智能复合结构损伤光修复与监测的相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着材料工程、应用力学、自动控制和仿生学等学科的相互交叉、渗透、融合和发展,智能复合结构已成为当今国内外材料与工程领域中最热门的研究课题之一。
     本文以实现智能复合结构的损伤光修复和健康状态监测为研究目的,将生物皮肤组织自愈伤的仿生学思想融入智能复合结构的自修复研究中,基于光修复技术,提出了智能复合结构的浅层损伤光修复方案和微弯光纤传感器的损伤光修复研究,并基于概率神经网络和数字信号处理技术,开展了智能复合结构的健康状态监测及应力分布的定位研究。
     全文主要研究内容和创新性工作如下:
     (1)研究受生物皮肤组织自愈伤的仿生学思想启发,以光修复剂作为物质补给,光能作为能量补给,提出了智能复合结构浅层损伤光修复的总体设计方案,阐明了浅层损伤光修复的机理和过程。根据光修复的设计要求和复合材料的透光性能,对光修复剂的各组份进行制备和研究。并提出了一种用于表征光固化过程的新方法,对光修复剂在材料内部的固化行为进行了模拟和研究。研究以单组份光固化粘结剂作为光修复剂,弥补了双组份粘接剂需要各组分有效接触才能发生反应的不足。
     (2)基于光修复剂载体——修复纤维的设计要求,提出了以光屏蔽剂和偶联剂制备修复纤维涂层的方法,通过研究修复纤维涂层的性能、修复纤维的破坏行为和修复纤维埋入对复合材料性能的影响,获得了埋入修复纤维的具体方式,为实现智能复合结构的浅层损伤光修复提供了保证。研究从光修复剂与基材的粘接效果和智能复合结构的浅层损伤光修复效果两个方面对光修复的性能进行了验证。
     (3)研究针对智能复合结构信息量和数据处理量大的特点,基于数字信号处理和光纤传感技术,提出了智能复合结构健康监测方案,并基于光修复技术,对微弯光纤传感器的损伤光修复进行了研究。研究以光电转换及放大电路、数字信号处理器、SCI-PC通信接口电路和自修复光纤微弯传感器搭建了健康监测的硬件平台;同时,采用DSP集成开发环境和监测主机作为健康监测的软件平台和基础。
     (4)基于概率神经网络的模式分类方法,对智能复合结构的应力分布进行了定位研究。研究表明,概率神经网络具有收敛性好、可根据实际需要添加或删除训练样本的特点,能大大提高定位速度,为智能复合结构损伤的前期预测,提供了一种有效的方法。
Along with the development and the mutual integration of many disciplines such as engineering materials, applied mechanics, automatic control and bionics, the research of intelligent combined structures has been one of the most active research subjects in the fields of engineering and materials nowadays at home and abroad.
     The research purpose is to realize the shallow structure damage self-repairing and health monitoring of intelligent combined structures. The study integrates the bionics thought of the scathing skin concrescence into the research of intelligent combined structures. Based on light-repairing technology, this paper puts forward a new conceptual design to realize the shallow structure damage self-repairing of intelligent combined structures,and the damage light-repairing research of the fiber optic microbend sensor. At the same time, the stress distribution of intelligent combined structures is researched deeply with the probabilistic neural network and the digital signal processing.
     The main research contents and innovations are as follows:
     (1) The study is illumined by the scathing skin concrescence. The research puts forward the light-cured repairing liquid as material supply and the light as energy supply. The total shallow structure damage light-repair scheme of the intelligent combined structure is designed for E-51epoxy composites. And the light-repairing mechanism and process are described in detail based on light-cured technology. The components of light-cured repairing liquid are chosen and prepared to satisfy the light-repairing requirements. Finally, according to the refractive index change of the light-cured material during the curing process, a novel optical fiber sensor for real-time monitoring curing process of the light-cured material is put forward. And the cured behavior of the light-cured repairing liquid in the material is studied deeply. In the process of design, the lack of double-component adhesive is made up by making use of the mono-component characteristics of light-cured adhesive.
     (2) According to the repairing fiber’s design require, the preparation method of the fibre coat is confirmed with light shielding agents and coupling agents. The fiber coat’s performance is studied. And the fiber damage behavior and the compatibility between fibers and composite are investigated. The feasibility of shallow structure damage light-repair is demonstrated. The shallow structure damage light-repair performance is validated from the two aspects of the adhesive property between light-repairing liquid and matrix and the light-repairing effect of intelligent combined structure.
     (3) The intelligent structure information and the workload of data processing are large. So the total intelligent structure health monitoring scheme is brought forward based on the digital signal processing technology and optical fiber sensor network. Based on light-repairing technology, the damage light-repairing of the fiber optic microbend sensor is studied. The hardware of the health monitoring is composed of the photoelectric conversion, the amplifying circuit, the digital signal processing built-in ADC and SCI modules, the SCI-PC communication interface circuit, and the fiber optic microbend sensor with self-repairing functions. The software of the health monitoring is supplied by the code composer studio of DSP and the observation host.
     (4) The stress distribution of intelligent combined structure is researched by the pattern classification of the probabilistic neural network. The research shows that probabilistic neural network can add or delete the training samples according to actual need and has good convergence. Especially, it can greatly improve the location speed. The research provides a viable method for the damage forecast of intelligent combined structure.
引文
[1]汤佩钊.复合材料及其应用技术.重庆:重庆大学出版社,1998:1~8.
    [2]吴人洁.复合材料.天津:天津大学出版社,2000:87,227~228.
    [3]薛克兴.复合材料结构的损伤与修补.北京:航空工业出版社,1992:5~7.
    [4]陈祥宝.复合材料结构损伤修理.北京:化学工业出版社,2001:8~10.
    [5]房岩,孙刚,丛茜,等.仿生材料学研究进展.农业机械学报,2006,37(11):163~167.
    [6]蒋宇平,秦嵘,朱林崎.智能结构的发展和应用.宇航材料工艺,1998,(4):15~18.
    [7]涂亚庆.光纤智能结构.北京:高等教育出版社,2005:2~5.
    [8]谢建宏,张为公,梁大开.智能材料结构的研究现状及未来发展.材料导报,2006,20(11): 6~10.
    [9] Garcia E.Smart structures and actuators:past,resent,and future,in industrial and commercial applications of smart structures technologies.Proc.SPIE,2002,4698:1.
    [10] Noor AK,Venneri SL,Paul DB,et al.New structures for new aerospace systems.Aerospace America,1997,35(11):22.
    [11] Noor AK, Paul DB,Hopkins MA,et al.Structures technology for future aerospace systems. Computers and Structures,2000,74(5):60.
    [12] Hill C.NASA turns to universities for research in space-age materials.Princeton University Office of Communications,2002,Sep.20.
    [13] Valis T,Tapaned E,Measures RM.Localized fiber optic srtain sensors embedded in composite materials.Proc.SPIE,1989,1170:495~504.
    [14] Schindler PM,May RG,Cluas RO.Location of impacts on composite pnaels by embedded fiber optic sensors and neural newtok processing.Proc.SPIE,1995,2444:481~489.
    [15] Leng JS,Asundi A.Real-time cure monitoring of smart composite materials using extrinsic Fabry-Perot interferometer and fiber Bragg grating sensors.Smart Mater.Struct,2002,11(2): 249-255.
    [16] Coombs S.Smart skins,information processing by lateral line flow sensors.Autonomous Robots,2001,11(3):255.
    [17] Naoyuki Tajima,Tateo Sakurai.Overview of the Japanese smart materials demonstrator program and structures system project.Adv Comp Mater,2004,13(1):3.
    [18] Yuji Matsuzaki.Smart structures research in Japan.Smart Mater.Struct,1997,6:R1~R10.
    [19] Culshaw B.ASSET:collaboration in Europe on smart structures.Smart Materials Bulletin, 2002,(3):7-10.
    [20]李川,张以谟.光纤智能结构的传感研究.飞通光电子,2001,1(4):193~197.
    [21] Qing XL,Amrita K.A hybrid piezoelectric/fiber optic diagnostic system for structural health monitoring.Smart Mater. Struct,2005,14(3):S98.
    [22] Tuzcu I,Meirovitch L.Control of flying flexible aircraft using control surfaces and dispersed piezoelectric actuators.Smart Mater. Struct,2006,15(4):893.
    [23] Wu DY,Meure S,Solomon D.Self-healing polymeric materials: a review of recent developments.Progress polymer science,2008,33:479~522.
    [24] White SR,Sottos NR,Geubelle PH,et al.Autonomic healing of polymer composites.Nature, 2001,409(2):794~797.
    [25] Blaiszik BJ,Sottos NR,White SR.Nanocapsules for self-healing materials.Composites science and technology,2008,68(3-4):978~985.
    [26] Keller MW,White SR,Sottos NR.Torsion fatigue response of self-healing poly (dimethylsiloxane) elastomers.Ploymer,2008,49(13-14):3136~3145.
    [27] Brown EN,White SR,Sottos NR.Microcapsule induced toughening in a self-healing polymer composite.Journal of Materials Science,2004,39(5):1703~1710.
    [28] Rule JD,Sottos NR,White SR.Effect of microcapsule size on the performance of self-healing polymers.Ploymer,2007,48(12):3520~3529.
    [29] Yang JL,Keller MW,Moore JS,et al.Microencapsulation of Isocyanates for Self-Healing Polymers.Macromolecules,2008,24(41):9650~9655.
    [30] Kessler MR,Scottos NR,White SR.Self-healing structural composite materials.Composites Part A-Applied Science and Manufacturing,2003,34(8):743~753.
    [31] Dry CM.The study of Self-repairing ability for glass micro-bend filling epoxy resin composites.Composites Structure,1996,35:263~269.
    [32] Dry CM.Self-repairing of composites.Proc.SPIE,2003,5055:376~379.
    [33] Dry CM.Factors affecting self-repairing of composites.Proc.SPIE,2002,4935:15~25.
    [34] Dry CM,Corsaw M.Time-release technique for corrosion prevention.Cement and Concrete Research,1998,28(8):1133~1140.
    [35] Chen XX,Dam MA,Ono K,et al.A kind of new composites be of self-healing ability. Science,2002,295:1698~1702.
    [36] Chen XX,Wudl F,Mal AK,et al.New thermally remendable highly cross-linked polymericmaterials.Macromolecules,2003,36:1802~1807.
    [37]刘先曙.世界智能材料的研究概况.材料导报,1993,(4):5.
    [38]繆钱江,方征平,蔡国平.自修复复合材料研究进展.材料科学与工程学报,2004,22(2): 301~303.
    [39]陶宝祺.强度自适应复合材料结构.航空学报,1994,15(3):280.
    [40]潘晓文,曾杰,梁大开.基于光纤智能夹层的损伤检测系统.压电与声光,2008,30(6):674~ 677.
    [41] Pan XW,Liang DK,Li DS.Optical fiber sensor layer embedded in smart composite material and structure.Smart Mater. Struct,2006,15(5):1231~1234.
    [42]杨明,梁大开,万鹏飞.智能材料结构损伤的分形神经网络诊断方法.材料科学与工程学报,2003,21(3):387~390.
    [43]黄尚廉,陈伟民.光纤应变传感器及其在结构健康监测中的应用.测控技术,2004, 23(5):1.
    [44]徐惠彬,仲伟虹,田莳.智能复合材料的发展现状及应用前景.航空精密制造技术,1997,33(4):11~14.
    [45]王科,张佐光.光纤微弯压力测试系统实时监测复合材料热压成型过程.复合材料学报,2005,22(2):67~70.
    [46]王晓明,沈亚鹏,尹林.机敏材料和机敏结构的力学分析.力学进展,1995,25(2):209~220.
    [47] Zhang BM,Wu ZJ,Wang DF,et al.Experimental study of monitoring and controlling of composite cure process in autoclave featured with fiber optic sensor.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2001,17(4):449~452.
    [48] Zhang BM,Wu ZJ,Wang DF,et al.Investigation of multifunctional fiber optic sensor in smart composite.OPTICAL ENGINEERING,2001,40(4):612~617.
    [49]赵晓鹏,周本濂,罗春荣.具有自修复行为的智能材料模型.材料研究学报,1996,10(1): 101~10.
    [50]杨红.空心光纤用于智能结构自诊断、自修复的研究,[博士学位论文].南京:南京航空航天大学,2001.
    [51]张雄,习志臻.仿生自愈合混凝土的研究进展.混凝土,2001,(3):10~13.
    [52]欧进萍,匡亚川.内置胶囊混凝土的裂缝自愈合行为分析和试验.固体力学学报,2005, 25(2):320~324.
    [53]乔吉超,胡小玲,管萍.自修复聚合物材料用微胶囊的研究进展.化工进展,2006,25(12): 1405~1410.
    [54]方雷,石光,李国明,等.环氧树脂微胶囊的制备研究.中国胶粘剂,2005,14(11):9~12.
    [55] Wang HP,Yuan YC,Rong MZ.Microencapsulation of styrene with melamine- formaldehyde resin.Colloid and polymer science,2009,287(9):1089~1097.
    [56] Guo LF,Zhao ZM,Gao MJ.Study on the compatibility between light-cured repair materials and composite materials by holographic Interferometry.Optical Engineering,2005,44(10): 105602.1~105602.3.
    [57] Yu XL,Zhao ZM,Ma JY.Damage detection of composite material intelligent structure with a new photoelectric system.J.Wuhan Univ.Tech-Mater.Sci.Ed,2006,(2):80~82.
    [58] Zhao ZM,Chen YM,Yu XL,et al.The new technology of composite materials repairing by light wave.J.Wuhan Univ.Tech-Mater.Sci.Ed,2004,19(2):41~43.
    [59]郭林峰,赵志敏,李伟,等.一种光纤智能结构的承载及损伤监测与分析.光电子·激光2008,19(7):928~930.
    [60]郭林峰,赵志敏,侯永飞,等.特种光纤参数检测及承载性能分析.浙江大学学报,2007, 41(10):1647~1649.
    [61]吴世康.高分子光化学导论.北京:科学出版社,2003:11~43.
    [62]宋心琦,周福添,刘剑波.光化学原理·技术·应用.北京:高等教育出版社,2005:3~15.
    [63]王德海,江棂.紫外光固化材料.北京:科学出版社,2003:1~272.
    [64]赵毅.激光快速成型中光敏树脂特性的实验研究.高分子材料科学与工程,2004,20(1): 184~187.
    [65]魏杰,金养智.光固化涂料.北京:化学工业出版社,2005:13~53,100~115.
    [66] KK.罗哈吉-莫克吉.光化学基础.北京:科学出版社,1991:2~3.
    [67]陈用烈.辐射固化材料及其应用.北京:化学工业出版社,2003:9~10,175~232.
    [68]张建成,王夺元.现代光化学.北京:化学工业出版社,2006:20.
    [69]李善君.高分子光化学原理及应用.上海:复旦大学出版社,1998:2~6,119.
    [70]曹怡,张建成.光化学技术.北京:化学工业出版社,2004:16~17.
    [71]科恩D O,德里斯科R L.有机光化学原理.北京:北京科学出版社,1989:9~53.
    [72] Lavinia M,Gheorghe I.The influence of temperature and photoinitiator concertration on photoinitiated polymerization of diacrylate monomer.Central European Science Journals, 2005,3(4):721~730.
    [73]郑耀臣,魏无际.光固化涂料用光引发剂的进展.涂料工业,2002,(1):30~34.
    [74] Li P,Zhao ZM,Hong XQ,et al.Quantum-yield computation for photo-initiators based on photometric analysis.Proc SPIE,2008,7268:1Y1~8.
    [75] Kevin DB,Mykhailo VB,Olga VP.Singlet oxygen quantum yield determination for a fluorine-based two-photon photosensitizer.Journal of Fluorescence,2006,16(1):111~117.
    [76] Zeus DP,Ineke DH,Johan L,et al.Triplet state spectra and dynamics of geometric isomers of carotenoids.Photosynthesis Research,2006,88(1):51~61.
    [77] Mendonca CR,Correa DS,Baldacchini T,et al.Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L.Appl.Phys.A,2008,90(4):633~636.
    [78] Miko UFK,Christian O,Manfred K.Loss of quantum yield in extremely low light.Planta, 2004,218(6):1046~1053.
    [79] Nikolaos SK,Chris WJ,Luc AM.Curing depth of (polyacid-modified) composite resins determined by scraping and a penetrometer.Dental Materials,2004,20(10):908 ~914.
    [80] Martin AA.Fiber Optic Polymer Cure Sensor.Journal of Lightwave Technology,1988, 6(10):1591~1594.
    [81] Cown DO.Elements of organic photochemistry.Beijing:Science Press,1989:52~56.
    [82] Stephen PN.Quantum yield calculations for strongly absorbing chromophores.J Fluoresc, 2006,16(4):483~485.
    [83]王乐新,赵志敏,姚红兵,等.血液的红外吸收光谱分析及应用研究.光谱学与光谱分析, 2002,22(6):980~982.
    [84]赵志敏,辛玉军,王乐新,等.人体血样吸收光谱的检测分析.光谱学与光谱分析,2008, 28(1):138~140.
    [85] Gonda V,Lou CJ,Hof CV,et al.Improvement of material characterization of curing polymers by image processong.Key Engineering Materials,2007,227:205~210.
    [86] Dewald JP,Ferracane JL.A comparison of four modes of evaluating depth of cure of light-activated composites.J Dent Res,1987,66(3):727~730.
    [87]常英,吉喆,刘彦军.环氧丙烯酸光敏树脂的研制及应用.中国胶粘剂,2005,14(2):37~40.
    [88]陈惠钊.粘度测量.北京:中国计量出版社,1994:155~161.
    [89]罗锻斌,佘卫龙,吴水珠.不同生色团对聚合物薄膜全光开关效应的影响.光学学报,2004, 24(8):1073~7078.
    [90]李鹏,赵志敏,洪小芹,等.实时监测光固化过程的光纤传感系统研究.光电子·激光,2009, 20(4):440~442.
    [91] Stewardson DA,Shortall AC,Harrington E,et al.Thermal changes and cure depths associated with a high intensity light activation unit.J Dent,2004,32(8):643~651.
    [92] Aravamudhan K,Rakowski D,Fan PL.Variation of depth of cure and intensity with distanceusing LED curing lights.Dent Mater,2006,22(11):988~994.
    [93] Koupis NS,Vercruysse CW,Marks LA,et al.Curing depth of (polyacid-modified) composite resins determined by scraping and a penetrometer.Dent Mater,2004,20(10):908~914.
    [94] Dewald JP,Ferracane JL.A comparison of four modes of evaluating depth of cure of light-activated composites.J Dent Res,1987,66(3):727~730.
    [95] Gonda V,Lou CJ,Hof CV,et al.Improvement of material characterization of curing polymer by image processong.Key Engineering Materials,2007,227:205~210.
    [96] Cho JD,Han ST,Hong JW.A novel situ relative-conductivity-based technique for monitoring the cure process of UV-curable polymers.Polymer Testing,2007,26(1):71~76.
    [97] Nelson EW,Carter TP,Scranton AB.Fluorescence monitoring of cationic photopolymeriza- tions: divinyl ether polymerizations photosensitized by anthracene derivatives. Macromolecules,1994,27(4):1013~1019.
    [98] Scherzer T,Muller S,Mehnert R,et al.In-line monitoring of the conversion in photopoly- merized acrylate coatings on polymer foil using NIR spectroscopy.Polymer,2005, 46(18):7072~7081.
    [99] Wang WP,Hwang TH,Shu EY,et al.Fiber optic bend sensor for in-process monitoring of polymeric composites.Applied Composite Materials,1997,4(3):187~195.
    [100] Alig I,Steeman PAM,Lellinger D,et al.Polymerization and network formation of UV- curable materials monitored by hyphenated real-time ultrasound reflectometry and near- infrared spectroscopy (RT-US/NIRS).Progress in organic coatings,2006,55(2):88~96.
    [101] Afronowitz MA.Fiber optic polymer cure sensor.Journal of Lightwave Technology,1988, 6(10):1591~1594.
    [102] Cusano A,Cutolo A,Giordano M,et al.Optoelectronic refractive index measurements: application to smart processing.IEEE Sensors Journal,2003,3(6):781~787.
    [103]胡行俊.抗氧剂与光稳定剂结构效应与作用机理.合成材料老化与应用,2007,36(2): 29~34.
    [104]胡福增,郑安呐,张群安.聚合物及其复合材料的表界面.北京:中国轻工业出版社,2001: 107~112.
    [105]罗权,王真智.硅烷偶联剂KH-550对IIR/炭黑N220/白炭黑纳米复合材料性能的影响.橡胶工业,2003,50(11):651~655.
    [106]魏杰,金养智.光固化涂料.北京:化学工业出版社,2005:277.
    [107]梅遂生.光电子技术.北京:国防工业出版社,1999:54~58.
    [108]康华光.电子技术.北京:高等教育业出版社,1999:278~280.
    [109]张雄伟,陈亮,徐光辉,等.DSP芯片的原理与开发应用.北京:电子工业出版社,2004:12~ 13.
    [110]胡广书.数字信号处理.北京:清华大学出版社,2003:616~617.
    [111]清源科技.DSP应用程序设计教程.北京:机械工业出版社,2003:5~6.
    [112]刘和平,严利平,张学锋,等.TMS320LF240x DSP结构、原理及应用.北京:北京航空航天大学出版社,2002:166~170.
    [113]刘和平,王维俊,江渝,等.TMS320LF240x DSP C语言开发应用.北京:北京航空航天大学出版社,2003:222~227.
    [114]王念旭.DSP基础与应用系统设计.北京:北京航空航天大学出版社,2001:126~128.
    [115]黄英哲,董胜源.TMS320C240原理与C语言控制应用实习.北京:中国水利水电出版社, 2003:228.
    [116] Li P,Zhao ZM,Hong XQ,et al.Study on the intelligent self-healing fiber optic microbend sensors based on the photocurable material.Proc SPIE,2008,7267:17~24.
    [117]彭启琮.DSP集成开发环境.北京:电子工业出版社,2004:1~3.
    [118]陈金鹰.DSP技术及应用.北京:机械工业出版社,2004:231~238.
    [119]虞和济,陈长征,张省,等.基于神经网络的智能诊断.北京:冶金工业出版社,2000:17~40.
    [120]姜绍飞.基于神经网络的结构优化与损伤检测.北京:科学出版社,2002:9,34~53.
    [121]陈素文,李国强.人工神经网络在结构损伤识别中的应用.振动、测试与诊断,2001,21(2): 116~125.
    [122]杨璐,么焕新,陈长征,等.用神经网络方法识别结构损伤的研究.沈阳工业大学学报,2002,24(2):163~165.
    [123] Lee DW,Hong SH,Cho SS,et al.A study on fatigue damage modeling using neural networks. Journal of Mechanical Science and Technology,2005,19(7):1393~1404.
    [124] Damodar M,Asish S.Danmage assessment in structure from changes in static parameter using neural networks.Sadhana,2004,29(3):315~327.
    [125] Zang C,Imregun M.Combined neural networks and reduced FRF techniques for slight damage detection using measured response data.Archive of applied mechanics, 2001,71(8): 525~536.
    [126]吴耀军,陶宝祺.小波变换特征提取的复合材料损伤检测.实验力学,1997,12(1):134~ 136.
    [127]张悦华.结构缺损的识别.吉林大学自然科学学报,1999,29(2):65~70.
    [128] Wang BS,Ni YQ,Ko JM.Influence of measurement errors on structural damage identification using artificial neural networks.Journal of Zhejiang University-Science A,2000, 1(3):291~299.
    [129] Specht DF.Probabilistic neural networks.Neural Networks,1990,3(1):109~118.
    [130] Lee JJ,Yun CB.Damage location for bridges using probabilistic neural networks.KSCE Journal of civil engineering,2007,11(2):111~120.
    [131] Ramakrishnan S,Ibrahiem MM.Comparative study between traditional and modified probabilistic neural networks.Telecommun Syst,2009,40:67~74.
    [132] Fabio A,Anna MC, Stefano R.Implementing probabilistic neural networks.Neural Comput & Applic,1997,5(3):152~159.
    [133]赵琛.用概率神经网络对混凝土拱坝进行损伤位置识别的研究,[硕士学位论文].浙江:浙江大学,2005.
    [134] Bülent B,Tülay Y.Active learning for probabilistic neural networks.Advances in Natural Computation,2005,36(10):110~118.
    [135]高虹.用概率神经网络对桩-承台进行损伤识别,[硕士学位论文].甘肃:兰州理工大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700