小麦F_1代杂交种籽粒淀粉糊化特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对由5个亲本组成的完全双列杂交试验,利用RVA快速粘度测定技术,对小麦杂交种籽粒的淀粉糊化特性进行了相关及杂种优势分析研究,结果表明,亲本峰值粘度、低谷粘度、最终粘度、回冷值、峰值时间5项之间呈高度相关。稀懈值与峰值粘度、低谷粘度、最终粘度、回冷值、峰值时间之间有一定的负相关。F1代杂交种峰值粘度、低谷粘度、最终粘度之间呈高度相关。峰值粘度与回冷值之间相关系数呈高度相关。峰值时间与稀懈值之间有一定的负相关。
    淀粉糊化特性在杂交种与亲本的相关性方面正交与反交效应一致。
    杂交种峰值粘度与母本有一定的相关性。峰值粘度受母本的影响较大。以淄麦12号作亲本时其杂交种峰值粘度受母本的影响要大于父本,且倾向于低亲。以鲁麦14号为亲本的杂交种,其峰值粘度以母本效应为主。以PH85-16为亲本的杂交种峰值粘度主要受父本的影响,与母本无关。以924142为亲本的杂交种峰值粘度主要受父本的影响,且呈反向趋势。以山农2618为亲本的杂交种峰值粘度受双亲影响,母本的影响稍大于父本,且明显倾向于低亲。
    低谷粘度正交与中亲值的相关性最大,与母本也有一定的相关性,同时反交与父本的相关性大于母本,低谷粘度受中亲值的影响较大,受母本的影响大于父本。以淄麦12号为亲本的杂交种低谷粘度既受母本的影响也受父本的影响,且有倾向于低亲的趋势。以鲁麦14号为亲本的杂交种低谷粘度主要受母本的影响。以PH85-16为亲本的杂交种低谷粘度既受母本的影响,也受父本的影响,母本的影响大于父本。以924142为亲本的杂交种低谷粘度主要受父本的影响,且倾向于低亲。以山农2618为亲本的杂交种低谷粘度主要受父本的影响,且倾向于低亲。
     最终粘度正交与母本的相关性最大,与高亲、中亲、低亲相关性渐弱。反交与父本的相关性,与高亲、中亲、低亲的相关性和正交的相应相关系数相等,最终粘度受母本的影响为主。以淄麦12号为亲本的杂交种最终粘度受双方亲本的影响均明显。以鲁麦14号为亲本的杂交种最终粘度主要受母本的影响,同时,当其作母本时,其杂交种最终粘度主要受高亲的影响,当其作父本时,主要受低亲的影响。以PH85-16为亲本的杂交种最终粘度主要受另一亲本的影响。以924142为亲本的杂交种最终粘度与单一亲本的相关性较弱。以山农2618为亲本的杂交种最终粘度主要受另一亲本的影响,且明显倾向于低亲。
     各组合杂交种峰值时间依次与中亲值的相关性最大,杂交种峰值时间主要受双亲中亲值的影响,且倾向于低亲,受母本的影响最小。以淄麦12号作亲本的杂交种峰值时间主要受另一亲本的影响,且倾向于低亲。以鲁麦14号为亲本的杂交种峰值时间受母本的影响较大。以PH85-16为亲本的杂交种峰值时间受父本的影响较大。以924142为亲本的杂交种峰值时间受父本的影响较大。当其作母本时倾向于低亲,当其作父本时受高亲的影响较大。以山农2618为亲本的杂交种峰值时间受另一亲本的影响较大。
    杂交种糊化温度与高亲、父本的相关性最高,杂交种糊化温度受高亲、父本
    
    的影响最大。以淄麦12号为亲本的杂交种糊化温度主要受低亲的影响。以鲁麦14号为亲本的杂交种糊化温度受母本的影响较大。当作母本时,倾向于低亲,当父本时倾向于高亲。以PH85-16为亲本的杂交种糊化温度受另一亲本的影响较大。以924142为亲本的杂交种糊化温度也主要受另一亲本的影响较大,且明显倾向于高亲。以山农2618为亲本的杂交种糊化温度受父本的影响大些。
    杂交种回冷值与母本、高亲的相关性最高,回冷值受母本的影响较大,且倾向于高亲 。以淄麦12号和鲁麦14号为亲本的杂交种回冷值受母本的影响较大,且明显倾向于高亲。以PH85-16为亲本的杂交种回冷值受双亲的共同影响以山农2618为亲本的杂交种回冷值受另一亲本的影响较大,且倾向于低亲。
    杂交种稀懈值与亲本的相关性均不明显。稀懈值亲本与杂交种间变化较大。以淄麦12号为亲本的杂交种稀懈值受另一亲本的影响大些。以鲁麦14号和924142为亲本的杂交种稀懈值受母本的影响较大。以PH85-16为亲本的杂交种稀懈值受父本的影响较大。当其为母本时,杂交种稀懈值倾向于低亲。以山农2618为亲本的杂交种稀懈值受母本的影响较大。且倾向于高亲。
    RVA测验值的杂交种优势中,中亲平均优势不明显。而峰值粘度、低谷粘度、最终粘度、回冷值有较明显的超低亲优势。糊化温度也有弱的超低亲优势。峰值时间与稀懈值的超低亲优势不明显。
This study is based on the hybrid of 5 parents, Zimai 12, Lumai 14, 924142, PH85-16 and Sn2618. The result show the analysis about correlations and hybrid vigor of wheat hybrid starch gelatinisation by RVA. This study show that there are high correlations among the PV , TV, FV, SB and PT of the 5 parents. There are a few minus correlations of BD to PV, TV, FV and PT. There are high correlations among PT, TV, FV of F1. The PV and SB of F1 is high correlated. There is minus correlaton between PV and BD of F1.
    There is correlation between orthogonal hybrid and its femal parent on PV. The reciprocal hybrid and its male parent is the same. The PV of F1 is mainly influenced by its male parent when Zimai 12 is one of its parents, and the PV is inclined to the low parent. As Lumai 14 is the parent, the PV is mainly influenced by the female parent. As PH 85-16 or 924142 is the parent, the PV is mainly influenced by the male parent. When the parent is Sn2618, the PV is mainly influenced by the female parent, and is inclined to the low parent.
    The correlation of TV between orthogonal hybrid and the AP (average of parents) is high. The TV of F1 is mainly influenced by the AP. As Zimai 12 is one of the parents, the TV of F1 is influenced by their two parents, and the TV of F1 is inclined to the low parent. As Lumai 14 or PH 85-16 is the parent, the TV of F1 is influenced mainly by the female parent. When the parent is 924142, the TV of F1 is mainly influenced by the male parent ,and is inclined to the low parent. When Sn2618 is the parent, it is the same.
    The correlation of FV between orthogonal hybrid and the female parent is the highest one. When Zimai 12 is one of the parents, the FV of F1 is influenced by two parents. When the parent is Lumai 14, it is mainly influenced by the female parent. As PH 85-16 or Sn2618 is one of the parents, the TV of F1 is mainly influenced by the other one.
    The highest correlation of PT is the correlation between F1 and AP. That is , the PT of F1 is main ly influenced by AP, and it is inclined to the low parent. When Zimai 12 or Sn2618 is one of the parent, it is mainly influenced by the female parent. When PH85-16 is the parent, it is mainly influenced by the male parent.
    The correlation of PTem between F1 and high parent and male parent is high. When
    
    Zimai 12 is one of the parents, the PTem of F1 is mainly influenced by the low parent. If Lumai 14 is the parent, it is mainly influenced by the male parent. When the parent is PH85-16 or 924142, it is mainly influenced by the other parent, and when the parent is 924142, it is inclined to the high parent. When the parent is Sn2618, it is mainly influenced by the male parent.
    The correlation of SB between F1 and female parent and high parent is high, and the SB of F1 is inclined to the high parent. When PH85-16 is one of their parents, the SB of F1 inclined to the low parent. If Sn2618 is the parent, it is mainly influenced by the other parent, and is inclined to the low parent.
    The correlation of BD between F1 and their parents is low, the BD if F1 there is a random show. If Zimai 12 is one of the parents, the BD of F1 is mainly influenced by the other parent. When the parent is Lumai 14 or 924142, it is mainly influenced by male parent. As PH85-16 is the parent, it is mainly influenced by male parent, and it is inclined to the high parent.
    Among the hybrid vigor of RVA, there is no evident one. But the hybrid vigor of PV, TV, FV, SB to low parents are clear. The hybrid vigor of PTem is low.
引文
1 赵寅槐,邹明烈,大拇指矮Rht3基因在杂种小麦选育中的应用,麦类文摘,1993,13(4):10
    2 余国东,谭昌华,温光型核不育小麦选育成功,四川农业科技,1992(6):11
    3 郭嘉诚,四川两系法小麦杂种优势利用研究获得重大突破,种子,1993(3):60
    4 张海清,何觉民,刘雄伦,两系杂交小麦研究进展,小麦育种通讯,1994(1):4~6
    5 孙兰珍,高庆荣,新型小麦雄性不育系K、V型初步研究,山东农业大学学报,1992(3):1~9
    6 赵寅槐,邹明烈,王书文等,小麦V型和K型不育系的开发利用研究,小麦育种通讯,1994(1):9~10
    7 徐乃瑜,刘江东,光周期敏感细胞质雄性不育小麦的初步研究,小麦育种通讯,1994(1):11~13
    8 刘福昌,杂交小麦组合选育存在的问题及改进意见,河北农作物研究,1994(4):36~37
    9 赵凤梧,李慧敏,利用化学杀雄剂EK和ES诱导普通小麦雄性不育,华北农学报,1993(8)(增刊):16~20
    10 何蓓如,刘曙东,半显性矮秆K型小麦雄性不育系的选育,西北农业学报,1992(3):15~18
    11 陈希勇,刘福昌,化杀杂交小麦研究与应用,小麦育种通讯,1994(1):7~8
    12 柴守诚,刘大钧,普通小麦雄性不育及杂种小麦研究简评,江苏农业科学,1995(1):18~22
    13 赵凤梧,李慧敏,四种小麦新型化杀剂杀雄效果研究,河北农业科学,1992(3):1~9
    14 张爱民,Sc2053诱导小麦雄性不育研究初报,北京农业科学,1992(1):32~33
    15 吕善勇,我国小麦不育系开发利用研究进展,科技信息,1992(2):9~10
    16 陈庆富,张庆勤,黔型小麦雄性不育系及恢复系的改良,麦类文摘,1993,13(4):10
    17 何觉民,戴君惕,两系杂交小麦研究,湖南农业科学,1992(15):1~3
    18 中国农业百科全书编辑部,《中国农业百科全书》农作物卷,农业出版社,1991
    19 高信曾,《植物学》,高等教育出版社,1984
    20 谢学民等,小麦杂交种优势的研究和利用,上海科技出版社,1981。
    21 姚大年,李保云,朱金宝等,小麦品质主要淀粉性状及面条品质预测指标的研究[J],中国农业科学,1999,32(6):84~88
    22 刘广田,我国北方几个主要冬小麦品种品质性状的研究,北京农业科学,1985(1):13~17
    姚大年,刘广田,小麦品种面粉粘度性状与面条品质的相关性研究,中国农业
    
    23 大学学报,1997(3):52~68
    24 徐风,我国面包小麦的育种和开发问题,作物杂志,1994(3):10~11
    25 黄东印,林作楫,冬小麦品质性状与面条品质性状关系的初步研究,华北农学报,1990,5(1):40~45
    26 吴卫,郑有良等,利用SSR标记分析小麦强优势组合亲本遗传差异,西南农业学报,2002,15(3),1~6
    27 杨春玲,郭瑞林等,我国小麦杂种优势利用现状及存在的问题,河南农业科学,2002(9):14~15
    28 李万昌,刘曙东,强优势杂交小麦产量结构优势间关系的研究,麦类作物学报,2002,22(3):1~6
    29 阮仁武,傅大雄等,小麦主要产量性状的杂种优势和遗传分析,西南农业大学学报,2002,24(2):141~145
    30 倪中福,孙其信等,小麦种间与品种间杂交种及其亲本之间基因差异表达比较研究,农业生物技术学报,2001,9(4):366~370
    31 李卫华,莫庸等,不同蛋白含量小麦品种籽粒蛋白质及其组分含量的配合力和杂种优势研究,作物学报,2001,27(6):1007~1012
    32 姚大年,朱金宝,小麦品种面粉粘度性状及其与面条品质的相关性研究,中国农业科学,1997,2(3):52~68
    33 王立秋,小麦面食蒸煮品质研究动态.国外农学——麦类作物,1994(6):45~47
    34 林作楫主编,食品加工与小麦品质改良,中国农业出版社,1994
    35 佐藤晓子,小麦蛋白质含量稳定化技术的开发,张耀宏译,国外农学——麦类作物,1992(2):6~7
    36 王瑞,李硕碧,王光瑞等,面包、面条、馒头质量与小麦面粉主要品质参数的相关分析,国外农学——麦类作物,1995(3):35~37
    37 李锐,黄超武,水稻单粒直链淀粉含量的测定方法,广东农业科学,1988(5):7~9
    38 Hou等,小麦基因型和环境对馒头品质的影响,国外农学-麦类作物,1992(4):21~22
    39 张爱民,黄铁城,小麦杂种优势利用途径与研究进展,作物杂志,1997(5):16~20
    40 Pterson等,基因型和环境对硬质红粒冬小麦品质性状的影响,国外农学-麦类作物,1992(4):10~14
    41 金善宝主编,中国小麦学[M],中国农业出版社,1996
    42 李志西,魏益民,张建国等,小麦蛋白质组分与面团特性和烘焙品质关系的研究,中国粮油学报,1998,13(3):1~5
    43 晏月明,茹岩岩,余建中等,中国小麦品种醇溶蛋白Gli-1和Gli-2编码位点等位基因组成分析,农业生物技术学报,2000,8(1):23~27
    晏月明,刘广田,Sprodanvic等,小麦醇溶蛋白的遗传与品质改良,麦类作物,
    
    44 1998,18(1):1~4.
    45 安室喜正(日),伊尚武译,小麦种子蛋白质的遗传改良,国外农学—麦类作物,1991(1):1~4
    46 魏益民,李志西,王立宏,小麦籽粒蛋白质品质的研究,西北农业大学学报,1992,20(4):18~23
    47 魏益民,张国权,欧阳韶辉等,小麦粉品质和制面工艺对面条品质的影响研究,中国粮油学报,1998,13(3):1~5
    48 王宪泽,张玲,李菡,小麦品质性状与面条煮熟品质的关系,麦类作物,1997,17(4):17~19
    49 方辉,面粉蒸煮品质的研究,粮食与饲料工业,1989(4):24~26
    50 朱玉贤,李毅编著,现代分子生物学,北京:高等教育出版社,1998
    51 丁勇,吴乃虎,陈春霞等著,基因工程与农业,科学技术文献出版社,1994
    52 陈梁鸿,王新望,张晓东等,小麦编码高分子量谷蛋白亚基基因的转化,作物学报,1997,25(4):437~440
    53 曾君祉,王东江,吴有强等,用花粉管途径获得小麦转基因植株,中国科学(B辑),1993,23(3):256~262
    54 王东江,吴有强,曾君祉等,小麦转基因植株的后代鉴定及遗传学分析,中国农业科学,1995,28(2):90~92
    55 华志华,黄大年,转基因植物中外源基因的遗传学行为,植物学报,1999,41(1):1—5
    56 师俊玲,魏益民,蛋白质与小麦品质关系分析[J].粮食与油脂,1999(4):3~7
    57 郭殿京,张丽明,孙勇如,禾谷类作物基因工程新进展,农业生物技术学报,1997,5(4):360~365
    58 AndersonOD, AbrahamFA, TamA. Conservation in wheat high-molecular-weight gluten in genepromoter sequences: comparisons among loci among alleles of the Glu-B1-1locus[J].Theor.Appl.Genet.,1998(96):568~576
    59 AltpeterF, VasilV, Srivastavav, etal. Integration and expression of the high-molecular-weight glutenin subunit1 Ax1 genein to wheat[J].Nature Boitechnology, 1996(14):1155~1159
    60 BietzJA, Genetic and biochemical studies of nonenzymatic endosperm proteins[J],Wheat and wheat improvement-Agronomy Monograph,1987(2):215~241
    61 BateyIL, CurtinBM, MooreSA. Optimization of rapid-visco analyzer test conditions for predicting Asian noodle quality[J]. CerealChem.1997(74):497~501
    62 BlechlAE, AndersonOD. Expression of anovel high-molucular-weight glutenin subunit gene in transgenic wheat[J].Nature Biotechnology, 1996(14):875~879
    63 BarroF, RookeL, FekesF, etal. Transformation of wheat with high molecular weight subunit genes results in improved functional properties[J]. Nature Biotechnology, 1997(15):1295~1299
    
    
    64 CrosbieGB. The relationship between starch swelling properties, paste viscosity and boiled noodle quality in wheat flour[J]. Journal of Cereal Science,1991(13):145-150
    65 CrosbieGB, RossAS, MorsT,etal. Starch and protein quality requirements of Japanese alkaline noodle(Ramen)[J]. Cereal Chem.1999,76(3):328~334
    66 CrosbieGB, MiskellyD, DewanT. Wheat quality for Japanese flour milling and noodle industries[J]. W.A. Journal of Agriculture,1990(31):83~94
    67 CrosbieGB. Wheat quality trends in Western Australia.Proc. 39th Cereal Chemistry Conference,Perth.1989:59~65(RACl:Parkville,Vic.)
    68 FinneyKF, Barmore MA. Loafvolume and protein content of hard winter and spring wheats[J].Cereal Chemistry,1948,25:291~312
    69 EndoS, KaribeS, OkadaK, etal. Factors affecting gelatinization properties of wheat starch. Nippon ShokuhinKo-gyoGakkaishi.1988(35):7~14
    70 GuptaRB, Allelic variation at glutenin subunit and gliadinloci,Glu-1,Glu-3andGli-1 of common wheats. Its additive and interaction effects on dough properties[J].J.CerealSci.,1994(19):9~17
    71 Hiro Nakamura,Identification of alleles for complex geneloci Glu-A1,Glu-B1, and Glu-D1,wichcode for high molecular weight subunits of glutenin in Japanese hexaploid wheat varieties[J],J.Agrio.Food Chem,1999(47):5273~5277
    72 KolsterP, KrechtingCF, VanGelderWMJ, Quantification of individual high Molecular Weight subunits of wheat glutenin SDS-PAGE and scanning densitometry[J], Journal of CerealScience,1991(15):49~61
    73 KonikCM, MossR. Relationship between Japanese Noodle Quality and RVAPaste Viscosity[M]. 42nd Royal Austrilian Chem. Institute Cereal Chemistry Conf., Christchurch, NewZealand RACIParkville, Austrila,1992:209~212
    74 KonikCM, MikkelsenLM, MossR, etal. Relationships between physical starch properties and yellow alkaline noodle quality. Sirke.1994(16):292~299
    75 LeachHW. Gelatinization of starch. InStarch: Chemistry and Technology. Vol.1. (EdsR.W.WhistlerandE.F.Paschall.), NewYork: Academic Press,1965:289~307
    76 LeeCH, GorePJ, LeeHO, etal. Utilization of Australian wheat for Korean style dried noodle making.J.CerealSci.1987(5):283~297
    77 MatzkeMA, Aatzke AJM. How and why do plants inactivate homolgous(trans) genes?[J]. Plant Physiol,1995(107):679~685
    78 M.G.DEgidio, E.Destefahisetal. Standardization of Cooking Quality Analysis in Macaroni and Pasta Products, Cereal Foods World,1982,27(8):367~368
    79 MiskellyDM, MossHJ. Flour quality requirements for Chinese noodle manufacture[J]. J.CerealSci.1985(3):379~387
    80 McCormickKM, PanozzoJF. As welling power test for selecting potential noodle quality wheats. Aust.J.Agric.Res.1994(42):317~323
    
    
    81 OhNH, SeibPA, WardAB, etal. Noodles. IV. Influence of flour protein, extraction rate, particle size, and starch damage on the quality characteristics of drynoodles[J]. Cereal Chem.1985(62):441~446
    82 OdaM, YasudaY, OkazakiS, etal. Amethod of flour quality assessment for Japanese noodles[J]. CerealChem.1980(57):253~254
    83 OhmJB, ChungOK. Gluten, pasting, and mixographparameters of hard winter wheat flours in relation to breadmaking[J].CerealChem.1999,76(5):606~613
    84 PanozzoJF, McCORMICKKM. The rapid visco analyserasa method of testing for noodle quality in wheat breeding programme[J]. Journal of Cereal Science,1993(17):25~32
    85 PaynePI, TathamAS, Krattiger, etal. The relationship between HMWglutenin subunit composition and the bread-making quality of British-grown wheat varieties[J].J.Sci.FoodAgric.,1987(40):51~65
    86 RossAS, QuailKJ, CrosbieGB. Physicochemic alproperties of Australian flours influencing the texture of yello walka line noodles[J].CerealChem.1997(74):814~820
    87 SheweryPR, HalfordNG, TathanAS. High molecular weight subunits of wheat glutenin[J],Journal of CerealScience,1992(15):105~120
    88 ToyokawaH, RubenthalerGL. Japanese noodle qualities. I. Flour components. CerealChem.1989(66):382~386
    89 ToykawaH, RubenthalerGL, PowersJR, etal. Japanese noodle qualities. II. Starch components[J]. CerealChem.1989(66):387~391
    90 VanDijkAA, VanSwietenE, KruizeIT, etal. Physical characterization of the N-teminaldomain of high-molecular-weight glutenin subnit Dx5 from wheat[J], Journal of CerealScience,1998,28:115~126
    91 VasilV, Castillo AM, FrommME, etal. Herbicideresistant fertiletransgenic wheatplants obtained bymicroprojectile bombardment of re-generableem bryogenic callus[J].Biotechnology,1992(10):667~674
    92 WeegelsPL, MorseileIp, BasveldP, etal. Large-scale separation of gliadins and their bread-making quality[J].JournalofCerealSci.,1994(20):253~264
    93 WeekJT, AndersonOD, BlechlAE. Rapid production of Multipleindependent lines of fertiletransgenic wheat(triticumaesitivum)[J]. PlantPhysiol,1993(102):1077~1084
    94 Zeng. Sources of variation for starch gelatinization, pasting and gelation properties in wheat. Cereal Chemistry.1997,74(1):63~71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700