木材仿珍贵材染色计算机智能配色技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材颜色是决定消费者印象的重要因素之一,为了提高木制品的装饰作用和产品价值,实现人工林木材的高效利用,需要通过染色技术改良劣质材。木材染色中的一个重要环节就是配色,其对染色后木材的颜色质量至关重要。在确定工艺的情况下,将计算机智能配色的方法用于木材染色配色过程中,加快染料配方生成的速度,极大地提高工作效率,节约成本。
     本研究以东北常见针叶材(樟子松)和阔叶材(大青杨)为研究对象,在研究了其染色工艺的基础上,探讨了利用传统计算机配色模型和利用智能决策手段对木材染色颜色配方的预测问题。具体包括,通过测定樟子松和大青杨单板解剖构造与染色效果的相关指标,对其进行多元回归分析,确定了影响木材染色效果的主要解剖因子。其二,利用计算机配色技术中的三刺激值法,对仿珍贵材贵木材染料配方的调配方法进行了研究。其三,利用RBF神经网络建立了配方预测模型,并利用仿珍贵材的数据对模型进行验证,初步说明了智能算法对于木材染色配方预测的有效性,在此基础上,提出了种基于隐层节点改进的RBF神经网络模型,并将其运用到配方预测中。其四,根据已确定的影响木材染色效果的解剖特性,建立了基于模糊神经网络预测模型,其输入增加了解剖特性,并根据研究对象的特点,提出了一种改进的隶属度函数,建立了基于改进隶属度函数的模糊神经网络预测模型。其五,建立了基于动态模糊神经网络的木材染色配方预测模型。最后,将以上方法运用C语言实现,建立了木材染色配方预测平台,对于工业普及起到至关重要的作用。
     研究在以下方面取得结果:
     (1)分析了染色工艺各参数对樟子松的表面色差的影响,确定染色工艺为:染料浓度为1%,渗透剂JFC浓度为0.1%、纯碱浓度为2%.NaCl浓度为1.5%、温度为85℃、染色时间60min、固色时间40 min、浴比17:1。
     (2)确定了影响樟子松木材染色效果的主要解剖因子为:管胞比量、木射线比量、树脂道比量和晚材管胞长度等因子;影响大青杨木材染色效果的主要解剖因子为:木材的早材导管直径、早材纤维长度、导管比量、木纤维比量和木射线比量。
     (3)利用计算机配色技术中的三刺激值法,得到樟子松单板染珍贵材的染料浓度配比分别是,仿鸡翅木(早材):活性艳红X-3B为0.137%;活性黄X-R为0.229%;活性蓝X-R为0.042%。仿鸡翅木(晚材):活性艳红X-3B为0.176%;活性黄X-R为0.256%;活性蓝X-R为0.165%。仿花梨木(早材):活性艳红X-3B为0.117%;活性黄X-R为0.306%;活性蓝X-R为0.077%。仿花梨木(晚材):活性艳红X-3B为0.162%;活性黄X-R为0.459%;活性蓝X-R为0.062%;利用大青杨单板染珍贵材的染料浓度配比分别是,仿紫檀:活性艳红X-3B为0.146%;活性黄X-R为0.184%;活性蓝X-R为0.037%。仿黑酸枝:性艳红X-3B为0.361%:活性黄X-R为0.612%;活性蓝X-R为0.179%。仿黑胡桃:性艳红X-3B为0.269%;活性黄X-R为0.203%;活性蓝X-R为0.074%;仿柚木:性艳红X-3B为0.122%;活性黄X-R为0.417%;活性蓝X-R为0.088%。
     (4)利用RBF神经网络建立了配方预测模型,结果表明樟子松的两种颜色空间仿珍贵材效果比较,L*a*b*空间与CMY空间的收敛速度差别不大,而仿珍贵材得到的平均误差有较大差别,分别是0.98%和1.81%,综合考虑确定L*a*b*空间作为研究樟子松的研究对象;大青杨的两种颜色空间仿珍贵材效果比较,L*a*b*空间与CMY空间的收敛速度差别较大,分别是1666步和610步,选取CMY空间为研究大青杨的颜色空间对象。从仿珍贵材珍贵材的数据来看,输出数据不是十分理想,最大误差达到8.24%。
     (5)基于RBF模型的缺点,提出了一种基于隐层节点改进的RBF神经网络模型,此模型的改进有效的解决了原来模型熟练速度较慢的问题,樟子松分析模型189步可以收敛,大青杨模型137步就收敛了,速度几乎可以达到在线训练的标准。从模型精度看,大青杨模型精度有所改善,但改善不多,樟子松模型没什么改变,甚至有所下降,所以此模型的改进对于精度的改善不大。从仿珍贵材的数据来看,精度有所改善,最大误差为4.36%,说明此模型的范化能力还有待进一步改善。
     (6)建立了基于模糊神经网络配方预测模型,并根据研究对象的特点,提出了一种改进的隶属度函数,建立了基于改进隶属度函数的模糊神经网络预测模型,结果显示樟子松和大青杨模型的误差都有所改善,分别是0.68%和0.62%,结果理想,从模型对仿珍贵材的配方预测效果来看,误差也有了明显的改善,最大误差为1.90%,基本可以接受。
     (7)提出了利用动态模糊神经网络建立预测模型(D-FNN),并提出一种适合木材染色配方预测的D-FNN模型及学习算法,结果显示,模型运行速度较快,且参数设置较容易,不需要过多的去设置模糊条件,大大节省了时间。从模型对仿珍贵材的配方预测效果来看,误差也有了明显的改善,最大误差也只有1.25%,说明模型的范化能力有了较大的改善。
The wood color is one of the important factors deciding consumer impression. In order to improve the wood products'decoration function and product value, and realize the high efficient utilization of the plantation forest, the dyeing technique is needed to improve the plantation wood. An important link in the wood dyeing is color matching. The wood color after dyeing is the key for the product. The artificial color matching requires the personnel of high quality. It is a time-consuming task and is difficult to meet the modern industrial production requirement. In addition, it needs high cost, but it is of poor accuracy. With the increasing need of wood dyeing, after confirming the technique, the computer intelligent color measuring and matching method can be applied into wood dyeing and matching, so as to quicken the dye matching, significantly improve the work efficiency, and save costs.
     This research took the coniferous tree(Pinus sylvestris) and broadleaf tree(Populus ussuriensis) as the research objects. Based on the research of their dyeing technique, the research discussed that utilizing the traditional computer's color matching model and the intelligent decision making means to deal with the forecast of the wood dyeing color formula. The details included:through test the index related to the dyeing effect and anatomical structure of Pinus sylvestris and Populus ussuriensis, make analysis on the Multiple Regression and Correlation Analysis, to confirm the main anatomical factors affecting the wood dyeing effect. Second, utilize the computer color matching technique's tristimulus values to make research on the matching method of simulated precious wood dyeing formula. Third, utilize the RBF neutral network to establish the formula's forecast model and utilize the simulated precious wood data to verify the model, so as to indicate the effectiveness of the intelligent algorithm applied to forecast the wood dyeing formula. Based on it, an improved RBF neutral network model based on the hidden units will be put forward, and utilize it into the formula forecast. Fourth, according to the determined anatomical features affecting the wood dyeing effect, the input of a forecast model based on the fuzzy neutral network increases the anatomical features; according to the characteristics of the research object, an improved membership grade function is put forward; then, establish the fuzzy neutral network forecast model based on the improved membership grade function. Fifth, establish a wood dyeing formula forecast model based on the motion blur neutral network. At last, realize above methods by C language, and establish the wood dyeing formula forecast platform. It plays important role in the industrial popularity.
     The research maked following achievements:
     (1) Analyze the effect of dyeing technique's parameter on the surface color difference and dye absorbing rate; based on the dye concentration, dyeing temperature, dyeing time and bath ratio to analyze the variance of orthogonal test and get the good dyeing technique:dye concentration 1%, penetrating agent's JFC concentration 0.1%, sodium carbonate concentration 2%, NaCl concentration 1.5%, temperature 85℃, dyeing time 60min, fixation time 40 min and bath ratio 17:1.
     (2) Confirm the main anatomical factors affecting the dyeing effect of Pinus sylvestris: tracheid proportion, wood rays proportion, resin passage proportion, late wood tracheid length; the main anatomical factors affecting the dyeing effect of Populus ussuriensis are:early wood vessel diameter, early wood fiber length, vessel proportion, wood fiber proportion and wood rays proportion.
     (3) Utilize the computer color matching technique's tristimulus values to calculate the single board dyed simulated previous wood's dye concentration proportion of the Mongolia pine:Simulated Wenge (early wood):reactive brilliant red X-3B is 0.137%; reactive yellow X-R is 0.229%; reactive blue X-R为0.042%. Simulated Wenge (late wood):reactive brilliant redX-3B is 0.176%; reactive yellow X-R is 0.256%; reactive blue X-R is 0.165%. Simulated rose wood (early wood):reactive brilliant red X-3B is 0.117%; reactive yellow X-R is 0.306%; reactive blue X-R is 0.077%. Simulated rose wood (late wood):reactive brilliant red X-3B is 0.162%; reactive yellow X-R is 0.459%; reactive blue X-R is 0.062%; calculate the single board dyed simulated previous wood's dye concentration proportion of the Populus ussuriensis: simulated red sandalwood:reactive brilliant red X-3B is 0.146%; reactive yellow X-R is 0.184%; reactive blue X-R is 0.037%. Simulated cocobolo dalbergia retusa.reactive brilliant red X-3B is 0.361%; reactive yellow X-R is 0.612%; reactive blue X-R is 0.179%. Simulated black walnut:reactive brilliant red X-3B is 0.269%; reactive yellow X-R is 0.203%; reactive blue X-R is 0.074%; simulated teakwood:reactive brilliant red X-3B is 0.122%; reactive yellow X-R is 0.417%; reactive blue X-R is 0.088%。
     (4) Utilize RBF neutral network to establish the formula forecast model. The result shows that, comparing the two colors spatial simulation effect of Pinus sylvestris, there is a little difference in convergence rate between the L*a*b* space and CMY space. But the average error obtained from the simulation has big difference and is 0.98%and 1.81% respectively. Through the general consideration, it is confirmed to take L*a*b* space as the Pinus sylvestris's research object. Comparing the spatial simulation effect of Populus ussuriensis'two colors, there is a big difference in convergence rate between the L*a*b* space and CMY space,1666 steps and 610 steps respectively. Thus, select CMY space as the spatial object to make research on the color of Populus ussuriensis. Based on the simulated precious wood date, the output data is not very ideal. The maximum error reaches 8.24%.
     (5) Based on the shortcomings of RBF model, an improved RBF neutral network model based on the hidden units is put forward. The model improvement effectively solves the problems in slow proficiency. The analysis model of Pinus sylvestris can be converged 189 steps and the Populus ussuriensis model can be converged 137 steps. The speed almost reaches the online training standard. Based on the model precision, the Populus ussuriensis model is improved, but not significantly. The Mongolia pine model has no change and sometimes declines. Thus, the model's precision is not improved significantly. Based on the simulated precious wood data, the precision is improved and the maximum error is 4.36%. It shows that the normalization ability of the model needs further improvement.
     (6) Establish the formula forecast model based on the fuzzy neutral network, put forward an improved membership grade function according to the characteristics of the research object, and establish the formula forecast model based on fuzzy neutral network with the improved membership grade function. The result shows that the error of Mongolia pine and Populus ussuriensis model is improved,0.68%and 0.62%respectively. The result is ideal. Based on the model effect to forecast the simulated precious wood formula, the error has been improved significantly. The maximum error is 1.90%. Basically, it can be accepted.
     (7) Put forward a forecast model (D-FNN) established based on the motion fuzzy neutral network and put forward a D-FNN model and algorithm suitable for forecasting the wood dyeing formula. The result shows that the model operates fast and the parameter is easily to be set up. There is no need to set up too many fuzzy condition. In addition, the model saves a lot of time. Based on the model effect to forecast the simulated precious wood formula, the error has been improved significantly. The maximum error is 1.25%. It shows that the normalization ability of the model is improved significantly.
引文
[1]2009年第七次全国森林资源清查,国家林业局
    [2]鲍甫成.世界木材科学研究现状与我国的发展战略.世界林业研究[J],1992,4:7-12
    [3]乔永平.发展人工林:解决我国木材供需矛盾的长远战略选择[J].林业经济问题,2006,26(3):269-272
    [4]段新芳.木材颜色调控技术[M].北京:中国建材工业出版社.2002
    [5]孙利军等.木材变色的研究状况及展望.林业科技[J],2005,30(3)
    [6]李春生,王金林等.染色用计算机配色技术.木材工业[J],2006(6)
    [7]武林,于志明.计算机配色技术应用于木材染色初探[J].中国人造板2006(8)
    [8]陈勇平,王金林,李春生.木材单板染色用计算机测配色系统的设计与实现[J].林业机械与木工设备,2010(2)
    [9]郭明辉,于洪亮.木材性质对其染色效果影响的研究进展.世界林业研究[J],2009(6)
    [10]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993
    [11]陈守煌.工程模糊集理论与应用[M].北京:国防工业出版社,2008.11
    [12]Antonin S. Barrosa, Dougl N Rutlegeb. Principal component transform partial least squares[C]. a novel method to accelerate cross-validation in PLS regression Chemometrics and intelligent Laboratory Systems.2009,245-255
    [14]Cox R.M., Millary. Paint oil and Chem.1950[J],113(17):14-15
    [15]东洋染色工桨株式会社.东洋染色十年史[M].东洋染色工业出版社,1947
    [16]大川勇,齐藤博子.木材浸透染色法[J].工艺技术ミリズ.神奈川县工艺指导所,1964,8
    [17]陈玉和,陆仁书.木材染色进展.东北林业大学学报[J],2002,30(2):84-86
    [18]彭万喜,李凯夫,范智才.木材染色工艺研究的现状与发展[J].木材工业,2005,29(6):1-3
    [20]基太村洋子.木材浸透性染料の选定—酸性染料[J].木材工业(日),1975,10:21-23
    [24]樱川智史.木材の染色と光变色防止[J].木材工业(日),1996,3:102-106
    [25]陈云英.人造径切木制造中单板深度染色工艺的探讨[J].北京木材工业,2009,1:39-39
    [26]赵广杰.木材染料水溶液的渗透过程[J].东北林业大学学报,2003,5:54-59
    [27]陈玉和,陆仁书,方桂珍.木材水溶性染料的染色技术[J].木材工业,1999,13(2):27-30
    [28]陈玉和,陆仁书,郑睿贤,李宗然.泡桐单板染色工艺参数的遴选[J].东北林业大学学报,2002,30(1):10-12
    [29]陈玉和,陆仁书,郑睿贤.泡桐单板染色因素对色差的影响[J].木材工业,2009,14(4):10- 12
    [30]陈玉和,陆仁书,李宗然.泡桐单板染色因素对上染率的影响[J].木材工业,2000,14(1):8-11
    [31]陈玉和,陆仁书,杨洪义.泡桐木材仿红木染色工艺的研究[J].林产工业,2001,28(4):17-19
    [32]段新芳.人工林毛白杨木材材色测定及其株间变异[J].东北林业大学学报,2009,27(6):26-30
    [33]段新芳,孙芳利,朱玮,赵砺.壳聚糖处理对木材染色的助染效果及其机理的研究.林业科学[J],2003,39(6):126-130
    [34]陈云英.人造径切木制造中单板深度染色工艺的探讨[J].北京木材工业,2009,1:39-39
    [35]薛朝华,颜色科学与计算机测色配色实用技术[M],化学工业出版社,2003.08,p110-121
    [36]赵晨飞,计算机配色的理论与实践研究[D],西安理工大学硕士学位论文,2004.4,p2-3
    [37]陈遵田,杜泉,郭建军.针织品测色配色系统研究[J].四川工业学院学报,2008(4):21-22
    [38]王乐新,王喜昌.色差型权重因子计算机配色方法研究[J].黑龙江八一农垦大学学报,2007(2):18-19
    [39]王喜昌,周丰昆,王乐新等.全光谱色差型权重因子计算机配色方法研究[J].照明工程学报,2009(1):37-38
    [40]王喜昌,周丰昆, 禹秉熙等.灵敏波带法计算机配色[J].自然科学进展,2009(1):20-22
    [41]聂晴晴.贝叶斯改进BP神经网络在织物染色配色中的应用研究[D].青岛大学,2008
    [42]李莉.基于遗传算法的BP神经网络在织物染色配色中的应用研究[D].青岛大学,2008
    [42]W.S. McCulloch, W.Pitts. A logic calculus of the ideas imminent in neurons activity. Bulletin of Math. Bio[C],1943, No.5,115-133
    [43]D. O. Hebb. The Organization of Behavior. Wiley [M], Newyork,1949
    [44]F. Rosenblatt. Principles of Neuro dynamics[M]. New york, Spartan Book,1962
    [45]J. J. Hopfield. Neural networks and physical system with emergent collective computational abilities[M]. Proc. Acad. Sci.,USA,1982, Vol.79,2554-2558
    [46]G.E. Hinton, T.J.Sejnowski&D.H.Ackley.Boltzmann machine:constraint satisfaction networks that learn[M]. CMV-CS-84-119, Carneie-MellonUni,1984
    [47]D. H. Ackley, GE.Hinton&T.J.Sejnowski.Learning algorithm for boltzmann machines[J]. Cognitive Science,1988, Vol.9,147-169
    [48]D. E. Rumelhart&J. L. McClelland. Parallel Distributed Processing[M]. MIT Press,2009
    [49]焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1993
    [50]孙海蓉.模糊神经网络的研究及其应用[D].华北电力大学工学博士学位论文,2010
    [51]Zadeh L.A., Fuzzy Set, Information and Control [J],1965,8(3),338-358
    [52]Mamadani E. H., Application of fuzzy algorithms for simple dynamic plant[C], In Proc. IEEE,2010,121(12),1585-1588
    [53]王振雷.模糊神经网络理论及其在复杂系统中的应用研究:[D].沈阳:东北大学,2002年
    [54]]Kosko B. Fuzzy associative memories[M]. In:Kondel A(ed):Fuzzy System Reading. MA: Addison Weley,2011
    [55]Jang S R. ANFIS:Adaptive-network-based fuzzy inference systems[C]. IEEE Trans. On Systems, Man& Cybernetics,2009,23(3):665-685
    [56]Zhang Y.Q. and Kandel A. Compensatory neurofuzzy systems with fast learning algorithms[C]. IEEE Trans. On Neural Networks,2010,9(1):83-105
    [57]Zhang J. and Morri A. J. Recurrent Neuro-Fuzzy Networks for Nonlinear Process Modeling[C]. IEEE Trans. On Neural Networks,2009,10(2):313-326
    [58]Lee K M, Kwak D H, Kwang H L. Fuzzy Inference Neural Network for Fuzzy Model Tuning[C]. IEEE Trans. On Systems, Man, and Cybernetics, Part B:Cybernetics, 2010,26(4):637-645
    [59]鲍鸿,黄心汉,李锡雄.广义模糊推理与广义模糊RBF神经网络.控制与决策[J],2010,15(2):205-208
    [60]张昊,吴捷,郁滨.应用模糊神经网络进行负荷预测的研究[J].自动化学报,1999,25(1):60-67
    [61]武林、于志明.计算机配色技术应用于木材染色初探[J].中国人造板2006(8):23-24
    [62]武林、于志明.计算机配色技术在木材连缸染色中的应用研究[J].北京林业大学学报2007(1):34-35
    [63]李春生,王金林等.木材染色用计算机配色技术[J].木材工业2006(6):18-20
    [64]于洪亮,房敏.桦木单板漂白处理工艺的优选[J].东北林业大学学报,2006,34(6):10-12.
    [65]王小平,陆长德,康文科.色彩设计初步[M].西安:西北工业大学出版社,2007.
    [66]王辉,吕艳,张凯.适于木材种类识别颜色空间的研究[J].林业机械与木工设备,2009(37):10-12
    [67]王克奇,杨少春等.基于均匀颜色空间的木材分类研究[J].计算机工程与设计,2008(29)
    [68]薛朝华编著.颜色科学与计算机测色配色实用技术[M].北京:化学工业出版社,2004
    [69]刘浩学.CIE色度学系统在印刷中的应用[J].北京印刷学院学报,2009,5:28-29
    [70]张娜.棉纤维前处理及染色工艺的研究[D].西安:西安工程大学,2008
    [71]彭万喜,李凯夫等.木材染色工艺研究的现状与发展[J].木材工业,2005,19(6):1-3
    [72]曹龙.杨木单板制造科技木方及逆向设计仿珍贵材科技木花纹[D].东北林业大学:2009
    [73]陆文达主编.木材改性工艺学[M].哈尔滨:东北林业大学出版社,2003
    [74]段新芳.木材颜色调控技术[M],北京:中国建材工业出版社,2007
    [75]鲍甫成段新芳。人工林杉木木材解剖构造与染色效果相关性的研究[J].林业科学,2000年第36卷第3期。
    [76]崔永志,刘镇波.木材学实验指导书[M].东北林业大学,2005
    [77]卢纹岱著SPSS for Windows统计分析[M].电子工业出版社,北京:2000
    [78]唐守正编著.多元统计分析方法[M].北京:中国林业出版社,1987
    [79]H.R.Kang. Kubelka-Munk Modeling of ink jet ink mixing [J].Imaging Technology, 2010(17):76-83.
    [80]何国兴.颜色科学[M].上海:东华大学出版社,2004:140-180
    [81]司学锋,张秉森.基于聚类的BP网络在织物染色配色中的应用[J].现代计算机(专业版),2008(11):4-7
    [82]王莹,张秉森.基于OWO-HWO算法MLP网络在织物染色配色中的应用[J].系统仿珍贵材技术,2007,3(2):106-109
    [83]张秉森,王莹.遗传RBF神经网络在织物染色配色中的应用[J].青岛大学学报江程技术版),2007,22(4):55-59
    [84]王洪元,史国栋.人工神经网络技术及其应用[M].北京:中国石化出版社,2002
    [85]S.Haykin, NeuralNetworks:Aeomprehensive foundation[M].New York:Macmillan, 2010
    [86]Shiro Usui, Yoshifumi Arai, Shigeki Nakauehi.Neural networks for device-independent digital colorimaging[J].Information Sciences,2009,123:115-125.
    [87]Leong Hua Tey, Ping Lam So and Yun Chung Chu. Adaptive neural network control of active filters[J].Eleetric power Systems Research,2008, 1(74):37-56
    [88]Changhua Yu, Michael T. Manry.A modified hidden weight optimization algorithm for feed-forward neural networks [J].New York:IEEE Press,2010, (3-6)(2):1034-1038
    [89]Changhua Yu, Michael T. Manry.An effient hidden layer training method for the multilayerpercetron[J].Neurocomputing,2010,525-535
    [90]刘永,张立毅.BP和RBF神经网络的实现及其性能比较[J].电子测量技术,2007(4):29-33
    [91]M.J.Powell. Radial basis function for multi-variable interpolation:Are view in Algorithms for approximation [M].J.C. Mason and M. G.Cox, Editors., Oxford, U.K:Oxford University Press,2007,143-168
    [92]Broomhead, D., D. lowe. Multi-variable function interpolation and adaptive networks[J]. Comlex Systems,2008(2):321-355
    [93]J.Moody, C.J. Darken. Fast learning in networks of locally-tuned processing Units[J].Neural Computation.2009(1):281-294
    [94]I.R.Jaekon. Convergence properties of radial basis function [J]. Constructive approximation,2008(4):243-264
    [95]Orr,MarkJ.L.Introduction to radial basis function networks[J].IEEE Transactions on Neural Networks,2006,5(6):865-872
    [96]胡笃庆,温熙森.神经网络学习算法的过拟合问题及解决方法[J].振动测试与诊断2002(4):28-30
    [97]Simon Haykin. Neural Networks:A Comprehensive Foundation [M].2nd Edition, prentice Hall,2008.
    [98]史忠植.知识发现[M].北京:清华大学出版社,2009
    [99]L.A. Zadeh. Outline of a new approach to the analysis of complex systems and decision processes[J].IEEE Transactions on Systems, Man and Cybernetics,2003,3(1):28-44
    [100]王平,张亮,陈星莺.基于模糊聚类与RBF网络的短期负荷预测[J].继电器,2006(5):64-67
    [101]Heeht-Nielsen, Pruitt W O, Aboukhaled A, et al. Crop water requirements[M]. FAO, Irrigation and Drainage Paper No.24, (rev.) FAO, Rome, Italy,2009
    [102]Y.Li, A.B.RadandW.Peng, An Enhaneed Training Algorithm for Multilayer Neural Networks Based on Reference out put of HiddenLayer[J],Neural Computing&Apvlieation,2010,8:218-225
    [103]雷铁安,昊作伟,杨周妮,基于改进算法的多层神经网络的结构优化设计[J],大连铁道学院学报,2004,25(3):49-52。
    [104]高隽.人工神经网络原理及仿珍贵材实例[M].北京:机械工业出版社,2003
    [105]杨英一种基于模糊逻辑和神经网络的短期负荷预测的方法明[J].四川电力技术.2006.29(4):7-9.25
    [106]Fu KS. Learning Control Systems and Intelligent Control System:An Intersection of Artificial Intelligence and Automatic Control[C]. IEEE Trans. onAutomatic Control, 2010, AC-16(1):70-72
    [107]鲍鸿,黄心汉,李锡雄.广义模糊推理与广义模糊RBF神经网络[J].控制与决策,2000,15(2):205-208
    [108]Cao S G,Rees N W.Analysis and design for a class of complex control systems Part I:Fuzzy modeling and identification. Automatica[J],2009,33(11):1017-1028
    [109]董聪,郭晓华.智能计算中的热点问题[J].计算机科学,2009,26(4:)5-9
    [110]刘一星,于海鹏,刘迎涛等.中国东北地区木材性质与用途手册[M].北京:化学工业出版社,2004
    [111]Antonin S. Barrosa, Dougl N Rutlegeb. Principal component transform partial least squares [C]. A novel method to accelerate cross-validation in PLS regression Chemometrics and intelligent Laboratory Systems,2009,245-255
    [112]Svante Wold, lennart Erikson. PLS-regression:a basic tool of chemometrics[C]. Chemometrics and Intelligent Laboratory systems 2006,58:109-130
    [113]P. Geladi. Wold, Herman. The Father of PLS. Chemometrics And Intelligent[C]. Laboratory Systems,2009,15(1):7-8
    [114]Baglio S, Graziani S, Pitrone N. Intelligent Measuring Systems for Distance Estimation Based on Fuzzy Data Fusion. Proc[C]. IMEKO IMTC'96,2006:1286-1288

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700