镍钛铌形状记忆合金宏细观力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ni_(47)Ti_(44)Nb_9形状记忆合金在一定条件下(Ms+30℃)变形(16%预变形)后可获得宽的相变滞后和良好的形状记忆效应,这对实际工程应用具有十分重要的意义。用这种合金制成的记忆合金连接件和紧固件可在常温下运输和存储而无需保存在液氮中,应用极为方便。
     为研究该材料在预变形后马氏体逆相变温度As提高的热力学机理,以建立相应的数值方法并模拟Ni_(47)Ti_(44)Nb_9形状记忆合金管接头的装配过程,本文在分析国内外有关形状记忆合金本构行为研究现状的基础上,结合近年来有关Ni_(47)Ti_(44)Nb_9形状记忆合金试验研究得到的新现象,从试验、宏观本构模型、细观本构模型、数值模拟等方面对Ni_(47)Ti_(44)Nb_9形状记忆合金进行了较为系统的研究。主要研究工作和结论如下:
     1、系统地研究了Ni_(47)Ti_(44)Nb_9形状记忆合金的典型热力学特性:研究了不同温度时合金在拉伸、扭转载荷作用下的响应特性以及升温回复特性。研究了在-60℃(即Ms+30℃)下合金在不同拉扭比例、非比例载荷作用下的应力应变响应特性以及对应的升温回复特性。结果表明,在简单拉伸和纯扭转变形下材料表现出不同的力学响应特性及升温回复特性。与拉伸变形相比,扭转变形中材料相变时未见应力跌落。升温过程中,拉伸与扭转方向产生的相变应变在同一温度有较大回复,与加载历史无关。文中还研究了在不同预变形下的约束升温特性,发现随预变形的增加,材料中的回复力增大。同时研究了不同回复应变下材料的约束升温特性以及常温下材料的循环特性。
     2、建立了考虑塑性与相变相互影响的形状记忆合金宏观本构模型:根据塑性变形可以提高马氏体逆相变的温度和降低马氏体逆相变开始应力等试验现象,提出了考虑塑性变形的形状记忆合金材料的自由能表达式。在此基础上根据连续介质力学理论推导出应力、与相变和塑性有关的背应力、曳应力的表达式;构造了形状记忆合金的耗散势能函数,分别得出了与相变、塑性相关的内变量的演化方程,并提出相应的本构积分算法及切线刚度。根据所发展的理论及算法编制了ABAQUS用户子程序UMAT,分析了形状记忆合金的典型特性,包括伪弹性、形状记忆效应、约束升温特性、特别是塑性变形对马氏体逆相变的影响。建立了管接头的有限元模型,模拟了包含管接头低温扩孔、升温回复和降温等的安装过程,对管接头与被连接件间的接触压力进行了分析。
     3、发展了Ni_(47)Ti_(44)Nb_9形状记忆合金的细观本构模型:将Ni_(47)Ti_(44)Nb_9形状记忆合金视为NiTi基体中嵌入软相的β-Nb夹杂的混合物,采用Mori-Tanaka方法发展了Ni_(47)Ti_(44)Nb_9合金的细观本构模型。比较了各向同性化基体切线刚度与各向异性基体切线刚度计算的Eshelby张量对材料响应特性的影响。结果表明,按各向同性化基体刚度计算出的Eshelby张量得出的应力应变曲线与有限元计算结果较为吻合。基于上述结果计算了SMA基体中嵌入弹性、弹塑性夹杂对材料整体响应特性的影响。得出了不同体积分数的弹性、弹塑性夹杂对拉伸应力应变曲线的影响以及对马氏体逆相变开始温度As的影响。结果表明,当体积分数小于10%时,弹塑性夹杂的塑性变形对As的提高贡献较小;考虑到基体中塑性变形对As的影响,采用所建立的本构模型对材料在不同温度、不同载荷路径下的响应特性进行了数值分析,结果表明,所发展的本构模型能较好地描述试验现象,包括不同温度下扭转响应特性及升温回复特性,与试验结果趋势较为一致。
     4、对Ni_(47)Ti_(44)Nb_9形状记忆合金管接头的装配过程进行了数值模拟:将基于所发展宏观本构模型编写的用户自定义材料子程序嵌入有限元软件ABAQUS,计算了不同壁厚管接头在装配过程中接触压力等力学变量随着厚度的变化,发现装配完成后管接头中的应力沿径向分布不均匀,与管接头厚度有关;被连接管中应力不均匀,内壁应力较大,轴线方向上管中部应力较大;管接头与被连接管间的接触压力沿着轴线方向分布不均匀,与厚度密切相关。对计算结果分析表明可采用减少管接头内径、增加壁厚、减少装配间隙等手段提高管接头的径向压应力。
When elongated to about16%at Ms+30℃, a Ni_(47)Ti_(44)Nb_9alloy can achieve a largetransformation hysteresis and better shape memory effect, which is of significantimportance for the application of this alloy in the practical application. For instance, thepreformed pipe joint components made of the alloy can easily be stored at roomtemperature before assembly without being transformed back to the parent phase,instead of being stored at a low temperature condition.
     In this dissertation, the thermodynamic mechanism of the increase in Asaftercertain deformation is investigated. Then the constitutive model and the correspondingnumerical algorithm are developed for the analysis of the assembly of Ni_(47)Ti_(44)Nb_9pipejoints. The main researches made and the main progresses achieved are as follows:
     (1) The typical thermal-mechanical properties of Ni_(47)Ti_(44)Nb_9alloy are investigatedsystematically, involving the responses and the heating-induced strain recovery underproportional tensile-torsional straining at various temperatures. The results show thatthe response of the alloy under pure tension is quite different from that under puretorsion. Under tensile deformation, there are distinct stress drop and the following stressplateau, which do not appear in the case of pure torsion. In the case of constrainedheating-induced recovery stress, it is found that the recovery resistance increases withthe increase of pre-deformation. Recovery stress at various recovery strains and thethermal-mechanical properties of the alloy subjected to cyclic straining are alsoinvestigated.
     (2) A constitutive model is developed, taking into account the effects of theinteraction between plasticity and transformation. Based on the experimental fact thatplastic deformation could substantially raise the temperature or reduce the stress forinverse transformation to start, a free energy is formulated for SMAs, taking intoaccount the effects of plastic deformation, with which, the expressions of stress, backstress and drag stress are obtained. The corresponding dissipation potentials are alsoformulated, with which, the evolutions of the internal state variables related respectivelyto transformation and plasticity are derived. The corresponding integral algorithm andthe tangent stiffness are proposed, and the UMAT is developed and embedded in thecommercially available FE code ABAQUS. The typical properties of shape memoryalloys, such as pseudoelasticity, shape memory effect, coupled transformation and plastic deformation, and especially, the effects of plastic deformation on inversetransformation, etc.
     (3) A micromechanics model for Ni_(47)Ti_(44)Nb_9alloy is also developed. A Ni_(47)Ti_(44)Nb_9alloy is considered as a mixture of the NiTi matrix and β-Nb inclusions, and theMori-Tanaka scheme is used for the evaluation of the effect thermal-mechanicalproperties of the mixture. The evaluations with the Eshelby tensor using the tangentstiffness tensor of the elastoplastic matrix with or without being isotropicalized arecompared with each other. It shows that the result with the isotropicalized tangentstiffness tensor agrees better with the FE result. The properties of the mixture withelastic and elastoplastic inclusions are also evaluated respectively, in which variousvolume fractions of inclusions on the overall response and the increase in the Afof themixture is investigated. If the particle volume fraction is less than10%, the contributionof the softer particle inclusions to the increase of Asis insignificant. Taking into theeffect of plastic deformation on As, the responses of the Ni_(47)Ti_(44)Nb_9alloy subjected tovarious thermal-mechanical loading at different temperature are computed. Comparisonbetween the computed and the experimental results shows satisfactory agreement.
     (4) The assembling process of Ni_(47)Ti_(44)Nb_9alloy pipe joints is numericallysimulated with the developed constitutive model, based on which, the UMAT isdeveloped and embedded in ABAQUS. The effects of wall-thickness and the initial gapbetween the pipe and the joint on the contact pressure, stress distributions in both thepipes and the joint, and the pullout force are investigated. The results can provideavailable information for the design and the optimization of the designing parameters ofthe high-performance SMA pipe joints.
引文
[1] Lagoudas D C. Shape memory alloys: modeling and engineering applications[M].Springer,2008.
    [2]赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性[M].北京:国防工业出版社,2002.
    [3] Zhang C S, Zhao L C, Duerig T W, et al. Effects of deformation on the transformationhysteresis and shape memory effect in a ni47ti44nb9alloy[J]. SCRIPTA METALLURGICA ET MATERIALIA,1990,24(9):1807-1812.
    [4]赵连城,张志方,蔡伟.航空用宽滞后Ni-Ti-Nb记忆合金管接头研究[J].材料工程,1992,S1:187-188.
    [5]蔡伟,陈威,李运良. Ti-Ni-Nb记忆合金管接头在装甲车辆上的应用[J].机械工程师,2005,05:18-21.
    [6]邓炬,杨冠军. Ti-Ni-Nb宽滞后记忆合金的研究进展[J].稀有金属材料与工程,1998,06:322-326.
    [7]于申军,董治中,周守理. Ti-Ni-Nb形状记忆合金管接头研究(英)[J]. Transactions ofTianjin University,1999,01:82-84.
    [8]米绪军,尹向前,高宝东. TiNiNb形状记忆合金管接头径向压应力的模拟计算[J].稀有金属,2008,05:579-583.
    [9] Li Z Q, Sun Q P. The initiation and growth of macroscopic martensite band in nano-grainedniti microtube under tension[J]. Int. J. Plasticity,2002,18(PII S0749-6419(02)00026-811):1481-1498.
    [10] Sun Q P, Li Z Q. Phase transformation in superelastic niti polycrystalline micro-tubes undertension and torsion-from localization to homogeneous deformation[J]. Int. J. Solids Struct.,2002,39(PII S0020-7683(02)00182-813-14):3797-3809.
    [11] Sun Q P, Ng K L. Stress-induced phase transformation and detwinning in nitipolycrystalline shape memory alloy tubes[J]. Mech. Mater.,2006,38:41-56.
    [12] Peng X, Pi W, Fan J. A micro structure-based constitutive model for the pseudoelasticbehavior of nitismas[J]. Int. J. Plasticity,2008,24(6):966-990.
    [13] Shaw J A, Kyriakides S. Thermomechanical aspects of niti[J]. J. Mech. Phys. Solids,1995,43(8):1243-1281.
    [14] Sittner P, Hara Y, Tokuda M. Experimental-study on the thermoelastic martensitic-transformation in shape-memory alloy polycrystal induced by combined external forces [J].Metall. Mater. Trans. A.,1995,26(11):2923-2935.
    [15] Arghavani J, Auricchio F, Naghdabadi R, et al. A3-d phenomenological constitutive modelfor shape memory alloys under multiaxial loadings[J]. Int. J. Plasticity,2010,26(7):976-991.
    [16] Panico M, Brinson L C. A three-dimensional phenomenological model for martensitereorientation in shape memory alloys[J]. J. Mech. Phys. Solids,2007,55(11):2491-2511.
    [17] Wang X, Xu B, Yue Z. Phase transformation behavior of pseudoelastic niti shape memoryalloys under large strain[J]. J. Alloy. Compd,2008,463(1-2):417-422.
    [18]王心美,岳珠峰,王亚芳,等. NiTi合金的超弹性力学特性及其应用[M].北京:科学出版社,2009.
    [19] Mcnaney J M, Imbeni V, Jung Y, et al. An experimental study of the superelastic effect in ashape-memory nitinol alloy under biaxial loading[J]. Mech. Mater.,2003,35(10):969-986.
    [20] Piao M, Otsuka K, Miyazaki S, et al. Mechanism of the a(s) temperature increase bypre-deformation in thermoelastic alloys[J]. MATERIALS TRANSACTIONS JIM,1993,34(10):919-929.
    [21] Otsuka K, Ren X. Physical metallurgy of ti-ni-based shape memory alloys[J]. Prog. Mater.Sci.,2005,50(5):511-678.
    [22] Piao M, Miyazaki S, Otsuka K, et al. Effects of nb addition on the microstructure of ti-nialloys[J]. MATERIALS TRANSACTIONS JIM,1992,33(4):337-345.
    [23] Piao M, Miyazaki S, Otsuka K. Characteristics of deformation and transformation inti44ni47nb9shape memory alloy[J]. MATERIALS TRANSACTIONS JIM,1992,33(4):346-353.
    [24] Zhao L C, Duerig T W, Justi S, et al. The study of niobium-rich precipitates in a ni-ti-nbshape memory alloy[J]. SCRIPTA METALLURGICA ET MATERIALIA,1990,24(2):221-226.
    [25]张春生,蔡伟,赵连城. Ni47Ti44Nb9合金的相变滞后和应变马氏体的稳定性[J].金属学报,1991,03:51-55.
    [26]张延华,蔡伟,张春生,等.拉伸试验温度对Ni47Ti44Nb9合金形变特性的影响[J].稀有金属,1996,01:31-34.
    [27]赵连城,蔡伟. Ni-Ti-Nb宽滞后形状记忆合金的形变诱发马氏体相变及其可逆性[J].金属学报,1997,1:90-98.
    [28]何向明,戎利建,闰德胜,等.形变对Ni44.7Ti46.3Nb9合金恢复力的影响[A].见:首届中国功能材料及其应用学术会议,中国广西桂林,1992[C].
    [29] He X M, Rong L J. Dsc analysis of reverse martensitic transformation in deformed ti-ni-nbshape memory alloy[J]. Scripta Mater.,2004,51(1):7-11.
    [30] Xiao F, Ma G J, Zhao X, et al. Effects of nb content on yield strength of nitinb alloys inmartensite state[J]. Chinese Journal of Aeronautics,2009,22:658-662.
    [31] Liu W, Zhao X. Mechanical properties and transformation behavior of nitinb shape memoryalloys[J]. Chinese Journal of Aeronautics,2009,22:540-543.
    [32]肖甫,赵新青,徐惠彬,等.(NiTi)50-0.5xNbx形状记忆合金的阻尼性能及力学性能[J].金属学报,2009,45(1):18-24.
    [33] Chen Y, Jiang H, Rong L, et al. Mechanical behavior in nitinb shape memory alloys withlow nb content[J]. Intermetallics,2011,19:217-220.
    [34] Wang M, Jiang M, Liao G, et al. Martensitic transfor mation involved mechanical behaviorsand wide hysteresis of nitinb shape memor y alloys[J]. Progress in Natural Science:Materials International,2012,22(2):130-138.
    [35]莫华强. TiNiNb形状记忆合金的性能研究及其作为中温管接头的优化设计[D].四川大学,2003.
    [36] Abeyaratne R, Knowles J K. On the driving traction acting on a surface of straindiscontinuity in a continuum[J]. J. Mech. Phys. Solids,1990,38(3):345-360.
    [37] Ball J M, James R D. Fine phase mixtures as minimizers of energy[J]. Arch. Ration. Mech.An.,1987,100(1):13-52.
    [38] Fischer F D, Tanaka K. A micromechanical model for the kinetics of martensitic-transformation[J]. Int. J. Solids Struct.,1992,29(14-15):1723-1728.
    [39] Sun Q P, Hwang K C. Micromechanics modeling for the constitutive behavior ofpolycrystalline shape memory alloys.2. Study of the individual phenomena[J]. J. Mech.Phys. Solids,1993,41(1):19-33.
    [40] Sun Q P, Hwang K C. Micromechanics modeling for the constitutive behavior ofpolycrystalline shape memory alloys.1. Derivation of general relations[J]. J. Mech. Phys.Solids,1993,41(1):1-17.
    [41] Patoor E, Eberhardt A, Berveiller M. Micromechanical modelling of the shape memorybehavior. In:brinson, l.c., Moran, b.(Eds.), Mechanics of phase transformation and shapememory alloys.[A]. In: ASME, NewYork,1994[C].
    [42] Lexcellent C, Goo B C, Sun Q P, et al. Characterization, thermomechanical behaviour andmicromechanical-based constitutive model of shape-memory cu-zn-al single crystals[J].Acta Mater.,1996,44(9):3773-3780.
    [43] Huang M, Brinson L C. Multivariant model for single crystal shape memory alloybehavior[J]. J. Mech. Phys. Solids,1998,46(8):1379-1409.
    [44] Gao X J, Huang M S, Brinson L C. A multivariant micromechanical model for smas part1.Crystallographic issues for single crystal model[J]. Int. J. Plasticity,2000,16(10-11):1345-1369.
    [45] Huang M S, Gao X J, Brinson L C. A multivariant micromechanical model for smas part2.Polycrystal model[J]. Int. J. Plasticity,2000,16(10-11):1371-1390.
    [46] Raniecki B, Lexcellent C. R(l)-models of pseudoelasticity and their specification for someshape-memory solids[J]. Eur. J. Mech. A-Solid.,1994,13(1):21-50.
    [47] Marketz F, Fischer F D. Modelling the mechanical behavior of shape memory alloys undervariant coalescence[J]. Comp. Mater. Sci.,1996,5(1-3):210-226.
    [48] Brinson L C, Schmidt I, Lammering R. Micro and macromechanical investigations ofCuAlNi single crystal and CuAlMnZn polycrystalline shape memory alloys[J]. J. Intell.Mater. Syst. Struct,2002,12(13):761-772.
    [49] Fang D N, Lu W, Yan W Y, et al. Stress-strain relation of cualni sma single crystal underbiaxial loading-constitutive model and experiments[J]. Acta Mater.,1998,47(1):269-280.
    [50] Gao X J, Brinson L C. A simplified multivariant sma model based on invariant plane natureof martensitic transformation[J]. J. Intel. Mat. Syst. Str.,2002,13(12):795-810.
    [51] Thamburaja P. Constitutive equations for martensitic reorientation and detwinning inshape-memory alloys[J]. J. Mech. Phys. Solids,2005,53(4):825-856.
    [52] Bekker A, Brinson L C. Temperature-induced phase transformation in a shape memoryalloy: phase diagram based kinetics approach[J]. J. Mech. Phys. Solids,1997,45(6):949-988.
    [53] Boyd J G, Lagoudas D C. Thermomechanical response of shape-memory composites[J]. J.Intel. Mat. Syst. Str.,1994,5(3):333-346.
    [54] Leclercq S, Lexcellent C. A general macroscopic description of the thermomechanicalbehavior of shape memory alloys[J]. J. Mech. Phys. Solids,1996,44(6):953.
    [55] Tanaka K. A thermomechanical sketch of shape memory effect-one-dimensional tensilebehavior[J]. RES MECHANICA,1986,18(3):251-263.
    [56] Auricchio F, Petrini L. Improvements and algorithmical considerations on a recentthree-dimensional model describing stress-induced solid phase transformations[J]. Int. J.Numer. Meth. Eng.,2002,55(11):1255-1284.
    [57] Boyd J G, Lagoudas D C. A thermodynamical constitute model for shape memorymaterials.1. The monolithic shape memory alloy[J]. Int. J. Plasticity,1996,12(6):805-842.
    [58] Boyd J G, Lagoudas D C. A thermodynamical constitutive model for shape memorymaterials.2. The sma composite material[J]. Int. J. Plasticity,1996,12(7):843-873.
    [59] Raniecki B, Lexcellent C. R(l)-models of pseudoelasticity and their specification for someshape-memory solids[J]. Eur. J. Mech. A-Solid.,1994,13(1):21-50.
    [60] Brinson L C. One dimensional constitutive behavior of shape memory alloys:thermomechanical derivation with non-constant functions and redefined martensite internalvariable[J]. J. Intell. Mater. Syst. Struct,1993(4):229-242.
    [61] Raniecki B, Lexcellent C, Tanaka K. Thermodynamic model of pseudoelastic behaviour ofshape memory alloys.[J]. Arch Mech.,1992,3(44):261-288.
    [62] Auricchio F, Taylor R L. Shape-memory alloys: modelling and numerical simulations of thefinite-strain superelastic behavior[J]. Comput. Method. Appl. M.,1997,143(1-2):175-194.
    [63] Auricchio F, Taylor R L, Lubliner J. Shape-memory alloys: macromodelling and numericalsimulations of the superelastic behavior[J]. Comput. Method. Appl. M.,1997,146(3-4):281-312.
    [64] Souza A C, Mamiya E N, Zouain N. Three-dimensional model for solids undergoingstress-induced phase transformations[J]. Eur. J. Mech. A-Solid.,1998,17(5):789-806.
    [65] Auricchio F, Petrini L. A three-dimensional model describing stress-temperature inducedsolid phase transformations: solution algorithm and boundary value problems[J]. Int. J.Numer. Meth. Eng.,2004,61(6):807-836.
    [66] Auricchio F, Petrini L. A three-dimensional model describing stress-temperature inducedsolid phase transformations: thermomechanical coupling and hybrid composite applications[J]. Int. J. Numer. Meth. Eng.,2004,61(5):716-737.
    [67] Auricchio F, Conti M, Morganti S, et al. Shape memory alloy: from constitutive modeling tofinite element analysis of stent deployment[J]. Cmes-Comp. Model. Eng.,2010,57(3):225-244.
    [68] Auricchio F, Arghavani J, Conti M, et al. Shape-memory alloys: effective3d modeling,computational aspects, analysis of actuator and biomedical devices[J]. ACTUATOR10,CONFERENCE PROCEEDINGS,2010:224-227.
    [69] Auricchio F, Reali A, Stefanelli U. A three-dimensional model describing stress-inducedsolid phase transformation with permanent inelasticity[J]. Int. J. Plasticity,2007,23(2):207-226.
    [70] Arghavani J, Auricchio F, Naghdabadi R, et al. On the robustness and efficiency ofintegration algorithms for a3d finite strain phenomenological sma constitutive model[J]. Int.J. Numer. Meth. Eng.,2011,85(1):107-134.
    [71] Arghavani J, Auricchio F, Naghdabadi R, et al. An improved, fully symmetric, finite-strainphenomenological constitutive model for shape memory alloys[J]. Finite Elem. Anal. Des.,2011,47(2):166-174.
    [72] Arghavani J, Auricchio F, Naghdabadi R. A finite strain kinematic hardening constitutivemodel based on hencky strain: general framework, solution algorithm and application toshape memory alloys[J]. Int. J. Plasticity,2011,27(6):940-961.
    [73] Arghavani J, Auricchio F, Naghdabadi R, et al. A3d finite strain phenomenologicalconstitutive model for shape memory alloys considering martensite reorientation[J].Continuum Mech. Therm.,2010,22(5):345-362.
    [74] Brinson L C, Lammering R. Finite-element analysis of the behavior of shape-memory alloysand their applications[J]. Int. J. Solids Struct.,1993,30(23):3261-3280.
    [75] Brinson L C, Huang M S. Simplifications and comparisons of shape memory alloyconstitutive models[J]. J. Intel. Mat. Syst. Str.,1996,7(1):108-114.
    [76] Bekker A, Brinson L C. Phase diagram based description of the hysteresis behavior of shapememory alloys[J]. Acta Mater.,1998,46(10):3649-3665.
    [77] Brocca M, Brinson L C, Bazant Z. Three-dimensional constitutive model for shape memoryalloys based on microplane model[J]. J. Mech. Phys. Solids,2002,50(PII S0022-5096(01)00112-05):1051-1077.
    [78] Qidwai M A, Lagoudas D C. Numerical implementation of a shape memory alloythermomechanical constitutive model using return mapping algorithms[J]. Int. J. Numer.Meth. Eng.,2000,47(6):1123-1168.
    [79] Lagoudas D, Hartl D, Chemisky Y, et al. Constitutive model for the numerical analysis ofphase transformation in polycrystalline shape memory alloys[J]. Int. J. Plasticity,2012,32-33:155-183.
    [80] Bo Z H, Lagoudas D C. Thermomechanical modeling of polycrystalline smas under cyclicloading, part i: theoretical derivations[J]. Int. J. Eng. Sci.,1999,37(9):1089-1140.
    [81] Lagoudas D C, Bo Z H. Thermomechanical modeling of poly-crystalline smas under cyclicloading, part ii: material characterization and experimental results for a stabletransformation cycle[J]. Int. J. Eng. Sci.,1999,37(9):1141-1173.
    [82] Bo Z H, Lagoudas D C. Thermomechanical modeling of polycrystalline smas under cyclicloading, part iii: evolution of plastic strains and two-way shape memory effect[J]. Int. J. Eng.Sci.,1999,37(9):1175-1203.
    [83] Bo Z H, Lagoudas D C. Thermomechanical modeling of polycrystalline smas under cyclicloading, part iv: modeling of minor hysteresis loops[J]. Int. J. Eng. Sci.,1999,37(9):1205-1249.
    [84] Lagoudas D C, Entchev P B. Modeling of transformation-induced plasticity and its effect onthe behavior of porous shape memory alloys. Part i: constitutive model for fully densesmas[J]. Mech. Mater.,2004,36(9):865-892.
    [85] Entchev P B, Lagoudas D C. Modeling of transformation-induced plasticity and its effect onthe behavior of porous shape memory alloys. Part ii: porous sma response[J]. Mech. Mater.,2004,36(9):893-913.
    [86] Popov P, Lagoudas D C. A3-d constitutive model for shape memory alloys incorporatingpseudoelasticity and detwinning of self-accommodated martensite[J]. Int. J. Plasticity,2007,23(10-11):1679-1720.
    [87] Hartl D J, Chatzigeorgiou G, Lagoudas D C. Three-dimensional modeling and numericalanalysis of rate-dependent irrecoverable deformation in shape memory alloys[J]. Int. J.Plasticity,2010,26(10):1485-1507.
    [88] Hartl D J, Lagoudas D C. Constitutive modeling and structural analysis consideringsimultaneous phase transformation and plastic yield in shape memory alloys[J]. Smart Mater.Struct.,2009,18(10401710SI).
    [89] Patoor E, Lagoudas D C, Entchev P B, et al. Shape memory alloys, part i: general propertiesand modeling of single crystals[J]. Mech. Mater.,2006,38(5-6SI):391-429.
    [90] Lagoudas D C, Entchev P B, Popov P, et al. Shape memory alloys, part ii: modeling ofpolycrystals[J]. Mech. Mater.,2006,38(5-6SI):430-462.
    [91] Bhattacharyya A, Lagoudas D C, Wang Y, et al. On the role of thermoelectric heat transferin the design of sma actuators: theoretical modeling and experiment[J]. Smart Mater. Struct.,1995,4(4):252-263.
    [92] Lagoudas D C, Ding Z H. Modeling of thermoelectric heat-transfer in shape-memory alloyactuators-transient and multiple cycle solutions[J]. Int. J. Eng. Sci.,1995,33(15):2345-2364.
    [93] Lagoudas D C, Bhattacharyya A. Performance analysts of thin layer extensionalthermoelectric sma actuators[J]. MATHEMATICS AND CONTROL IN SMARTSTRUCTURES-SMART STRUCTURES AND MATERIALS1997,1997,3039:254-267.
    [94] Rediniotis O K, Lagoudas D C, Mashio T, et al. Theoretical and experimental investigationsof an active hydrofoil with sma actuators[J]. MATHEMATICS AND CONTROL INSMART STRUCTURES-SMART STRUCTURES AND MATERIALS1997,1997,3039:277-289.
    [95] Webb G V, Lagoudas D C, Kurdila A J. Hysteresis modeling of sma actuators for controlapplications[J]. J. Intel. Mat. Syst. Str.,1998,9(6):432-448.
    [96] Lagoudas D C, Bhattacharyya A. Modeling of thin layer extensional thermoelectric smaactuators[J]. Int. J. Solids Struct.,1998,35(3-4):331-362.
    [97] de Blonk B J, Lagoudas D C. Actuation of elastomeric rods with embedded two-way shapememory alloy actuators[J]. Smart Mater. Struct.,1998,7(6):771-783.
    [98] Lagoudas D C, Shu S G. Residual deformation of active structures with sma actuators[J]. Int.J. Mech. Sci.,1999,41(6):595-619.
    [99] Lagoudas D C, Bhattacharyya A. Modeling of thin layer extensional thermoelectric smaactuators[J]. Int. J. Solids Struct.,1998,35(3-4):331-362.
    [100] Miller D A, Lagoudas D C. Thermomechanical characterization of niticu and niti smaactuators: influence of plastic strains[J]. Smart Mater. Struct.,2000,9(5):640-652.
    [101] Webb G, Wilson L, Lagoudas D, et al. Adaptive control of shape memory alloy actuatorsfor underwater biomimetic applications[J]. Aiaa J.,2000,38(2):325-334.
    [102] Lagoudas D C, Bertacchini O W, Patoor E. Surface crack development in transformationinduced fatigue of sma actuators[J]. Residual Stress and Its Effects on Fatigue and Fracture,2006:209-222.
    [103] Lagoudas D C, Bertacchini O W, Patoor E. Surface crack development in transformationinduced fatigue of sma actuators[J]. Residual Stress and Its Effects on Fatigue and Fracture,2006:209-222.
    [104] Bertacchini O W, Lagoudas D C, Patoor E. Thermomechanical transformation fatigue oftinicu sma actuators under a corrosive environment-part i: experimental results[J]. Int. J.Fatigue,2009,31(10):1571-1578.
    [105] Hartl D J, Solomou A, Lagoudas D C, et al. Phenomenological modeling of inducedtransformation anisotropy in shape memory alloy actuators[J]. BEHAVIOR ANDMECHANICS OF MULTIFUNCTIONAL MATERIALS AND COMPOSITES2012,2012,8342(83421M).
    [106] Siredey N, Patoor E, Berveiller M, et al. Constitutive equations for polycrystallinethermoelastic shape memory alloys. Part i. Intragranular interactions and behavior of thegrain[J]. Int. J. Solids Struct.,1999,36(28):4289.
    [107] Patoor E, Eberhardt A, Berveiller M. Micromechanical modelling of superelasticity in shapememory alloys[J]. J. Phys. Iv,1996,6(C1):277-292.
    [108]陈斌,彭向和,王军,等.形状记忆合金单晶细观本构关系的一种相变动力学模型及算法[J].固体力学学报,2012,1(33):8-15.
    [109] Peultier B, Ben Zineb T, Patoor E. Macroscopic constitutive law of shape memory alloythermomechanical behaviour. Application to structure computation by fem[J]. Mech. Mater.,2006,38(5-6SI):510-524.
    [110] Peultier B, Ben Zineb T, Patoor E. Macroscopic constitutive law for sma: application tostructure analysis by fem[J]. Mat. Sci. Eng. A.-Struct.,2006,438(SI):454-458.
    [111] Peultier B, Ben Zineb T, Patoor E. A simplified micromechanical constitutive law adaptedto the design of shape memory applications by finite element methods[J]. Mat. Sci. Eng.A.-Struct.,2008,481(SI):384-388.
    [112] Chemisky Y, Duval A, Patoor E, et al. Constitutive model for shape memory alloysincluding phase transformation, martensitic reorientation and twins accommodation[J].Mech. Mater.,2011,43(7):361-376.
    [113] Piotrowski B, Ben Zineb T, Patoor E, et al. Modeling of niobium precipitates effect on theni47ti44nb9shape memory alloy behavior[J]. Int. J. Plasticity,2012,36:130-147.
    [114] Piotrowski B, Ben Zineb T, Patoor E, et al. A finite element-based numerical tool forni47ti44nb9sma structures design: application to tightening rings[J]. J. Intel. Mat. Syst. Str.,2012,23(2):141-153.
    [115] Chemisky Y, Duval A, Piotrowski B, et al. Numerical tool for sma material simulation:application to composite structure design[J]. Smart Mater. Struct.,2009,18(10401210).
    [116] Piotrowski B, Zineb T B, Patoor E, et al. Analysis of niobium precipitates effect on thethermo-mechanical behavior of a nitinb shape memory alloy and modeling[J]. ESOMAT2009-8TH EUROPEAN SYMPOSIUM ON MARTENSITIC TRANSFORMATIONS,2009(07003).
    [117] Leclercq S, Lexcellent C. A general macroscopic description of the thermomechanicalbehavior of shape memory alloys[J]. J. Mech. Phys. Solids,1996,44(6):953.
    [118] Raniecki B, Lexcellent C. Thermodynamics of isotropic pseudoelasticity in shape memoryalloys[J]. Eur. J. Mech. A-Solid.,1998,17(2):185-205.
    [119] Thiebaud F, Lexcellent C, Collet M, et al. Implementation of a model taking into accountthe asymmetry between tension and compression, the temperature effects in a finite elementcode for shape memory alloys structures calculations[J]. Comp. Mater. Sci.,2007,41(2):208-221.
    [120] Bouvet C, Calloch S, Lexcellent C. A phenomenological model for pseudoelasticity ofshape memory alloys under multiaxial proportional and nonproportional loadings[J]. Eur. J.Mech. A-Solid.,2004,23(1):37-61.
    [121] Goo B C, Lexcellent C. Micromechanics-based modeling of two-way memory effect of asingle crystalline shape-memory alloy[J]. Acta Mater.,1997,45(2):727-737.
    [122] Lexcellent C, Leclercq S, Gabry B, et al. The two way shape memory effect of shapememory alloys: an experimental study and a phenomenological model[J]. Int. J. Plasticity,2000,16(10-11):1155-1168.
    [123] Lexcellent C, Blanc P. Phase transformation yield surface determination for some shapememory alloys[J]. Acta Mater.,2004,52(8):2317-2324.
    [124] Lexcellent C, Boubakar M L, Bouvet C, et al. About modelling the shape memory alloybehaviour based on the phase transformation surface identification under proportionalloading and anisothermal conditions[J]. Int. J. Solids Struct.,2006,43(3-4):613-626.
    [125] Lexcellent C, Vivet A, Bouvet C, et al. Experimental and numerical determinations of theinitial surface of phase transformation under biaxial loading in some polycrystalline shape-memory alloys[J]. J. Mech. Phys. Solids,2002,50(PII S0022-5096(02)00007-812):2717-2735.
    [126] Lexcellent C, Schloemerkemper A. Comparison of several models for the determination ofthe phase transformation yield surface in shape-memory alloys with experimental data[J].Acta Mater.,2007,55(9):2995-3006.
    [127] Gibeau E, Laydi M R, Lexcellent C. Determination and transport of phase transformationyield surfaces for shape memory alloys[J]. ZAMM-ZEITSCHRIFT FUR ANGEWAN DTEMATHEMATIK UND MECHANIK,2010,90(7-8):595-604.
    [128] Calloch S, Taillard K, Chirani S A, et al. Relation between the martensite volume fractionand the equivalent transformation strain in shape memory alloys[J]. Mat. Sci. Eng.A.-Struct.,2006,438(SI):441-444.
    [129] Taillard K, Chirani S A, Calloch S, et al. Equivalent transformation strain and its relationwith martensite volume fraction for isotropic and anisotropic shape memory alloys[J]. Mech.Mater.,2008,40(4-5):151-170.
    [130] Zaki W, Moumni Z. A three-dimensional model of the thermomechanical behavior of shapememory alloys[J]. J. Mech. Phys. Solids,2007,55(11):2455-2490.
    [131] Moumni Z, Zaki W, Nguyen Q S. Theoretical and numerical modeling of solid-solid phasechange: application to the description of the thermomechanical behavior of shape memoryalloys[J]. Int. J. Plasticity,2008,24(4):614-645.
    [132] Zaki W, Zamfir S, Moumni Z. An extension of the zm model for shape memory alloysaccounting for plastic deformation[J]. Mech. Mater.,2010,42(3):266-274.
    [133] Morin C, Moumni Z, Zaki W. A constitutive model for shape memory alloys accounting forthermomechanical coupling[J]. Int. J. Plasticity,2011,27(5):748-767.
    [134] Zaki W. An approach to modeling tensile-compressive asymmetry for martensitic shapememory alloys[J]. Smart Mater. Struct.,2010,19(0250092).
    [135] Zaki W. Time integration of a model for martensite detwinning and reorientation undernonproportional loading using lagrange multipliers[J]. Int. J. Solids Struct.,2012,49(21):2951-2961.
    [136] Zaki W. An efficient implementation for a model of martensite reorientation in martensiticshape memory alloys under multiaxial nonproportional loading[J]. Int. J. Plasticity,2012,37:72-94.
    [137] Fan J H, Peng X G. A physically based constitutive description for nonproportional cyclicplasticity[J]. J. Eng. Mater.-T. Asme,1991,113(2):254-262.
    [138]彭向和,韩勇,黄尚廉. SMA伪弹性和形状记忆特性的描述[J].重庆大学学报(自然科学版),1999,22(1):1-6.
    [139] Peng X, Han Y, Huang S. A mixture theory based constitutive model for sma[J]. Mech. Res.Commun.,2000,27(1):21-28.
    [140] Peng X, Yang Y, Huang S. A two-phase mixture model for smas and application to theanalysis for pseudoelasticity of a sma polycrystal[J]. Smart Mater. Struct.,2000,9(5):604-612.
    [141] Peng X, Yang Y, Huang S. A comprehensive description for shape memory alloys with atwo-phase constitutive model[J]. Int. J. Solids Struct.,2001,38(38-39):6925-6940.
    [142] Peng X, Li H, Chen W. A comprehensive description for shape memory alloys with atwo-phase mixture model incorporating the conventional theory of plasticity[J]. SmartMater. Struct.,2005,14(2):425-433.
    [143] Peng X, Fan J. A new approach to the analysis of polycrystal plasticity[J]. Archives ofMechanics,2000,52:103-125.
    [144] Helm D, Haupt P. Shape memory behaviour: modelling within continuumthermomechanics[J]. Int. J. Solids Struct.,2003,40(PII S0020-7683(02)00621-24):827-849.
    [145] Helm D. Thermomechanics of martensitic phase transitions in shape memory alloys-i.Constitutive theories for small and large deformations[J]. JOURNAL OF MECHANICS OFMATERIALS AND STRUCTURES,2007,2(1):87-112.
    [146] Helm D. Numerical simulation of martensitic phase transitions in shape memory alloysusing an improved integration algorithm[J]. Int. J. Numer. Meth. Eng.,2007,69(10):1997-2035.
    [147] Helm D, Haupt P. Shape memory alloys: thermomechanical modelling and finite elementsimulations at finite strains[A]. In:2000:548-559.
    [148] Helm D, Haupt P. Geometrically nonlinear models and numerical simulation ofshape-memory alloys[J]. Z. Angew. Math. Mech.,2001,812:S339-S340.
    [149] Thamburaja P, Anand L. Polycrystalline shape-memory materials: effect of crystallogr aphictexture[J]. J. Mech. Phys. Solids,2001,49(4):709-737.
    [150] Thamburaja P. Constitutive equations for martensitic reorientation and detwinning inshape-memory alloys[J]. J. Mech. Phys. Solids,2005,53(4):825-856.
    [151] Pan H, Thamburaja P, Chau F S. Multi-axial behavior of shape-memory alloys undergoingmartensitic reorientation and detwinning[J]. Int. J. Plasticity,2007,23(4):711-732.
    [152] Thamburaja P, Anand L. Superelastic behavior in tension-torsion of an initially-texturedti-ni shape-memory alloy[J]. Int. J. Plasticity,2002,18(PII S0749-6419(02)00031-111):1607-1617.
    [153] Thamburaja P, Anand L. Thermo-mechanic ally coupled superelastic response of initially-textured ti-ni sheet[J]. Acta Mater.,2003,51(2):325-338.
    [154] Thamburaja P, Pan H, Chau F S. Martensitic reorientation and shape-memory effect ininitially textured polycrystalline ti-ni sheet[J]. Acta Mater.,2005,53(14):3821-3831.
    [155] Lu Z K, Weng G J. Martensitic transformation and stress-strain relations of shape-memoryalloys[J]. J. Mech. Phys. Solids,1997,45(11-12):1905.
    [156] Lu Z K, Weng G J. A self-consistent model for the stress-strain behavior of shape-memoryalloy polycrystals[J]. Acta Mater.,1998,46(15):5423-5433.
    [157] Gall K, Sehitoglu H. The role of texture in tension-compression asymmetry inpolycrystalline niti[J]. Int. J. Plasticity,1999,15(1):69-92.
    [158] Gall K, Sehitoglu H, Chumlyakov Y I, et al. Tension-compression asymmetry of thestress-strain response in aged single crystal and polycrystalline niti[J]. Acta Mater.,1999,47(4):1203-1217.
    [159] Gall K, Maier H. Cyclic deformation mechanisms in precipitated niti shape memoryalloys[J]. Acta Mater.,2002,50(PII S1359-6454(02)00315-418):4643-4657.
    [160] Lim T J, Mcdowell D L. Mechanical behavior of an ni-ti shape memory alloy underaxial-torsional proportional and nonproportional loading[J]. J. Eng. Mater.-T. Asme,1999,121(1):9-18.
    [161] Lim T J, Mcdowell D L. Cyclic thermomechanical behavior of a polycrystallinepseudoelastic shape memory alloy[J]. J. Mech. Phys. Solids,2002,50(PII S0022-5096(01)00088-63):651-676.
    [162] Wang X M, Xu B X, Yue Z F. Micromechanical modelling of the effect of plasticdeformation on the mechanical behaviour in pseudoelastic shape memory alloys[J]. Int. J.Plasticity,2008,24(8):1307-1332.
    [163]周博.形状记忆合金的本构模型[D].哈尔滨工程大学,2006.
    [164] Kan Q, Kang G. Constitutive model for uniaxial transformation ratchetting of super-elasticniti shape memory alloy at room temperature[J]. Int. J. Plasticity,2010,26(3):441-465.
    [165] Kan Q, Kang G, Qian L. Super-elastic constitutive model considering plasticity and its finiteelement implementation[J]. Acta Mech. Solida Sin.,2010,23(2):95-105.
    [166] Yu C, Kang G, Song D, et al. Micromechanical constitutive model considering plasticity forsuper-elastic niti shape memory alloy[J]. Comp. Mater. Sci.,2012,56:1-5.
    [167] Falk F. Model free-energy, mechanics, and thermodynamics of shape memory alloys[J].ACTA METALLURGICA,1980,28(12):1773-1780.
    [168] Falk F. One-dimensional model of shape memory alloys[J]. ARCHIVES OF MECHA NICS,1983,35(1):63-84.
    [169] Falk F, Konopka P.3-dimensional landau theory describing the martensitic phase-transformation of shape-memory alloys[J]. J. Phys.-Condens. Mat.,1990,2(1):61-77.
    [170] Huo Y. a mathematical model for the hysteresis in shape memory alloys[J]. ContinuumMech,1989(1):283-303.
    [171] Ortin J. Preisach modeling of hysteresis for a pseudoelastic cu-zn-al single-crystal[J]. J.Appl. Phys.,1992,71(3):1454-1461.
    [172] Koval Y N, Kozlov A P, Monastyrski G E. Influence of work-hardening caused bymartensitic-transformation on the shape memory effect in fe-ni-nb alloys[J]. SCRIPTAMETALLURGICA,1989,23(10):1731-1734.
    [173] Ivshin Y, Pence T J. A thermomechanical model for a one variant shape-memory material[J].J. Intel. Mat. Syst. Str.,1994,5(4):455-473.
    [174] Ivshin Y, Pence T J. A constitutive model for hysteretic phase-transition behavior[J]. Int. J.Eng. Sci.,1994,32(4):681-704.
    [175] Tanaka K, Nagaki S. A thermomechanical description of materials with internal variables inthe process of phase transitions [J].1982,51(5):287-299.
    [176] Tanaka K, Nishimura F, Hayashi T, et al. Phenomenological analysis on subloops and cyclicbehavior in shape-memory alloys under mechanical and or thermal loads[J]. Mech. Mater.,1995,19(4):281-292.
    [177] Liang C, Rogers C A. One-dimensional thermomechanical constitutive relations for shapememory materials (reprinted from journal of intelligent material systems and structures, vol1, pg207-234,1990)[J]. J. Intel. Mat. Syst. Str.,1997,8(4):285-302.
    [178] Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and relatedproblems[J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIESA-MATHEMATICAL AND PHYSICAL SCIENCES,1957,241(1226):376-396.
    [179] Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials withmisfitting inclusions[J]. ACTA METALLURGICA,1973,21(5):571-574.
    [180] Benveniste Y. A new approach to the application of mori-tanaka theory in composite-materials[J]. Mech. Mater.,1987,6(2):147-157.
    [181] Kroner E. Berechnung der elastischen konstanten des vielkristalls aus den konstanten deseinkristalls[J]. ZEITSCHRIFT FUR PHYSIK,1958,151(4):504-518.
    [182] Hill R. A self-consistent mechanics of composite materials[J]. J. Mech. Phys. Solids,1965,13(4):213-222.
    [183] Peng X, Hu N, Zheng H, et al. Evaluation of mechanical properties of particulatecomposites with a combined self-consistent and mori-tanaka approach[J]. Mech. Mater.,2009,41(12):1288-1297.
    [184] Rekik A, Auslender F, Bornert M, et al. Objective evaluation of linearization procedures innonlinear homogenization: a methodology and some implications on the accuracy ofmicromechanical schemes[J]. Int. J. Solids Struct.,2007,44(10):3468-3496.
    [185] Dvorak G J, Benveniste Y. On transformation strains and uniform-fields in multiphaseelastic media[J]. P. Roy. Soc. A.-Math. Phy.,1992,437(1900):291-310.
    [186] Dvorak G J, Benveniste Y. On the thermomechanics of composites with imperfectly bondedinterfaces and damage[J]. Int. J. Solids Struct.,1992,29(23):2907-2919.
    [187] Chaboche J L, Kanoute P, Roos A. On the capabilities of mean-field approaches for thedescription of plasticity in metal matrix composites[J]. Int. J. Plasticity,2005,21(7):1409-1434.
    [188] Chaboche J L, Kruch S, Maire J F, et al. Towards a micromechanics based inelastic anddamage modeling of composites[J]. Int. J. Plasticity,2001,17(4):411-439.
    [189] Buryachenko V. Elastic-plastic behavior of elastically homogeneous materials with arandom field of inclusions[J]. Int. J. Plasticity,1999,15(7):687-720.
    [190] Hill R. Continuum micro-mechanics of elastoplastic polycrystals[J]. J. Mech. Phys. Solids,1965,13(2):89.
    [191] Pettermann H E, Plankensteiner A F, Bohm H J, et al. A thermo-elasto-plastic constitutivelaw for inhomogeneous materials based on an incremental mori-tanaka approach[J]. Comput.Struct.,1999,71(2):197-214.
    [192] Doghri I, Ouaar A. Homogenization of two-phase elasto-plastic composite materials andstructures-study of tangent operators, cyclic plasticity and numerical algorithms[J]. Int. J.Solids Struct.,2003,40(7):1681-1712.
    [193] Masson R, Bornert M, Suquet P, et al. An affine formulation for the prediction of theeffective properties of nonlinear composites and polycrystals[J]. J. Mech. Phys. Solids,2000,48(6-7):1203-1227.
    [194] Masson R, Zaoui A. Self-consistent estimates for the rate-dependent elastoplastic behaviourof polycrystalline materials[J]. J. Mech. Phys. Solids,1999,47(7):1543-1568.
    [195] Zaoui A, Masson R. Modelling stress-dependent transformation strains of heterogeneousmaterials[J]. IUTAM SYMPOSIUM ON TRANSFORMATION PROBLEMS INCOMPOSITE AND ACTIVE MATERIALS,1998,60:3-15.
    [196] Tandon G P, Weng G J. A theory of particle-reinforced plasticity[J]. J. Appl. Mech.-T.Asme,1988,55(1):126-135.
    [197] Castaneda P P. The effective mechanical-properties of nonlinear isotropic composites[J]. J.Mech. Phys. Solids,1991,39(1):45-71.
    [198] Ponte Castaneda P, Suquet P. Nonlinear composites[A]. In:1998:171-302.
    [199] Lopez-Pamies O, Ponte Castaneda P. Second-order estimates for the macroscopic responseand loss of ellipticity in porous rubbers at large deformations[J]. J. Elasticity,2004,76(3):247-287.
    [200] Ponte Castaneda P, Zaidman M. The finite deformation of nonlinear composite materials.1.Instantaneous constitutive relations[J]. Int. J. Solids Struct.,1996,33(9):1271-1286.
    [201] Suquet P. Overall properties of nonlinear composites-a modified secant moduli theory andits link with castaneda,ponte nonlinear variational procedure[J]. COMPTES RENDUS DE LACADEMIE DES SCIENCES SERIE II,1995,320(11Part1):563-571.
    [202] Doghri I, Friebel C. Effective elasto-plastic properties of inclusion-reinforced composites.Study of shape, orientation and cyclic response[J]. Mech. Mater.,2005,37(1):45-68.
    [203] Pierard O, Doghri I. Study of various estimates of the macroscopic tangent operator in theincremental homogenization of elastoplastic composites[J]. INTERNATIONAL JOURNALFOR MULTISCALE COMPUTATIONAL ENGINEERING,2006,4(4):521-543.
    [204] Plerard O, Gonzalez C, Segurado J, et al. Micromechanics of elasto-plastic materialsreinforced with ellipsoidal inclusions[J]. Int. J. Solids Struct.,2007,44(21):6945-6962.
    [205] Cai W, Zhang C S, Zhao L C. Recovery stress of ni-ti-nb wide-hysteresis shape-memoryalloy under constant strain and thermomechanical cycling[J]. J. Mater. Sci. Lett.,1994,13(1):8-9.
    [206] Uchida K, Shigenaka N, Sakuma T, et al. Effects of pre-strain and heat treatmenttemperature on phase transformation temperature and shape recovery stress of ti-ni-nb shapememory alloys for pipe joint applications[J]. Mater. Trans.,2008,49(7):1650-1655.
    [207] Paiva A, Savi M A, Braga A, et al. A constitutive model for shape memory alloysconsidering tensile-compressive asymmetry and plasticity[J]. Int. J. Solids Struct.,2005,42(11-12):3439-3457.
    [208] Zhou B. A macroscopic constitutive model of shape memory alloy considering plasticity[J].Mech. Mater.,2012,48:71-81.
    [209] Norfleet D M, Sarosi P M, Manchiraju S, et al. Transformation-induced plasticity duringpseudoelastic deformation in ni-ti microcrystals[J]. Acta Mater.,2009,57(12):3549-3561.
    [210] Norfleet D M, Sarosi P M, Manchiraju S, et al. Transformation-induced plasticity duringpseudoelastic deformation in ni-ti microcrystals[J]. Acta Mater.,2009,57(12):3549-3561.
    [211] Zhang Y, Cheng Y, Grummon D S. Finite element modeling of indentation-inducedsuperelastic effect using a three-dimensional constitutive model for shape memory materialswith plasticity[J]. J. Appl. Phys.,2007,101(0535075).
    [212] Jemal F, Bouraoui T, Ben Zineb T, et al. Modelling of martensitic transformation and plasticslip effects on the thermo-mechanical behaviour of fe-based shape memory alloys[J]. Mech.Mater.,2009,41(7):849-856.
    [213] Yan W Y, Wang C H, Zhang X P, et al. Theoretical modelling of the effect of plasticity onreverse transformation in superelastic shape memory alloys[J]. Mat. Sci. Eng. A.-Struct.,2003,354(1-2):146-157.
    [214] Morin C, Moumni Z, Zaki W. Thermomechanical coupling in shape memory alloys undercyclic loadings: experimental analysis and constitutive modeling[J]. Int. J. Plasticity,2011,27(12SI):1959-1980.
    [215] Lemaitre J, Chaboche J L. Mechanics of solid materials[M].Cambridge University Press,1990.
    [216] Fremond M. Shape memory alloys[J]. COMPTES RENDUS DE L ACADEMIE DESSCIENCES SERIE II,1987,304(7):239.
    [217] Simo J C, Hughes T J R. Computational inelasticity(interdisciplinary applied mathematicsvol7)[M]. NewYork: Springer,1998.
    [218] Dassault. Abaqus analysis user’s manual[M/OL].[2010].
    [219] Nadeau J C, Ferrari M. Invariant tensor-to-matrix mappings for evaluation of tensorialexpressions[J]. J. Elasticity,1998,52(1):43-61.
    [220] Miyazaki S, Otsuka K, Sakamoto H, et al. The fracture of cu-al-ni shape memory alloy[J].TRANSACTIONS OF THE JAPAN INSTITUTE OF METALS,1981,22(4):244-252.
    [221] Sittner P, Vokoun D, Dayananda G N, et al. Recovery stress generation in shape memoryti50ni45cu5thin wires[J]. Mat. Sci. Eng. A.-Struct.,2000,286(2):298-311.
    [222] Strnadel B, Ohashi S, Ohtsuka H, et al. Effect of mechanical cycling on the pseudoelasticitycharacteristics of ti-ni and ti-ni-cu alloys[J]. Mat. Sci. Eng. A.-Struct.,1995,203(1-2):187-196.
    [223] Strnadel B, Ohashi S, Ohtsuka H, et al. Cyclic stress-strain characteristics of ti-ni andti-ni-cu shape-memory alloys[J]. Mat. Sci. Eng. A.-Struct.,1995,202(1-2):148-156.
    [224] Piotrowski B, Ben Zineb T, Patoor E, et al. Experimental and numerical analysis of recoverystress in ni(47)ti(44)nb(9) shape memory alloys: application to tightening[A]. In:2010:204-209.
    [225] Mura T. Micromechanics of defects in solids[M].Martinus Nijhoff Publishers,1987.
    [226] Kinoshit. N, Mura T. Elastic fields of inclusions in anisotropic media[J]. Phys. Status SolidiA.,1971,5(3):759.
    [227] Benveniste Y, Dvorak G J, Chen T. On diagonal and elastic symmetry of the approximateeffective stiffness tensor of heterogeneous media[J]. J. Mech. Phys. Solids,1991,39(7):927-946.
    [228] Benveniste Y, Dvorak G J, Chen T. Stress-fields in composites with coated inclusions[J].Mech. Mater.,1989,7(4):305-317.
    [229] Chaboche J L, Kruch S, Maire J F, et al. Towards a micromechanics based inelastic anddamage modeling of composites[J]. Int. J. Plasticity,2001,17(4):411-439.
    [230] Gonzalez C, Llorca J. A self-consistent approach to the elasto-plastic behaviour oftwo-phase materials including damage[J]. J. Mech. Phys. Solids,2000,48(4):675-692.
    [231] Doghri I, Tinel L. Micromechanical modeling and computation of elasto-plastic materialsreinforced with distributed-orientation fibers[J]. Int. J. Plasticity,2005,21(10):1919-1940.
    [232] Brassart L, Stainier L, Doghri I, et al. Homogenization of elasto-(visco) plastic compositesbased on an incremental variational principle[J]. Int. J. Plasticity,2012,36:86-112.
    [233] Brassart L, Stainier L, Doghri I, et al. A variational formulation for the incrementalhomogenization of elasto-plastic composites[J]. J. Mech. Phys. Solids,2011,59(12):2455-2475.
    [234] Doghri I, Brassart L, Adam L, et al. A second-moment incremental formulation for themean-field homogenization of elasto-plastic composites[J]. Int. J. Plasticity,2011,27(3):352-371.
    [235] Chaboche J L, Kanoute P. On the 'isotropic' and 'anisotropic' approximations of the tangentoperator in the incremental tangent and affine methods[J]. Cr Mecanique,2003,331(12):857-864.
    [236] Zhang C S, Wang Y Q, Chai W, et al. The study of constitutional phases in a ni47ti44nb9shape memory alloy[J]. Mater. Chem. Phys.,1991,28(1):43-50.
    [237] Zhang C S, Zhao L C, Duerig T W, et al. Effects of deformation on the transformationhysteresis and shape memory effect in a ni47ti44nb9alloy[J]. SCRIPTA METALLURGICA ET MATERIALIA,1990,24(9):1807-1812.
    [238] Long X, Peng X, Pi W. A microstructure-based analysis of cyclic plasticity of pearliticsteels with hill's self-consistent scheme incorporating general anisotropic eshelby tensor[J].Acta Mech. Sinica,2008,24(1):91-99.
    [239] Gavazzi A C, Lagoudas D C. On the numerical evaluation of eshelby's tensor and itsapplication to elastoplastic fibrous composites[J]. Comput. Mech.,1990(7):13-19.
    [240] Ghahremani F. Numerical evaluation of the stresses and strains in ellipsoidal inclusions inan anisotropic elastic material[J]. Mech. Res. Commun.,1977(4):89-91.
    [241]戎利建,王磊,闫德胜. Ni-Ti-Nb宽滞后形状记忆合金管接头研究和进展[J].材料工程,2004(07):60-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700