高温岩层巷道主动降温支护结构技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学预测,未来矿井热害防治技术将决定着矿井的极限开采深度。目前国内外对矿井热害的治理以加大通风量降温、制冷降温和制冰降温等被动降温方法为主,其主要缺限是投入大、能耗高、效率低。论文提出的主动降温技术,是在巷道支护结构中添加隔热材料,形成“隔热结构”,将热害阻止在井巷外围,降低围岩热量向井巷的排放,达到减排降温目的。
     减少高温岩层向巷道的热排放,降低巷道风流温度,实现矿井节能是研究的主要目的。首先在矿井降温理论基础上,推导出巷道隔热结构的减排和降温计算理论模型,为巷道隔热效果分析和试验提供了理论依据;其次,通过实验和试验,开发出玻化微珠基材的巷道“注浆”和“喷浆”新型隔热材料,应用于高温巷道隔热结构,实现巷道隔热、减排、降温;最后,经现场试验研究,得出了巷道减排和降温计算理论模型,并总结出试验条件下,喷浆、注浆、注填和矿物类型隔热层放热量和巷道出口风流温度分析模型。研究为巷道隔热、减排和降温工程的设计应用,为隔热结构实施前后降温效果预测提供了依据。
     主要研究内容与创新:
     1.研究了巷道“非隔热结构”和“隔热结构”的热传递特征。根据“非隔热结构”热传递和温度场理论,建立了巷道“隔热结构”热传递分析计算理论模型;提出了不稳定换热系数k’、巷道热排量、风流温度及降温效果解析计算式,为巷道“隔热结构”设计提供了理论依据。
     2.分析了多孔状、纤维状、组合状及玻化微珠等结构材料的传热特征、机理和传热模型,为巷道新型玻化微珠隔热材料的研究开发提供了理论依据。
     3.实验室研究中以玻化微珠为基材,开发了用于井巷隔热结构的“注浆隔热”和“喷浆隔热”两种新型材料。试验测定了9组“注浆隔热”和9组“喷浆隔热”材料的不同配合比,并制作了用于导热系数、单轴抗压强度、侧限抗压强度和渗流系数测试试件,测得各组试验数据。采用正交设计理论,对试验数据进行直观和方差分析,考虑导热系数和强度指标的主次关系,得出了“注浆隔热”最优配比为玻化微珠:水泥:砂子:添加剂注1#=120:350:200:20;“喷浆隔热”最优配比为玻化微珠:水泥:砂子:添加剂喷3#=200:150:150:20。并得出了玻化微珠在“注浆隔热”和“喷浆隔热”材料中掺量与导热系数、单轴抗压强度、侧限抗压强度的实验模型,为巷道隔热结构的设计实施与效果分析提供了实验参数。
     4.对“注浆隔热”和“喷浆隔热”结构方案的结构力学性能和稳定性进行了理论分析和数值分析,结果表明两种类型隔热层在巷道变形和受力过程中保持稳定,满足支护结构需要。
     5.对“注浆隔热”层结构进行了隔热性能和稳定性能的现场试验,通过对巷道终端风温测试,并对理论计算值与实测值进行对比分析,表明巷道温度的计算值与实测值误差范围在10%以内,计算和实测数据具有较高的拟合性,可以作为同类条件下巷道风流温度设计预测的依据。
     6.对“注浆隔热”层结构进行力学性能和稳定性观测分析,“注浆隔热”层侧限压力小于其侧限抗压强度;巷道顶底板相对位移一般不超过40mmm,两帮相对位移一般不超过35mmm,巷道表面变形稳定。监测结果表明“注浆隔热”材料满足结构的力学性能和稳定性要求。
     7.试验推导出喷浆、注浆、注填、矿物类型隔热的巷道放热量和出口风流温度分析模型及方程,可以作为同类工程技术条件下巷道放热量和巷道出口风流温度分析预测模型,为设计、施工和参数预测提供了依据,具有显著的应用价值。
     8.技术经济分析表明,巷道“隔热结构”在控制矿井地热方面具有显著的技术经济效益,经深入研究推广,将产生更大的社会效益。
     该课题的研究成果丰富了煤矿、非煤矿山和地下工程领域井巷主动降温的理论和技术,为矿井降温节能提供了新的途径,对制定我国矿山和地下工程领域降温节能的行业标准和技术规范提供了借鉴。
     项目研究开发获得资助的有:国家自然基金:“基于关键块运动原理采场矿压研究”,项目号:50774078;国家重点实验室开放基金:“巷道围岩注浆技术研究”,项目号:07KF02。
     研究开发的“地下工程用刚柔性防水密闭材料及应用”、“具有吸能与抗压的地下硐室”获得两项国家发明专利。“基于平战结合的地下高效停车系统研究开发”项目在研究中引用了该论文多项研究成果,并获得国家金桥奖,证书号:JQJ2009-X-021。
It is forcasted that maximum exploitation deepth of shaft is determined by the prevention and treatment technology of shaft heat harm in the future.The main methods of shaft heat harm treatment are inceasing mine ventilation amount method of heat extraction cooling, ice-making cooling, refrigeration cooling, and other passive cooling method, the main defects of which are heavy investment, high operating cost and low production efficiency at home and abroad now. Active cooling technique is that adding insulation materials into roadway supporting structure and forming'insulation structure'.After the construction, shaft heat harm is kept away from the outside of shaft and tunnle, and emission of heat energy to shaft and tunnle is bring down, thus aim of emission reduction, cooling and energy saving could be realized.
     The main purpose of research is to realize energy saving of mine, reduce thermal discharge and wind temperature of roadway. Firstly, based on mine cooling theory, theory model of roadway insulation structure energy emission reduction and cooling is deduced, which can provide theory base for roadway insulation effect analysis.Secondly, through test and experiment, new type of heat insulation material about grouting and gunite which is based on vitreous micro-bead material is developed, and it is applied on high temperature roadway insulation structure to realize heat insulation, emission reduction and cooling.Finally, through field test, theory model of roadway emission reduction and cooling is deduced. Analysis model of gunite, grouting, filling and mineral type about roadway heat and wind temperature analysis is summed up in the condition test.The research can be a basis for design and application of roadwayhea (?), emission reduction and (?) and vfor cooling effect prediction of heat insulation structure.
     The main reseach contents and innovation:
     1.Heat transmission characteristic of'heat insulation structure'and 'non-insulation structure'of roadway is studied. Calculation theory model of roadway'heat insulation structure'is established, according to heat transmission and temperature field theory of'non-insulation structure'. Analytic formula of instability coefficient k'of thermal exchanging, heat reducing, wind temperature and cooling are proposed, which can provide theory basis for design of roadway 'heat insulation structure'.
     2.Heat compensator conducting property, mechanism and model of vesicular, fibrous, combined vitreous micro-bead and other structure materials are analyzed, which can provide theory basis for the development of new type vitreous micro-bead insulation materials.
     3.Two new types of materials of "grouting and heat insulation layer" and "gunite and heat insulation layer" are developed based on vitreous micro-bead in the test. Mix proportion of 9 groups of " grouting and heat insulation layer" and " gunite and heat insulation layer" materials are tested, and rock samples of heat conduction coefficient, uniaxial compressive strength, sideway limit compressive strength and seepage coefficient are made, and test data is obtained. Based on orthonormal theory, intuitive analysis and variance analysis are carried out, considering relation of primary and secondary of heat conduction coefficient and strength index. Optimal proportion of "grouting and heat insulation layer" is vitreous micro-bead, cement, sand, additive, grouting 1#=120:350:200:20, and "gunite and heat insulation layer" optimal proportion is 200:150:150:20. Test model of heat conduction coefficient, uniaxial compressive strength, sideway limit compressive strength and mixing amount in "grouting and heat insulation layer" and "gunite and heat insulation layer "materials are obtained, which can provide test parameters for the design of heat insulation structure of roadway.
     4.Mechanical properties and stability of structure about "gunite insulation layer" and "grouting insulation layer" are studied in theory and numerical analysis, the results show that roadway structure can satisfy mechanical characteristics.
     5.Field test of stability and heat insulating property about "grouting and heat insulation layer" is carried on. Though test of wind temperature in roadway end, and comparative analysis of calculated value and measured value, it can show error range of calculated value of roadway temperature and measured value is under 10%. Calculated value can fit measured value, which can be basis for design and prediction of roadway wind temperature in similar condition.
     6.Mechanical properties and stability of "grouting and heat insulation layer" are observed and analyzed, and confining pressure is less than sideway limit compressive strength. Relative displacement of roof and floor usually does not exceed 40mm, and relative displacement of roadway walls usually does not exceed 35mm. Surface deformation of roadway is stable. Monitoring results show that material of " grouting and heat insulation layer" can meet the requirements of mechanical properties and stability of structure.
     7.Equation and analysis model of gunite, grouting, filling and mineral type about roadway heat and wind temperature analysis are derived, which can be a prediction model for roadway heat and wind temperature, which can also be a basis for design, construction and parameters prediction of roadway in similar condition, and have a remarkbly practice value.
     8.Analysis of technical economy shows that, roadway "heat insulation structure" can produce significant economic benefit in geothermal controlling aspects. It can produce remarkable benefits if research results can be applied
     Research and development of the task can enrich shaft and tunnel active cooling theory and technology of coal mine, provide a new way for cooling technique of roadway and present experience for compiling occupation standard and technical code of active cooling.
     The research task is supported by the National Natural Science Foundation of China ("Research on Mine Pressure of Caving Workforce Based on Principle of the Key Block Movement", Grant No.50774078);Open fund of State Key Laboratory ("Research on Grouting Technology of Roadway Surrounding Rock " Grant No.07KF02);
     "Inflexibility and flexibility waterproof obfurage material and its application of underground engineering" and "Underground cavern which can absorb energy and bear pressure" of international patent are declared. Many results of this paper are used in the project of " Researching and Developing of Underground High Efficient Parking System" which obtains the first nation jinqiao prize, Certification No. JQJ2009-X-021。
引文
[1]中国煤炭工业协会.当前中国煤炭经济运行态势分析[J].中国煤炭,2009,(02):5-14.
    [2]胡小平.21世纪中国矿产资源产业的定位与政策目标[J].中国地质矿产经济,2002,(11):17-20.
    [3]张雷.中国矿产资源持续开发与区域开发战略调整[J].自然资源学报,2002,(2)162-167.
    [4]关凤峻.我国矿业经济的可持续发展之路[J].煤炭经济研究,1999,(1):5-6.
    [5]戴自希.我国周边国家矿产资源的分布和潜力[J].国土资源情报,2001,(11):37-45.
    [6]谢和平,彭苏萍,何满潮.开采基础理论与工程实践[M].北京:科学出版社,2006.
    [7]何满潮.HEMS深井降温系统研发及热害控制对策[J].中国基础科学,2008,(02).
    [8]何满潮,张毅,乾增珍等.深部矿井热害治理地层储冷数值模拟研究[J].湖南科技大学学报,2006,21(2):13-16.
    [9]何满潮,李春华,朱家玲等.中国中低焓地热工程技术[M].北京:科学出版社,2003.
    [10]He Manchao,Zhang Yi,Guo Dongming,Qian Zengzhen.Numerical analysis of doublet wells for cold energy storage on heat damage treat-ment in deeo mines [J]. Journal of Mining&Technology,2006,16(3):278-282.
    [11]He Manchao. Rock mechanics and hazard control in deep mining engineering in China. Rock Mechanics in Underground Construction,Rocd mechanics in underground construction. Proceedings of ISRM International symposium 2006[J]. The World Scientific Publishing,2006,11:29-46.
    [12]Prof. Dr. L. Rybach,M. Pfister. Temperature predictions and predictive temperatures in deep tunnels[J]. Rock Mechanics and Rock Engineering,1994,27(2).
    [13]DIERINGDH. Mining at ultra depths in the 21st century [J].CIM Bulletin 2000:124-129.
    [14]National Science Found[J]. DEEP SCIENCE—A deep underground science and engineering initiative.2007.
    [15]刘何清,吴超,王卫军等.矿井降温技术研究述评[J].金属矿山,2005,(06):43-48
    [16]吕品.矿井热害的调查与防治[J].中国煤炭,2002,12(7):57-59.
    [17]王文,桂祥友,王国君.矿井热害的治理[J].矿业安全与环保,2002,9(03):89-94.
    [18]陈安国.矿井热害产生的原因、危害及防治措施[J].中国安全科学学报,2004,14(8)124-127.
    [19]Bullard E.C.Terrestrial Heat Flow. Geophysical Monograph. [J]No.8 American GeophysicalUnion.1965.1-4.
    [20]冯兴隆,陈日辉.国内外深井降温技术研究和进展[J].云南冶金,2005,34(05):7-10.
    [21]Starfield A.M,BlelochA.L.A new method for the computation of heat and moisture in a partly wet airway[M].J.S.African Inst.Min Metal.1983.
    [22]平松良雄.通气学(日文版)[M].内田老鹤圃新社.1974.
    [23]王莹,周训,于湲等.应用地热温标估算地下热储温度[J].现代地质,2007,(04).
    [24]约阿希姆.福斯.矿井气候[M].北京:煤炭工业出版社,1989.
    [25]杨学祥,陈殿友.地幔对流中的科里奥利力[J].长春地质学院学报,1996,(02):231-235.
    [26]刘志江,韩升良,施延州.我国的地热资源及地热发电技术的发展[J].中国电力,1996,(12).
    [27]张生.地内温度与地热能利用[J].淮北煤师院学报(自然科学版),1995,(04):75-78.
    [28]李乐,周蕙兰,陈棋福.地球内核的地震学研究进展[J].地球物理学进展,2004,(02)238-239.
    [29]ZHENG Keyan. China-Australia cooperation study of hot dry rock[J].IGA News,2007, (69):13.
    [30]MIT-led Interdisciplinary Panel. The Future of Geothermal Energy——Impact of Enhanced Geothermal Systems(EGS)on the United States in the21st Century.Massachusetts:MIT,2008:372.
    [31]平顶山煤业集团公司.平顶山矿区深井热害与降温技术研究[R].2005.1.
    [32]煤炭部.关于高温矿井调查报告[R].北京:煤炭工业出版社,1985.
    [33]郭永义,吴世跃.矿井热工与空调[M].北京:煤炭工业出版社,1997.
    [34]何满潮,李春华,朱家玲等.中国中低焓地热工程技术[M].北京:科学出版社,2003.
    [35]The 16th International Conference of safety in Mines Research.1975.
    [36]C.W.Biccard Jeppe.The Estimation of Ventilation Air Temperatures in Deep Mines[J].Journal of the Chemical]Metallurgical and Mining society of South Africa. 1939.
    [37]Konig H.Mathematische Unteruchungen uherdas Grubenklima[M].Be rghau Arch ⅳ.1952.13.
    [38]天野勋三.关于坑道周边的岩盘温度(日文版)[J].日本矿业杂志.1952.68(744).
    [39]平松良雄等.关于气流冷却坑内的研究(日文版)[J].日本矿业杂志.1955.71(803)
    [40]内野健一等.湿润坑道的通气温度及湿度的变化(日文版)[J].日本矿业杂志.1982.98.
    [41]司千字.高温矿井的热环境处理.江苏煤炭[J],999,(3):23-26.
    [42]菲利普·安德鲁斯-斯皮德,王燕燕.中国能源政策的成效与挑战[J].国外理论动态,2005,(08).
    [43]AN Shcherban,etal:Aerodynamic and Thermal Conditions at the faces of Blind MineWorkings[M].The International conference on Safety in Mines Research.Oct.Varna Bulgaria.1977.
    [44]J.Mequaid.Possible Techniques for the Control of Heat and Humidity in Underground Workings[M].The 16thInternational Conference of Safety in Mines Research.1975
    [45]吴先瑞.德国矿井降温技术考察[J].江苏煤炭,1992,(4):8-11.
    [46]GOU K H, SHU B F, YANG W J. Advances and applications of gashydrate thermal energy storage technology. Proceedings of the 1stTrabzon Int[J]. Energy and Environment Symp.Turkey:KaradenizTechnology University Press,1996:381-386.
    [47]GOU K H, SHU B F, ZHANG Y. Transient behavior of energycharge-discharge and solid-liquid phase charge in mixed gas-hydrateformation[J]. Heat Transfer Science and Technology,1996:728-733.
    [48]P O Fanger.Thermai Comfort[M].New YorkrMcGraw—Hill company,1972.
    [49]Pan Yiqun etc. Ventilation for Acceptable Indoor Air Quality in Buildings[M].Final Technical Report,1999.
    [50]G Ga. Numerical Method for a Full Assessnent of Indoor Thermal Comfort [J].indoor Air, 1994,4(4):154-169.
    [51]C.J.Hall,候运广,贺国良等译.矿井通风工程[M].北京:煤炭工业出版社,1988.
    [52]王景刚,乔华,冯如彬.深井降温冰冷却系统的应用[J].暖通空调,2000,30(4):76-77.
    [53]乔华,王景刚,张子平.深井降温冰冷却系统融冰及技术经济分析研究[J].煤炭学报,2000,25(A):122-125.
    [54]杨胜强,王义江,于宝海等.辅助通风技术改善深部热环境的试验研究[J].采矿与安全工程学报,2006,23(2):173-176.
    [55]林瑞泰.热传导理论与方法[M].天津:天津大学出版社,1992.
    [56]赵翔,陈明译.实用地热学[M].北京:地质出版社,1982.
    [57]AH.舍尔巴尼等.矿井降温指南[M].北京:煤炭工业出版社,1982.
    [58]秦跃平.制冷降温掘进工作面的风温预测及需冷量计算[J].煤炭学报,1998,(6)
    [59]王补宣.工程传热传质学[M].北京:科学出版社,1982.
    [60]R.Nottrot and C.Sadee.Abkuhlung homogenen isotropen Gesteins um einezyl indrische streckedurch weterv on Konstanter Temperature.G luckauf Forschungshefte.1966.27.193.
    [61]岑衍强,侯祺棕.矿内热环境工程[M].武汉:武汉工业大学出版社,1989.
    [62]姚荣,张玉波.深井煤矿巷道隔热材料研制[J].材料科学与工程,2002,20(4):572-575.
    [63]李淑进,万小梅,赵铁军.保温隔热材料的新进展[J].粉煤灰综合利用,2001,(01):31-35.
    [64]赵墨堂,高玉芳,岳敬儒.巷道喷涂技术用于防漏风防治自然发火[J].河北煤炭,1998,(02)
    [65]徐盛.聚氨酯泡沫喷涂堵漏风技术在煤巷的应用[J].能源技术与管理,2006,(01).
    [66]李万捷,申迎华.煤矿井下用聚氨酯密闭材料的性能研究[J].煤炭转化,2003,(04).
    [67]姚荣,王凯.粉煤灰品质对深井巷道隔热材料性能影响[J].河南建材,2002(3):13-16.
    [68]李珠,张泽平,刘元珍等.玻化微珠保温砂浆技术规程[M].太原:山西科学技术出版社,2007.
    [69]朱盈豹.保温材料在建筑墙体节能中的应用[M].北京:中国建材工业出版社,2003.
    [70]李珠,卫丽,郝玉柱.职轻骨料混凝土剪力墙体系墙体保温技术分析[J].山西建筑,2006,32(3):5-6.
    [71]李珠,芦建军,张泽平等.超轻骨料免拆墙模复合剪力墙体系保温性能研究[J].太原理工大学学报,2006(A).
    [72]邱信立等.工程热力学[M].北京:中国建筑出版社,1995.
    [73]郭文兵,涂兴子等.深井煤矿巷道隔热材料研究[J].煤炭科学技术,2003,31(13):23-26.
    [74]约阿希姆·福斯,刘从孝.矿井气候[M].北京:煤炭工业出版社:1989.
    [75]张兴凯,英敏.火灾烟流与围岩间不稳定换热系数探讨[J].东北大学学报,1996,17(1):1-4.
    [76]杨德源等.深矿井风流热力计算讨论[J].煤矿安全,976,(,5).
    [77]杨德源.矿井风流热交换[J].煤矿安全,2003,34(B09):94-97.
    [78]周西华,单亚飞等.井巷围岩与风流的不稳定换热[J].辽宁工程技术大学学报,2002,21(3):264-266.
    [79]秦跃平,秦凤华等.用差分法解算巷道围岩与风流不稳定换热准数[J].湘潭矿业学院学报,1998,13(1):6-10.
    [80]杨德源,杨天鸿.矿井热环境及其控制[M].北京:冶金工业出版社,2009.
    [81]Jianliang Gao.Simulation of Thermal Environment Conditions in Heading Face with Forcing Auxiliary Ventilation[J].Shigen-to-Sozaiv.2002.118.
    [82]章熙民.传热学[M].北京:中国建筑工业出版社,1993.
    [83]杨世铭.传热学[M].北京:高等教育出版社,1992.
    [84]秦跃平等.回采工作面围岩散热的无因次分析[J].煤炭学报,1995:62-66.
    [85]Erc Um entKaraka. The control of highway tunnel ventilation using fuzzy logic [J].Engineering Applications of Artific ial Intelligence,2003, (16):717-721
    [86]周西华,单亚飞,王继仁.井巷围岩与风流的不稳定换热[J].辽宁工程技术大学学报(自然科学版)2006(21)3:13-20.
    [87]王秋旺.传热学习题解答[M].西安:西安交通大学出版社,2002.
    [88]Wala A M, Stoltz J R, Thompson E. Natural ventilation pressures in a deep salt mine-a case study[J].Mining Engineering,2002,54(3):37-42.
    [89]邱信立等.工程热力学[M].北京:中国建筑出版社,1995.
    [90]柳金海.绝热工程[M].北京:机械工业出版社,2008.
    [91]杨生茂.建筑保温吸声材料[M].北京:中国计划出版社,1999.
    [92]李珠,刘玉伟,王蕊等.有机保温节能材料的安全问题[J].中国房地信息,2009,(03)44-47.
    [93]袁艳平,程宝义,茅靳丰.浅埋工程围护结构传热简化模型误差的有限元分析[J].制冷空调与机械,2003(6):45.
    [94]牛福生,倪文,梁银英.粉煤灰泡沫塑料复合保温材料传热过程的数值模拟[J].北京科技大学学报,2009(31)1:103-106.
    [95]李珠,张泽平,刘元珍等.建筑节能的重要性及一项新技术[J].工程力学,2006,23141-149.
    [96]庞茂,张泽平,李珠.玻化微珠保温材料的开发研究[J]建材技术与应用,2007,(12)
    [97]王丽萍.玻化微珠保温砂浆施工技术经济分析[J].建筑经济,2007(S1):31-33.
    [98]李珠,张泽平.玻化微珠保温混凝土[P].中国专利:ZL200610012726.2,2008-02-6.
    [99]李珠,董瑞,杨卓强.节能燃气式玻化微珠膨胀膨化炉[P].中国专利:ZL200820076086.6,2008-1-13.
    [100]李珠,杨卓强,孙铭壕.新型绿色建筑—城市窑洞研究[J].山西建筑,2007,33(36):13-14.
    [101]栾军.现代试验设计优化方法[M].上海:上海交通大学出版社,1995.
    [102]王万忠.试验的设计和分析[M].北京:高等教育出版社,2004.
    [103]张文忠.概论论与数理统计[M].成都:西南交通大学出版社,2004.
    [104]周国强,肖文,李古暄.大体积混凝土配比设计与综合温差控制技术[J].城市道桥与防洪,2005,(04):14-17.
    [105]楚林.铝磷酸盐漂珠保温材料研究[J].湖北工业大学,2008.
    [106]Davidovits J,Davidovics M. Geopolymer room tempera-ture ceramic matrix for composites[J].Ceram Eng Sci.Proc,1988, (9):835-842.
    [107]Akimov Y K. Fields of Application of Aerogels Instruments and Experimental Techniques,2003,46(3):287-299.
    [108]金孝杰,张丽敏.加气砼导热系数测试方法的讨论[J].住宅科技,1996,(10):20-25.
    [109]贾力,方肇洪,钱兴华.高等传热学[M].北京:高等教育出版社,2005.
    [110]樊丽军.玻化微珠保温混凝土试验研究及其剪力墙结构抗震性能分析[D].太原:太原理工大学,2008.
    [111]陈明祥.弹塑性力学[M].北京:科学出版社,2007.
    [112]张爱军,朱珍德,邢福东.基于湿度应力场理论的膨胀岩弹塑性本构模型[J].岩土力学,2004,25(5):700-702.
    [113]楚林.铝磷酸盐漂珠保温材料研究[J].湖北工业大学,2008.
    [114]Davidovits J,Davidovics M. Geopolymer room tempera-ture ceramic matrix for composites[J].Ceram Eng Sci.Proc,1988, (9):835-842.
    [115]lobre J A. Mecanique des roches[M].Paris:Dunod,1967.
    [116]H Kastner. Statik des tunnel und stollenbauess[M].Berlin:Springer-Verlag,1962.
    [117]李咏偕,施泽华.塑性力学[M].北京:水利电力出版社,1987.
    [118]肖树芳,杨淑碧.岩体力学[M].北京:地质出版社,1993.
    [119]蒋明镜,沈珠江.关于考虑剪胀的线性软化柱形孔扩张问题[J].岩石力学与工程学报,1997,16(6):550-557.
    [120]张永强,俞茂宏.压力隧洞弹塑性分析的统一解[J].工程力学,1998,15(4):57-61.
    [121]刘长武,褚秀生.软岩巷道全断面锚注加固的力学原理与应用[J].工程力学,2000,17(5):131-138.
    [122]Y, Yaneda H, Tanabashi Y, et al. Theoretical estimation of loosening pressure on tunnels in soft rocks[J]. Tunneling and Underground Space Technology,2001,(16):99-105.
    [123]任青文,张宏朝.关于芬纳公式的修正[J].河海大学学报,2001,29(6):109-111
    [124]徐芝伦.弹性力学简明教程(第三版)[M].北京:高等教育出版社,2002.8.
    [125]徐栓强,俞茂宏,胡小荣.基于双剪统一强度理论的地下圆形纲量稳定性的研究[J].煤炭学报,2003,28(5):522-526.
    [126]范文,俞茂宏,孙萍等.硐室形变压力弹塑性分析的统一解[J].长安大学学报,2003,23(3):1=4.
    [127]潘岳,王志强.基于应变非线性软化的圆形硐室围岩弹塑性分析[J].岩石力学与工程学报,2005,24(6):915-920.
    [128]李国富,贾安立,单智勇.极软岩巷道锚注支护技术的研究与应用[J].岩石力学与工程学报,2002,21(A2):2574-2578.
    [129]Heggheim T, Madland M V, Risnes R, et al. A chemical induced enhanced weakening of chalk by seawater[J] Journal of Petroleum Science and Engineering,2004,46(3): 171-184.
    [130]Gattermann J,Wittke W,Erichsen C.Modelling water uptake in highly compacted bentonite in environmental sealing barriers[J].Clay Minerals,2001,36(3):435-446.
    [131]李国富,戴铁丁,吕芳礼等膨胀岩变形机理与注浆强化技术[J].采矿与安全工程学报,2007,24(4):444-448.
    [132]李国富,李珠,戴铁丁.膨胀岩力学性质试验与巷道支护参数的预测研究[J].工程力学,2010,27(2):96-101.
    [133]李德忠,李冰冰,檀远远.矿井深部巷道围岩变形浅析及控制[J].岩土力学,2009,(O1).
    [134]旺峰,王雷等.高温矿井风流热力参数测定及其变化规律和热湿源的分析[J].煤矿 现代化,2004,60:51-53.
    [135]孙树魁,张树光.埋深对井巷温度场分布影响的研究[J].辽宁工程技术大学学报,2003,22(3):301-302.
    [136]孙树魁,张树光等.热害矿井巷道温度场分布规律研究[J].中国地质灾害学报,2003,14(3):9-11.
    [137]谢强,陈永萍.秦岭隧道区域地温场特征分析和隧道围岩岩温预测[J].西南交通大学学报,2002,37(2):177-179.
    [138]程卫民,张庆友.基于神经元网络的巷道风流温湿度预测法[J].煤炭工程师,1998,3:35-36.
    [139]杨永亮,孔祥义,王君烨.软岩巷道支护技术研究与应用[J].煤炭技术,2009,(02)154-158.
    [140]李国富,李珠.软岩巷道注浆强化防水研究[J].太原理工大学学报,2009,40(2)148-151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700