verlag, Andrews J H, Hirano S. S. eds.1991,179-197.
    [37]Leuchtmann A.. Syste matics, distribution,and host specificity of grass endophytes [J]. Nat Toxins.1992,1(2):150-162
    [38]梁宇,高玉葆.内生真菌对植物生长发育及抗逆性的影响[J].植物学通报. 2000,17(1):52-59.
    [39]Stierle A., Strobel G, Stierle D.. Taxol and taxane production by Taxomycetes andreanae, an endophytic fungus of Pacific Yew [J]. Science.1993,260(5105): 214-216.
    [40]Yin H., Zhao Q., Sun F.M., et al. Gentiopicrin-producing endophytic fungus isolated from Gentiana macrophylla [J]. Phytomedicine.2009,16:793-797.
    [41]Li J.Y., Strobel G, Sidhu R., et al. Endophytic taxol——producing fungi from bald cypress, Taxodium disticchum[J]. Microbiology.1996,142:2223-2226.
    [42]Qin J.C., Zhang Y.M., Gao J.M., et al. Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba [J]. Bioorganic & Medicinal Chemistry Letters.2009,19:1572-1574.
    [43]李桂玲.植物内生真菌抗肿瘤活性菌株的筛选[J].菌物系统.2001,20(3):387-391.
    [44]李海燕,曾松荣,张玲琪.云南桃儿七植株地下茎内生真菌多样性及有价值菌株的筛选[J].西南农业学报.1999,12(4):123-125.
    [45]郭仕平,蒋斌,苏莹珍,等.川八角莲内生真菌产鬼臼毒素类似物的初步研究[J].生物技术,2004,14(2):55-57.
    [46]刘仕平.中华山荷叶内生真菌的分离及其发酵产生药用成分的初步研究[J].中国药物与临床.2003,3(3):227-228.
    [47]Rukachaisirikul V., Sommart U., Phongpaichit S., et al. Metabolites from the endophytic fungus Phomopsis sp. PSU-D15 [J]. Phytochemistry.2008, 69:783-787.
    [48]余永涛,王建华,赵清梅,等.甘肃棘豆中产苦马豆素内生真菌的分离与鉴定[J].西北农林科技大学学报(自然科学版).2009,37(2):40-47.
    [49]Hoveland C.S.. Importance and economic significance of the Acremonium endophytes to performance of animals and grass plant[J]. Agonic Ecosystems Environment.1993,44:12.
    [50]Inclair J., Cerkauskas B.. Latent infection vs.endophytic colonization by fungi. In: Redin S C, Carris L M eds. Endophytic Fungi in Grasses and Woody Plants: Systematics:Ecology, and Evolution.St.Paul[M]. Minnesota:APS Press.1996, 3-29.
    [51]Carroll G. Fungal endophytes in stemes and leaves:from latent pathoge to mutualistic symbiont[J]. Ecology.1988,69:2-9.
    [52]刘芸.几种珍稀药用植物产活性成分内生真菌的初步研究[D].西北大学.2005.
    [53]任安芝,高玉葆.植物内生真菌——一类应用前景广阔的资源微生物[J].植物学通报.2001,28(6):90-93.
    [54]Lyons P.C., Evans J.J., Bacon C.W.. Effects of the fungal endophyte Acremonium coenphialum on nitrogen accumulation and metabolism in tall fescue [J]. Plant Physiology.1990,92:726-732.
    [55]张集慧,王春兰,郭顺星,等.兰科药用植物的5种内生菌产生的植物激素[J].中国医学科学院学报,1999,21(6):460-465.
    [56]谢辉,李莉,吴鸣谦.1株杜仲内生真菌的抗氧化活性分析和菌种鉴定[J].安徽农业科学.2009,37(1):230-232.
    [57]诸葛健.工业微生物育种学[M].北京:化学工业出版社.2006,6.
    [58]Kado C.I.. Plant pathogenic bacteria.In:The Prokaryotes (eds Balows A, Truper HG, Dworkin M, Schleifer KH) [M], Springer-Verlag, New York,1991,659-674.
    [59]Kleopper J.W., Schipper B., Bakker P.A.H.M.. Proposed elimination of the term endorhizosphere [J]. Phytopathol,1992,82:726-727
    [60]Kamneva S.V., Muronets E.M.. Genetic control of the processes of interaction of bacteria with plants in associa-tions[J].Genetika,1999,35:1480-1494.
    [61]Mendes R., Pizzirani-Kleiner A.A., Araujo W.L., et al. Diversity of cultivated endophytic bacteria from sugarcane:genetic and biochemical characterization of Burkholderia cepacia complex isolates [M]. Applied and Environmental Microbiology,2007,73:7259-7267.
    [62]张兴锋,柳凤,何红,等.红树内生细菌CⅢ-1菌株鉴定及其胞外抗菌蛋白性质[J].微生物学通报.2010,37(2):222-227
    [63]邱服斌,李雁津,张晓霞,等.人参内生细菌ge21菌株的鉴定及抑菌活性测定[J].微生物学通报,2010,37(1):43-47
    [64]刘琳,孙磊,张瑞英,等.春兰根中可分泌吲哚乙酸的内生细菌多样性.生物多样性,2010,18(2):195-200
    [65]柳凤,欧雄常,何红,等.红树内生细菌RS261防治辣椒疫病机理的初步研究.植物病理学报.2010,40(1):74-80.
    [66]Adhikari T.B., Joseph C.M.. Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice [J]. Journal of Microbiology,2001,47:916-924
    [67]Buchenauer H. Biological control of soil-homedisease by rhizobacteris [J]. Journal of Plant Disease and Protection,1995,44:40-50
    [68]夏正俊.植物内生及根际土壤细菌诱导棉花对大丽轮枝菌抗性的研究[J].中国生物防治.1996,12(1):7-10.
    [69]Baldani J.I., Caruso L.. Rencent advances in BFN with non-legumeplants [J]. Soil Biologyand Biochemistry.1997,29:911-922.
    [70]杨海莲,孙晓璐,宋未,等.水稻内生联合固氮细菌的筛选、鉴定及其分布特性[J].植物学报.1999,41(9):927-937.
    [71]Azevedo J.L., Walter M.J., Jose O.P., et al. Endophytic microorganisms:areview on insect control and recent advances on tropical plants[J]. Electronic Journal of Biotechnology.2000,3(1):40-65.
    [72]凌娟,董俊德,张燕英,等.一株珊瑚礁-海草床复合生态系统固氮菌的分离与鉴定[J].微生物学通报.2010,37(7):962-968.
    [73]Downing K.J., Thomson J.A.. Introduction of the serratiamarcescenschi A geneintoan entophytic Pseudomonas fluorescens for the biocontrol of phytopathgenic fungi [J]. Journal of Microbiology.2000,46(4):363-369.
    [74]Lodewyckx E.. Endophytic bacteria and the irpotential applications [J]. Critical Reviews in Plant Sciences.2002,21:583-587.
    [75]宋福强.微生物生态学[M].北京:化学工业出版社.2008:30.
    [76]Demain A.L, Newcomb M., Wu J.H.D.. Celhlase, clostridia, and ethanol[J]. Microbiology and Molecular Biology Reviews.2005,69(1):124-154.
    [77]Maki M., Leung K.T., Qin W.S..The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass [J]. International Journal of Biological Science.2009,5(5):500-516.
    [78]Nishiyama Y., Langan P., Chanzy H. Crystal Structure and Hydrogen-Bonding System in Cellulose 1β from Synchrotron X-ray and Neutron Fiber Diffraction [J]. Journal of American Chemistry.2002,124 (31):9074-9082.
    [79]Natercia B., Cerqueira N.M., Fernandes P.A., et al. Carbohydrate Binding Modules from family 11:Understanding the binding mode of polysaccharides[J]. International Journal of Quantum Chemistry.2008,108 (11):2030-2040.
    [80]王晓林,张西玉,白方文,等.高效降解秸秆纤维素菌株的筛选鉴定及产酶条件优化[J].四川师范大学学报(自然科学版).2011,34(1):105-109.
    [81]Himmel M.E., Ding S.Y., Johnson D.K., et al. Biomass recalcitrance:engineering plants and enzymes for biofuels production [J]. Science.2007,16(5813):804-807.
    [82]朱日清.固液废弃物资源化功能微生物制剂研发及外源固氮菌与土壤特性关系研究[D].浙江大学.2007.
    [83]劳伦斯P.瓦克特,C.道格拉斯·赫什伯格著,沈德中主译.生物催化和生物降解:有机化合物的微生物转化[M].北京:化学工业出版社.2005:1-20.
    [84]Dashtban M., SchraR H., Qin W.S.. Fungal bioconversion of lignocellulose residues:opportunities, perspectives[J]. International Journal of Biological Sciences.2009,5(6):578-595.
    [85]Shah M., Nagee A., Kunjadia P., et al. KothariIdentification of an anonymous RFLP DNA probe through multiple arbitrary amplicon profiling and its use for strain differentiation in a field isolate of cellulose-degrading Aspergillus niger [J]. Bioresource Technology.2006,97(18):2335-2339.
    [86]Singhvi M.S., Adsul M.G., Gokhale D.V.. Comparative production of cellulases by mutants of Penicillium janthinellum NCIM 1171 and its application in hydrolysis of Avicel and cellulose[J]. Bioresource Technology.2011, In Press.
    [87]Singh R., Varma A.J., Laxman R.S., et al. Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases:Comparison with commercial cellulose[J]. Bioresource Technology.2009,100(24):6679-6681
    [88]Park I., Kim I., Kang K., et al. Cellulose ethanol production from waste newsprint by simultaneous saccharification and fermentation using Saccharomyces cerevisiae KNU5377 [J]. Process Biochemistry,2010,45(4):487-492.
    [89]Ishigaki T., Sugano W., Ike M., et al. Enzymatic degradation of cellulose acetate plastic by Novel degrading bacterium Bacillus sp. S2055[J]. Journal of Bioscience and Bioengineering.2000,90(4):400-405
    [90]Johnson E.P., Brun E., MacKenzie F.L., et al. The cellulose-binding domains from Cellulomonas fimi β-1,4-glucanase CenC bind nitroxide spin-labeled cellooligosaccharides in multiple orientations [J]. Journal of Molecular Biology. 1999,287(3):609-625
    [91]Wood P.J.. Specificity in the interaction of direct dyes with polysaccharides[J]. Carbonhydrate Research.1980,85:271-287.
    [92]Wood P.J, Fulcher R.G.. Interaction of some dyes with cereal β-glucans [J]. Cereal Chemistry.1980,55:952-966.
    [93]Hendrick C.W., Doyle J.D., Hugley B.A.. New solid medium for cellulose-utilizing bacteria in solid [J]. Applied and Environmental Microbiology. 1995,61(5):251-252.
    [94]Bleve G., Grieco F., Cozzi G, et al. Isolation of epiphytic yeasts with potential for biocontrol of Aspergillus carbonarius and A. niger on grape[J]. International Journal of Microbiology.2006,108(2):204-209.
    [95]Clavijo A., Calderon I.L., Paneque P., et al. Diversity of Saccharomyces and non-Saccharomyces yeasts in three red grape varieties cultured in the Serrania de Ronda (Spain) vine-growing region [J]. International Journal of Food Microbiology.2010,143:241-245.
    [96]祖显生.干白葡萄酒用高产多糖酿酒酵母的筛选及其发酵特性的研究[D].西北农林科技大学.2008.
    [97]苏龙.东北产区山葡萄酒酵母5.8S-ITS区RFLP分析和优良酿酒酵母菌[D].西北农林科技大学.2007.
    [98]赵国栋.黄土高原苹果园根区土壤微生物消长变化及对植株再植的影响[D].西北农林科技大学.2008.
    [99]焦红茹.不同酿酒葡萄品种相关酵母菌的分离及分类鉴定[D].西北农林科技大学.2008.
    [100]Zagory D.. Effects of post-processing handling and packaging on microbial populations [J]. Postharvest Biology and Technology.1999,15:313-321.
    [101]统计数据来源:中华人民共和国商务部.http://www.mofcom.gov.cn/.
    [102]统计数据来源:中国浓缩果汁网http://www.fjc100.cn/index.html.
    [103]仇农学,徐怀德.现代果汁加工技术与设备[M].北京:化学工业出版社.2006:226-243.
    [104]Taewan Kim. Solid state fermentation of apple pomace for livestock feed [D]. Cornell University.2001.
    [105]Wang Z.F., Sun J.H., Chen R, et al. Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying. Journal of Food Engineering 2007,80:536-544.
    [106]Shalini R. Gupta D.K.. Utilization of pomace from apple processing industries:a review[J]. Journal of Food Technology.2010,47(4):365-371.
    [107]Cetkovic G, Canadanovic-Brunet J., Djilas S., et al. Assessment of polyphenolic content and in vitro antiradical characteristics of apple pomace [J]. Food Chemistry.2008,109:340-347.
    [108]Ajila C.M., Brar S.K., Verma M., et al. Solid-state fermentation of apple pomace using Phanerocheate chrysosporium-Liberation and extraction of phenolic antioxidants[J]. Food Chemistry.2011,126(3):1071-1080.
    [109]Leontowicz M., Gorinstein S., Bartnikowska E., et al. Sugar beet pulp and apple pomace dietary fibers improve lipid metabolism in rats fed cholesterol [J]. Food Chemistry.2001,72(1):73-78.
    [110]Chung S.K., Kim K., Lee J.H., et al. Effect of apple pomace on the liver damage in bromobenzene-treated rats [J]. Food Science and Biotechnology.2001,10(3): 278-281.
    [111]俞志敏,吴克,金杰,等.农用废弃物固态发酵生产衣康酸工艺研究[J].食品与发酵工业.2009,35(1):99-102.
    [112]Beatriz G, Remedios Y., Jose L.A.. L-Lactic acid production from apple pomace by sequential hydrolysis and fermentation [J]. Bioresource Technology.2008,99: 308-319.
    [113]Hang YD., Lee C.Y., Woodams E.E.. A solid state fermentation system for production of ethanol from apple pomace [J]. Journal of Food Science.1982,47: 1851.
    [114]Jewell W.J., Cummings R.J.. Apple pomace energy and solid recovery [J]. Journal of Food Science.1984,49:407-410.
    [115]Hang YD., Woodams E.E.. Apple pomace:A potential substrate for critic acid production by Aspergillus niger[J]. Journal of Applied Microbiology and Biotechnology.1984,1:95.
    [116]Hang Y.D., Woodams E.E.. Solid state fermentation of apple pomace for critic production[J]. Journal of Applied Microbiology and Biotechnology.1986,2:281.
    [117]Dhillon G.S., Brara S.K., Verma M., et al. Utilization of different agro-industrial wastes for sustainable bioproduction of citric acid by Aspergillus niger [J]. Biochemical Engineering Journal.2011,54:83-92.
    [118]王宏.苹果渣中多酚物质的提取、分离及其抗氧化活性研究[D].陕西师范大学.2006.
    [119]Gordana C., Jasna C.B., Sonja D., et al. Assessment of polyphenolic content and in vitro antiradical characteristics of apple pomace [J]. Food Chemistry.2008, 109:340-347.
    [120]Hasbay A., Cetin H.I., Yener M.E., et al. Subcritical (carbon dioxide+ethanol) extraction of polyphenols from apple and peach pomaces, and determination of the antioxidant activities of the extracts [J]. Supercritical Fluids.2007,43:55-63.
    [121]Oszmianski J., Wojdylo A., Kolniak J.. Effect of pectinase treatment on extraction of antioxidant phenols from pomace, for the production of puree-enriched cloudy apple juices [J]. Food Chemistry.2011,127(2):623-631.
    [122]Martins S., Mussatto S.I., Guillermo M.A., et al. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review [J]. Biotechnology Advances.2011,29:365-373.
    [123]Rahmat H., Hedge R.A., Manderson G.J.. Solid-substrate fermentation of Kloeckera apiculata and Candida utilis on apple pomace to produce an improved stock-feed [J]. World Journal of Microbiology and Biotechnology.1995,11: 168-170.
    [124]Pirmohammadia R., Rouzbehan Y., Rezayazdi K., et al. Chemical composition, digestibility and in situ degradability of dried and ensiled apple pomace and maize silage [J]. Small Ruminant Research.2005,7:1-6.
    [125]Figuerola F., Hurtado L.M., Estevez A.M., et al. Fiber concentrates from apple pomace and citrus peel as potential fiber sources for food enrichment [J]. Food Chemistry.2005,91:395-401.
    [126]Morris C.E.. Apple and pear fiber[J]. Food Engineering.1985,57:72.
    [127]Sudha M.L., Baskaran V, Leelavathi K.. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making[J]. Food Chemistry.2007,104:686-692.
    [128]Wang S., Chen F., Wu J.H., et al. Optimization of pectin extraction assisted by microwave from apple pomace using response surface methodology [J]. Journal of Food Engineering.2007,78:693-700.
    [129]Rha H.J., Bae I.Y., Lee S.Y., et al. Enhancement of anti-radical activity of pectin from apple pomace by hydroxamatio [J]. Food Hydrocolloids.2011(25): 545-548.
    [130]田玉霞.苹果渣中果胶的超声波辅助提取及基于不同分子量级的特性表征[D].陕西师范大学.2010.
    [131]Upadhyay R.C., Sohi H.S.. Apple pomace:A good substrate for the cultivation of edible mushrooms[J]. Current Science.1988,57(21):1189-1190.
    [132]Sindhu M., Abraham E.. Studies on the production of feruloyl esterase from cereal brans and sugar cane bagasse by microbial fermentation [J]. Enzyme and Microbial Technology.2005,36 (4):565-570.
    [133]Kim S., Dale B.. Global potential bioethanol production from wasted crops and crop residues [J]. Biomass and Bioenergy.2004,26:361-375.
    [134]石勇,何平,陈茂彬.果渣的开发利用研究[J].饲料工业.2007,1:54-56.
    [135]唐景春,牛晓伟,褚洪蕊,等.生物发酵残渣农业处理与利用研究.农业环境科学学报2007,26:609-612.
    [136]李志西.苹果渣资源化利用研究与实践[D].西北农林科技大学.2007.
    [137]尹涛.苹果渣生产有机肥料和微生物肥料的研究[D].西北大学.2004.
    [138]Park I., Kim I., Kang K., et al. Cellulose ethanol production from waste newsprint by simultaneous saccharification and fermentation using Saccharomyces cerevisiae KNU5377[J]. Process Biochemistry.2010,45: 487-492.
    [139]Masoud W., Jespersen L.. Pectin degrading enzymes in yeasts involved in fermentation of Coffea arabica in East Africa [J]. International Journal of Food Microbiology.2006,110(3):291-296.
    [140]刘海霞.苹果籽油甾醇的分离、提取及其功能性评价[D].陕西师范大学.2009.
    [141]Mamma D., Koullas D., Fountoukidis G.. Bioethanol from Sweet Sorghum: Simultaneous Saccharification and Fermentation of Carbohydrates by a Mixed Microbial Culture [J]. ProcessBiochemistry.1996,31:377-381.
    [142]Silva M.S. A gas-solid spouted bed bioreactor for solid state fermentation[D]. The Ohio State University.1997.
    [143]Soccol C.R.,Vandenberghe Luciana P.S.. Overview of applied solid-state fermentation in Brazil [J]. Biochemical Engeneering.2003,13:205-218.
    [144]Bandaru V.V.R., Somalanka S.R., Mendu D.R., et al. Optimization of fermentation conditions for theproduction of ethanol from sago starch by co-immobilized amyloglucosidaseand cells of Zymomonas mobilis using response surface methodology [J]. Enzyme Microbiology Technology.2006,38: 209-214.
    [145]Imandi S.B., Bandaru V.V.R., Somalanka S.R., et al. Optimization of medium constituents for the production of citric acid from byproduct glycerol using doehlert experimental design[J]. Enzyme Microbial Technology.2007,40: 1367-1372.
    [146]Zheng Z., Shetty K. Solid state production of polygalacturonase by Lentinus edodes using fruit processing wastes [J]. Process Biochemistry.2000,35: 825-830.
    [147]Ana B.D., Ildefonso C., Ignacio O, et al. Evaluation of the conditions for the extraction of hydrolitic enzymes obtained by solid state fermentation from grape pomace[J]. Enzyme and Microbial Technology.2007,41:302-306.
    [148]惠有为,赵亚玲,赵健,等.果渣固体发酵生产黄腐酸[J].西北大学学报(自然科学版).2005,35(6):746-750.
    [149]Sodhi H.K., Sharma K., Gupta J.K., et al. Production of a thermostable a-amylase from Bacillus sp. PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production [J]. Process Biochemistry.2005,40:525-534.
    [150]张丽英.饲料分析及饲料质量检测技术[M].北京:中国农业大学出版社.2007:30-35.
    [151]李建雷.我国饲料蛋白原料供应概况及发展趋势[J].中国畜牧杂志.2006,42(4):32-36
    [152]邓桂兰.发酵生产蛋白饲料中复合菌种生长特性的研究[J].广东轻工职业技术学院学报.2008,7(2):24-26.
    [153]计成.新型蛋白质饲料开发与利用[M].北京:化学工业出版社.2006:180.
    [154]刁其玉.动物氨基酸营养与饲料[M].北京:化学工业出版社.2007:274.
    [155]诸葛健.工业微生物实验与研究技术[M].北京:科学出版社.2007:10-15.
    [156]Patrick R.M., Ellen J.B.. Manual of Clinical Microbiology [M]. ASM Press. 1999:1-20.
    [157]Nikhil S.S., Sudheer K.S., Rekha S.S., et al. Compactin production in solid-state fermentation using orthogonal array method by P. brevicompactum[J]. Biochemical Engineering Journal.2008,41:295-300.
    [158]Jianmin G, Haibo W., Daheng Z., et al. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover[J]. Bioresource Technology.2008,99: 7623-7629.
    [159]Gregorio A., Mandlariq Atena N.. SCP and crude pectinase production by slurry-state fermentation of lemon pulps [J]. Bioresourse Technology.2002,83: 89-94.
    [160]田林茂,张红燕,刘成,等.黑曲霉HG-1发酵苹果渣生产果胶酶的工艺优化及部分酶学性质[J].生物技术.2008,18(2):74-77.
    [161]刘成,孙中涛,周梅,等.黑曲霉固态发酵苹果渣产木聚糖酶的工艺优化研究[J].农业工程学报.2008,24(4):261-266.
    [162]Wang H. Wang J. Fang Z., et al. Enhanced bio-hydrogen production by anaerobic fermentation of apple pomace with enzyme hydrolysis [J]. International Journal of Hydrogen Energy.2010,35(15):8303-8309.
    [163]Shojaosadati S.A., Babaeipour V.. Citric acid production from apple pomace in multi-layer packed bed solid-state bioreactor [J]. Process Biochemistry.2002,37: 909-916
    [164]Shojaosadati S. A., Babaeipour V.. Citric Acid Production from Apple Pomace in Multi-layer Packed Bed Solid State Bioreactor [J]. Process Biochemistry.2002, 37:909-914.
    [165]Sandhu D.K., Joshi V.K.. Solid-state fermentation of apple pomace for concomitant production of ethanol and animal feed [J]. Journal of Scientific and Industrial Research.1997,56 (2):86-90.
    [166]Sujit K.M., Shuvasis B., Manas R.S., et al. Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation [J]. Applied Energy. 2009,86(5):640-644.
    [167]马艳萍,马惠玲,陈长友,等.苹果渣固态酒精发酵工艺研究[J].西北农林科技大学学报(自然科学版).2004,32(11):81-84.
    [168]Hang Y.D., Woodams E.E.. Production of fungal polygalacturonase from apple pomace [J]. Leben smittl Wissen chaft and Technologies.1994,27(2):194-196.
    [169]Bhalla T.C., Joshi M.. Protein enrichment of apple pomace by co-culture of cellulolytic moulds and yeasts [J]. World Journal of Microbiology&Biotechnology.1994,10(1):116-117.
    [170]Joshi V. K., Sandhu D. K.. Solid state fermentation of apple pomace for production of ethanol and animal feed[J]. In:Solid state fermentation. Ashok pandey (Ed) [M]. New Delhi:Easten Weily Publish Company:93-98.
    [171]Joshi V. K., Gupta K., Devrajan A., et al. Production and evaluation of fermented apple pomace in the feed of broilers [J]. Journal of Food Science and Technology. 2000,37(6):609-612.
    [172]Joshi V. K., Sandhu D. K.. Preparation and evaluation of an animal feed by product produced by solid state fermentation of apple pomace [J]. Bioresource Technology,1997,56 (2/3):251-255.
    [173]张玉臻,林学政,刘宏.苹果渣皮固态发酵的研究[J].食品与发酵工业.1996,3:29-32
    [174]籍保平,尤希风,张博润.苹果渣发酵生产饲料蛋白的工艺条件[J].生物工程进展.1999,5:30-33.
    [175]徐抗震,宋纪蓉,黄洁,等.苹果渣混合菌发酵生产饲料蛋白的研究[J].饲料工业.2003,7:35-37.
    [176]陈五岭,段东霞,高再兴.微生物发酵果渣蛋白饲料研究I菌种选育及理化性质测定[J].西北大学学报(自然科学版).2003,33(1):91-93
    [177]常显波,薛泉宏,来航线,等.鲜苹果渣发酵生产饲料蛋白研究[J].西北农林科技大学学报(自然科学版).2004,1:43-49.
    [178]司翔宇,李志西,葛蕾.苹果渣固态发酵生产饲料蛋白研究[J].湖北农业科学.2005,(3):98-100.
    [179]贺克勇,杨帆,薛泉宏,等.固态复合发酵剂用于苹果渣蛋白饲料发酵效果研究[J].饲料工业.2005,26(9):9-11.
    [180]惠有为,赵亚玲,赵健,等.果渣固体发酵生产黄腐酸[J].西北大学学报(自然科学版).2005,35(6):746-750
    [181]Stredansky M., Conti E.. Xanthan production by solid state fermentation [J]. Process Biochemistry.1999,34:581-587
    [182]Stredansky M., Conti E., Stredanska S., et al. y-Linolenic acid production with thamnidium elegans by solid-state fermentation on apple pomace [J]. Bioresource Technology.2000,73(1):41-45
    [183]Paula F.S., Susan G.K., Julio C.C., et al. Production of bio-ethanol from soybean molasses by Saccharomyces cerevisiae at laboratory, pilot and industrial scales[J]. Bioresource Technology.2008,99:8156-8163.
    [184]Stredansky M., Conti E., Stredanska S., et al. y-Linolenic acid production with Thamnidium elegans by solid-state fermentation on apple pomace [J]. Bioresource Technology.2000,73(1):41-45.
    [185]中华人民共和国农业部中国农业信息网http://www.agri.gov.cn/index2.htm.
    [186]中国饲料行业信息网http://www.feedtrade.com.cn/
    [187]叶丙奎,李青旺,谢伟华,等.混菌固态发酵饲料对生长育肥猪生产性能的 影响[J].西北农业学报.2009,18(5):22-26.
    [188]王长彦.微生物发酵饲料替代饲用抗生素技术在商品猪生产中的应用研究[D].西北农林科技大学.2008.
    [189]Yinrong L.,Yeap F.. Identification and quantification of major polyphenols in apple pomace [J]. Food Chemistry.1997,59(2):187-194.
    [190]Contreas L.A., Laneza H.M. Corona T.J., et al. Extraction of pectin from apple waste produced in cider manufacture [J]. Research and Industry.1992,35(4): 207-211.
    [191]张日俊.现代饲料生物技术与应用[M].化学工业出版社.2009:1-15.
    [192]计成.新型蛋白质饲料开发与利用[M].化学工业出版社.2006:5-24.
    [193]吕德国,陈军,高文胜,等.套袋苹果不同纸袋内不同时期真菌种群结构研究[J].沈阳农业大学学报.2009,40(1):80-83.
    [194]张庆,朱继熹,冷怀琼.苹果叶表附生微生物区系及其有益菌的研究.II有益芽孢杆菌的筛选、初步鉴定和电镜观察[J].云南农业大学学报.1997,12(3):147-153
    [195]李合生植物生理生化实验原理和技术[M].北京:高等教育出版社.2000:1-15.
    [196]李慧,王惠玲,吴雅琨.天然葡萄酒酵母菌种的分离、鉴定和酿造性能评价[J].食品与发酵工业.2010,36(11):14-20.
    [197]Kondo S., Truda K., Muto N., et al. Antioxidative activity of apple skin or flesh extracts associated with fruit development on selected apple cultivars[J]. Science Horticulture.2002,96:177-185.
    [198]Tournas V.H., Katsoudas E.. Mould and yeast flora in fresh berries, grapes and citrus fruits [J]. International Journal of Food Microbiology.2005,105:11-17.
    [199]Adams P.D., Kloepper J.W.. Structural characteristics and plant-beneficial effects of bacteria colonizing the shoots of field-grown conventional angenetically modified T4-lysozyme-producing potatoes [J]. Plant and Soil.2002,240: 181-189.
    [200]Sturz A., Christie B., Nowak J.. Bacterial endophytes:potential role in developing sustainable systems of crop production[J]. Critical Reviews in Plant Sciences.2000,19(1):1-30.
    [201]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:1-20.
    [202]Chamberlain G., Husnik J., Subden R.E..Application of fluorescence in situ hybridisation (FISH) to the analysis of yeast population dynamics in winery and laboratory grape must fermentations [J]. Food Research International.1997, 30(6):435-439.
    [203]张超.纤维素降解菌的筛选及降解柑橘果渣的研究[D].西南大学.2006.
    [204]龙建友.秦岭链霉菌开发利用的前期基础研究[D].西北农林科技大学.2006.
    [205]Moens E..The prevention and control of Legionella sp. (including Legionnaires' disease) in food factories [J]. Trends in Food Science & Technology.2002(13): 380-384.
    [206]苏世彦.食品微生物检验手册[M].北京:中国轻工业出版社,1998
    [207]东秀珠.常见细菌鉴定手册[M].北京:科学出版社.2001.
    [208]牛鹏飞.RP-HPLC同时检测苹果浓缩汁中主要危害性指标方法的建立[D].陕西师范大学.2008.
    [209]张庆,冷怀琼,朱继熹.苹果叶面附生微生物区系及其有益菌的研究.I叶面附生微生物区系的初步研究[J].四川农业大学学报.1996,14(2):157-161.
    [210]张庆,冷怀琼,朱继熹.果叶面附生微生物区系及其有益菌的研究.III蜡芽B017防病及促生的实验[J].云南农业大学学报.1997,12(4):269-276.
    [211]张庆,冷怀琼,朱继熹.苹果叶面附生微生物区系及其有益菌的研究.Ⅳ蜡质芽孢杆菌Bo17代谢液中的生理活性物质[J].西南农业学报.1999,12(1):96-99.
    [212]姜海燕,闫伟.大兴安岭兴安落叶松林土壤微生物分布特征[J].浙江林学院学报.2010,27(2):228-232.
    [213]张社奇,王国栋,刘云鹏,等.黄土高原人工油松林地土壤微生物的分布特征[J].激光生物学报.2005,14(5):353-358.
    [214]O Donnell P.J., Calvert C., Atzorn R., et al. Ethylene as a signal mediating the wound response of tomato plants [J]. Science.1996,274:1914-1917.
    [215]周丽霞,丁明懋.土壤微生物学特性对土壤健康的指示作用[J].生物多样性.2007,15(2):162-171.
    [216]Beresford M.R., Andrew P.M., Shama G. Listeria monocytogenes adheres to many materials found in food-processing environments [J]. Journal of Applied Microbiology.2001,90:1000-1005.
    [217]陈世琼.浓缩苹果汁生产过程中嗜酸嗜热菌的分离及相关生物学特性研究[D].中国农业大学.2004.
    [218]常玉华.苹果浓缩汁中耐热菌PCR方法快速检测研究[D].陕西师范大学.2003.
    [219]关健.苹果汁中耐热菌生长与代谢动力学研究[D].西北农林科技大学.2006.
    [220]Lee S., Gray P., Dougherty R., et al. The use of chlorine dioxide to control Alicyclobacillus acidoterrestris spores in aqueous suspension and on apples[J]. International Journal of Food Microbiology.2004,92:121-127.
    [221]McGhie T.K., Hunt M., Barnett L.E.. Cultivar and growing region determine the antioxidant polyphenolic concentration and composition of apples grown in New Zealand [J]. Journal of Agriculture and Food Chemistry.2005,53 (8): 3065-3070.
    [222]龚国淑,朱继熹,冷怀琼.苹果繁殖器官腐生微生物区系的初步研究.四川农业大学学报.1991,9(2):262-268.
    [223]Jone H.A.. Microbial populations associated with buds and young leaves of apple[J]. Canadian Journal of Botany.1980,58:847-855.
    [224]Lee N.K., Yeo I.C., Park J.W., et al. Isolation and characterization of a novel analyte from Bacillus subtilis SC-8 antagonistic to Bacillus cereus [J]. Journal of Bioscience and Bioengineering.2010,110(3):298-303.
    [225]Liu W.W., Mu W., Zhu B.Y., et al. Antagonistic Activities of Volatiles from Four Strains of Bacillus spp. and Paenibacillus spp. Against Soil-Borne Plant Pathogens [J]. Agricultural Sciences in China.2008,7(9):1104-1114.
    [226]邹养军,陈金星,马峰旺,等.渭北旱塬不同种植年限苹果园土壤水分的变化特征[J].干旱地区农业研究.2011,29(1):41-44.
    [227]王丽媛.苹果渣固态发酵蛋白饲料的研究[D].陕西师范大学.2010.
    [228]Sujit K.M., Shuvasis B., Manas R.S., et al. Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation [J]. Applied Energy. 2008,1:120-129.
    [229]Nikhil S.S., Sudheer K.S., Rekha S.S., et al. Compactin production in solid-state fermentation using orthogonal array method by P. brevicompactum [J]. Biochemical Engineering Journal.2008,41:295-300.
    [230]张苏龙,吕淑霞,林英,等.一株产纤维素酶真菌的筛选、鉴定及酶学性质初步研究[J].微生物学杂志.2009,29(3):72-76.
    [231]Latifian M., Hamidi E.Z., Barzegar M.. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions [J]. Bioresource Technology.2007,98(18):3634-3637.
    [232]Zhou X.H., Chen H.Z., Li Z.H.. CMCase activity assay as a method for cellulase adsorption analysis [J]. Enzyme and Microbial Technology.2004,35(5): 455-459.
    [233]Singhaniaa R.R., Sukumarana K.R., Patel A.K., et al. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases[J]. Enzyme and Microbial Technology.2010,46:541-549.
    [234]Sanchez A., Ferrer P., Serrano A., et al. Characterization of the lipase and esterase multiple forms in an enzyme preparation from a Candida rugosa pilot-plant scale fed-batch fermentation[J]. Enzyme and Microbial Technology. 1999,25(3):214-223.
    [235]Szijarto N., Faigl Z., Reczey K., et al. Cellulase fermentation on a novel substrate (waste cardboard) and subsequent utilization of home-produced cellulase and commercial amylase in a rabbit feeding trial [J]. Industrial Crops and Products.2004,20:49-57.
    [236]Liu J., Yuan X.Z., Zeng G.M., et al. Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation [J]. Process Biochemistry.2006,41:2347-2351.
    [237]Kunamneni A., Permaul K., Singh S.. Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus[J]. Journal of Bioscience and Bioengineering.2005,100(2):168-171.
    [238]Kashyap R.D., Soni K.S., Tewari R.. Enhanced production of pectinase by Bacillus sp. DT7 using solid state fermentation [J]. Bioresource Technology. 2003,88(3):251-254.
    [239]Sandhya C., Sumantha A., Szakacs G, et al. Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation[J]. Process Biochemistry.2005,40(8):2689-2694.
    [240]沈萍.微生物学[M].北京:高等教育出版社.2001.
    [241]诸葛健.工业微生物实验与研究技术[M].北京:科学出版社.2007.40-44.
    [242]Iwen P.C., Hinrichs S.H., Rupp M.E.. Utilization of the internal transcribed spacer regions asmolecular targets to detectand identify human fungal pathogens [J]. Medical Mycology.2002,40:102-109.
    [243]冯光惠.基于rDNAITS_1序列对酿酒酵母属及相关3种子囊菌酵母的系统分类学研究[D].西北农林科技大学.2006.
    [244]Horikoshi K., Nakao M., Kurono Y. Cellulase of an alkalophilic Bacillus strain isolated from soil [J]. Canadian Journal of Microbiology.1984,30(6):774-779.
    [245]Massadeh M.I., Yusoff W.M.W., Omar O., et al. Synergism of cellulase enzymes in mixed culture solid substrate fermentation [J]. Biotech Letters,2001,23: 1771-1774.
    [246]Mandels M., Hontz L., Nystrom J.. Enzymatic hydrolysis of waste cellulose [J]. Biotechnology and Bioengineering.1974,16:1471-1493.
    [247]Konstantinova P., Ylimattila T.. IGS-RFLP analysis and development of molecular markers for identification of Fusarium poae, Fusarium langsethiae, Fusarium sporotrichioides and Fusarium Kyushuense[J]. International Journal of Food Microbiology.2004,95:321-331
    [248]Mercado L., Dalcero A., Masuelli R., et al. Diversity of Saccharomyces strains on grapes and winery surfaces:Analysis of their contribution to fermentative flora of Malbec wine from Mendoza(Argentina)during two consecutive years [J]. Food Microbiol.2007,24:403-412.
    [249]John R.P., Tyagi R.D., Prevost D., et al. Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean[J]. Crop Protection.2010, 29(12):1452-1459.
    [250]Gromadka R., Kaniak A., Slonimski P.P.. A novel cross-phylum family of proteins comprises a KRR1 (YCL059c) gene which is essential for viability of Saccharomyces cerevisiae cells [J]. Gene.1996,171:27-32.
    [251]Joyce J.E., Liliana M.B., Eliseo C.U.. Isolation and characterization of a yeast strain capable of removing Cr (VI)[J]. Enzyme and Microbial Technology.2006, 40:114-121.
    [252]Pel H.J., Winde J.H., Archer D.B., et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. [J]. Natural Biotechnology. 2007,25(2):221-231.
    [253]贺克勇,薛泉宏,司美茹.苹果渣发酵饲料蛋白质含量的影响因素研究[J].西北农林科技大学学报.2004,32(4):83-88.
    [254]李巨秀.混菌种发酵果渣生产蛋白饲料的研究[D].西北农林科技大学.2002.
    [255]张长霞.混菌固态发酵苹果渣生产蛋白饲料的研究[D].天津科技大学.2004.
    [256]无锡轻工学院,天津轻工学院.食品分析[M].北京:中国轻工业出版社,1996.
    [257]魏金涛,齐德生.饲料水分活度及其对霉菌生长和产毒的影响[J].饲料工业.2005,26(19):53-55.
    [258]Fontana A.J.. Understanding the importance of water activity in food[J]. Cereal Foods World Journal.2000,45(1):7-10.
    [259]中华人民共和国国家标准GB/T6433-2006/IS06492:1999.
    [260]肖健,来航线,姜林,等.不同菌株对苹果渣青贮饲料发酵效果的影响[J].西北农林科技大学学报(’自然科学版).2010,38(3):83-88.
    [261]李爱华,岳思君,马海滨.真菌孢子三种计数方法相关性的探讨[J].微生物学杂志.2006,26(2):107-110.
    [262]Ratledge C. Microbiol technology of lipids [J]. Lipid technology.1989,1:34-39.
    [263]顾曼如,张若抒,黎文文,等.苹果植株中的无机氮与游离氨基酸[J].落叶果树.1979,3:8-17.
    [264]Mukhopadhyay R., Chatterjee P.B.. Biochemical changes during fermentation of edible mushroom Pleurotus sajor-caju in whey [J]. Process Biochemistry.2002, 38:723-725.
    [265]Vattem A.D., Shetty K.. Ellagic acid production and phenolic antioxidant activity in cranberry pomace (Vaccinium macrocarpon) mediated by Lentinus edodes using a solid-state system [J]. Process Biochemistry.2003,39:367-379。
    [266]张松.食用菌学[M].广州:华南理工大学出版社.2000,1.
    [267]农业部微生物肥料和食用菌菌种质量监督检验测试中心.食用菌技术标准汇编[M].北京:中国标准出版社.2006.
    [268]殷红.一种适于平菇生长发育的培养基[J].中国食用菌.1995,14(4):35.
    [269]Xiubing P. Wenbing Y. Xiaobing Y., et al. Purification, characterization and biological activity on hepatocytes of a polysaccharide from Flammulina velutipes mycelium [J]. Carbohydrate Polymers.2007, (70):291-297.
    [270]Kurt S., Buyukalaca S.. Yield performances and changes in enzyme activities of Pleurotus spp. (P. ostreatus and P. sajor-caju) cultivated on different agricultural wastes [J]. Bioresource Technology.2010,101:3164-3169.
    [271]Mukhopadhyay R., Chatterjee S., Chatterjee P.B., et al. Pleurotus sajor-caju grown in whey by plant growth hormones Enhancement of biomass production of edible mushroom[J]. Process Biochemistry.2005,40:1241-1244
    [272]Bonatti M., Karnopp P., Soares H.M., et al. Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in different lignocellulosic wastes [J]. Food Chemistry.2004,88:425-428.
    [273]Liu R.S., Tang Y.J.. Tuber melanosporum fermentation medium optimization by Plackett-Burman design coupled with Draper-Lin small composite design and desirability function[J]. Bioresource Technology.2010,101(9):3139-3146.
    [274]Evaluation of Medium Components by Plackett-Burman Statistical Design for Lipase Production by Candida rugosa and Kinetic Modeling [J]. Chinese Journal of Biotechnology.2008,24(3):436-444.
    [275]Song C.H.. A synthetic medium for the production of submerged cultures of Lentinus edodes [J]. Mycologia.1976, (6):866-876.
    [276]Dhiraj A.V., Kalidas S.. Ellagic acid production and phenolic antioxidant activity in cranberry pomace (Vaccinium macrocarpon) mediated by Lentinus edodes using a solid-state system [J]. Process Biochemistry.2003,(39):367-379.
    [277]Mahbuba M., Nasrat J.S., Md. Asaduzzaman K., et al. Effects of different levels of wheat bran, rice bran and maize powder supplementation with saw dust on the production of shiitake mushroom (Lentinus edodes (Berk.) Singer)[J]. Saudi Journal of Biological Sciences. Printed.
    [278]刘文卿.实验设计[M].北京:清华大学出版社,2005.
    [279]Zain W.S.W., Illias R., Salleh M., et al. Production of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. TS1-1:Optimization of carbon and nitrogen concentration in the feed medium using central composite design [J]. Biochemical Engineering Journal.2007,33(1):26-33.
    [280]Ibrahim H.M., Yusoff W.M.W., Hamid A.A., et al. Optimization of medium for the production of β-cyclodextrin glucanotransferase using Central Composite Design (CCD) [J]. Process Biochemistry.2005,40(2):753-758.
    [281]唐景春,牛晓伟,褚洪蕊,等.生物发酵残渣农业处理与利用研究[J].农业环境科学学报.2007,26:609-612
    [282]牛春玲.酒精酵母菌的高密度培养及其发酵性能的研究[D].南昌大学. 2008.
    [283]Latour R.A.. Biomaterials:protein-surface interactions. Encyclopedia of biomaterials and biomedical engineering[M]. New York:Marcel Dekker.2004.
    [284]Denis F.A., Hanarp P., Sutherland D.S., et al. Protein adsorption on model surface with controlled nanotopography and chemistry[J]. Langmuir.2002, 18(3):819-828.
    [285]万容兵.载体表面化学组成对蛋白质吸附行为的影响[D].浙江大学.2009.
    [286]McGuim J., Wahlgren M.C., Amebrant T.. Structure stability effects on the adsorption and dodecyltrimethylammonium Bromide-Mediated elutability of bacteriophage T4 lysozyme at silica surfaces [J]. Journal of Colloid Interface Science.1995,170(1):182-192.
    [287]范青.果实采后病害生物防治及其机理研究[D].中国科学院.2001.
    [288]陈永志,张林泉,黄善民,等.固体通风发酵设备的应用研究[J].农业工程学报.1997,9:235-239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700