中空纤维复合膜分离有机蒸汽/氮气系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炼油厂在向贮油罐、油槽车、油罐车装卸油品时产生大量挥发性有机蒸汽(VOCs),必须加以回收利用。目前所采用的有机蒸汽的回收方法都有各自不足之处,采用膜法分离回收VOCs具有高效、节能、操作简单和不造成二次污染等优点。本文以回收油品装卸过程产生的有机蒸汽为研究内容,对中空纤维复合膜、气体膜分离技术和数学模型进行了研究。
     本文选取了4种中空纤维基膜、3种硅橡胶涂层材料,采用浸渍涂敷法制备了多种中空复合膜。考察了硅橡胶浓度、催化剂用量、交联剂用量等因素对复合膜分离性能的影响,得到了最佳制膜配方和制膜条件。采用热处理的方法对基膜进行了改性,结果证明基膜的物理结构对复合膜的分离性能有影响,并且得到不同基膜的最佳热处理条件。实验结果表明以经过393.2K、12min热处理的PVDF为基膜和RTV-107为涂层制备的复合膜分离效果较好。采用扫描电镜、红外光谱和XPS等表征方法对硅橡胶涂层、基膜以及中空纤维复合膜的结构和性能等进行了剖析。
     考察了原料气的压力、原料气流速、原料气浓度、操作温度和透过气压力等工艺操作参数对RTV-107/PVDF复合膜气体分离性能的影响,得到最佳工艺条件下正己烷、正庚烷的渗透速率分别为1.4×10~(-7)、1.5×10~(-7) mol/(m~2·s·Pa) ,正己烷/氮气、正庚烷/氮气的分离因子分别为90、474。
     制备了填充型复合膜,考察了不同填充剂类型、用量对膜性能的影响。填充剂的加入提高了膜对正庚烷的选择性,增大了正庚烷的渗透速率,降低了氮气的渗透速率,同时适量的填充剂可明显增大膜机械强度。
     研究了基膜形态结构对分离性能的影响,建立了改进的DGM模型,提出基膜的双结构模型,考察了基膜致密层有效孔隙率ε/τ、努森扩散系数K_0以及涂层厚度等对复合膜传质阻力的影响。
     对采用RTV-107/PVDF自制中空纤维膜组件的有机蒸气回收工艺过程,建立了逆流设计型数学模型。研究了原料气压力、透过气压力、原料气处理量、透余气浓度等不同操作条件和分离要求对膜面积的影响。并对中空纤维复合膜有机蒸气回收的气体膜分离中试装置进行了初步设计,提出了中试装置设想和实验流程。
Volatile organic compounds (VOCs) produce a large amount of waste emissions when the processing plants load, unload the oil onto the tanks, fuel tankers and oil tankers. The recovery of Volatile organic compounds has been under scrutiny. However, most existing techniques for organic vapor emissions control have so far proved to be unsatisfactory. Membrane technology which has high efficiency, economy, simple operation and no secondary pollution is expected to provide an alternative to the recovery of VOCs. In this study, the preparation of hollow fiber composite membranes, gas membrane separation and the mathematic model of mass transfer were investigated.
     Firstly, the hollow fiber composite membranes were prepared by dip-coating method with 4 kinds of hollow fibers as the substrate layer, and 3 kinds of silicone rubbers as the coating layer material. The effects of some factors, which include the silicone rubber, catalyst and cross-linker concentration of composite membrane on gas separation performance were discussed. The heating treatment was applied to enhance the separation performance of some membrane, which shows that the physical structure of base membranes has effect on the separation performance of composite membrane. The suitable conditions for heating treatment and preparing the composite membrane were found, and the composite membrane of RTV-107/PVDF got the best performance with the base membrane heating treatment under 393.2K and 12 minute. The structure and properties of silicone rubber, base membrane and hollow fiber composite membranes were analyzed by SEM, IR and XPS methods.
     Secondly, the effects of feed pressure, feed flow rate, feed concentration, permeate pressure and operating temperature on the gas separation performance also investigated. The permeabilities of n-hexane and n-heptane were 1.4×10~(-7)、1.5×10~(-7) mol/(m~2·s·Pa) respectively and the separation factors of n-hexane/nitrogen and n-heptane/nitrogen could be 90、474 respectively.
     The third, filled-type composite membrane was prepared. The effect of species and amount of filling agents on the gas separation performance was also discussed. The permeabilitiy of n-heptane and the separation factor of n-heptane/nitrogen were improved when the composite membrane was filled with filling agents. Otherwise, the mechanical performance of silicone rubber filled with suitable fillings was increased. Then a two-layer model based on DGM model was presented to describe the influence of the porous support layer of the composite membrane on the gas separation performance. The effect of the base membrane structure parameters such as effective porosityε/τ, morphological parameter K_0 and the thickness of coating on gas separation properties were also discussed.
     Lastly, for RTV-107/PVDF hollow fiber membrane, a countercurrent-flow design model was established which can describe VOCs/N_2 separation process. This mathematical model was based on the gas linear flow rate and could be applied in more gas separation processes, which was better than the model in most references. The simulation using the model is performed by changing the operating conditions and the optimum operating factors and the required membrane area are investigated. Then the design proposal of this technique for industrial application was brought forward.
引文
[1]刘茉娥,陈欢林,新型分离技术基础,杭州:浙江大学出版社,1999,4
    [2]时均,袁权,高从堦,膜技术手册,北京:化学工业出版社,2001
    [3] Marcel Mulder(荷兰),李琳译,膜技术基本原理(第2版),北京:清华大学出版社,1999
    [4] Matson S L, Lopez J, Quin J A, Separation of gases with synthetic membranes, Chem. Eng. Sci., 1983, 38: 503-524
    [5] Jay M S, Henis, Mary K, et al, A novel approach to gas separation using composite hollow fiber membranes, Sep. Sci. Tech., 1980, 15(4): 1059~1068
    [6] Jay M S, Henis, Mary K, et al, Composite hollow fiber membranes for gas separation :The resistance model, J. Membr. Sci., 1981, 8: 233-246
    [7] Coleman M R,Koros W J, Isomeric polyimides based on fluorinated dian hydrides and diamines for gas separation applications, J. Membr. Sci., 1990, 50: 285-297
    [8] Kondo T, New Developments in Gas Separation Technology, Toray Research Center, INC, 1990, 6
    [9] Alexander S S, Polymer for gas separations: The next decade, J. Membr. Sci., 1994, 94: 1-65
    [10] Kober P A, Pervaporation, perstillation and percristallization, J. Amer. Chem. Soc., 1917, 39: 944-948
    [11] Farber L, Applications of pervaporation. Science, 1935, 82: 158-163
    [12] Binning R C, James F E, Permeation, A new commercial separation tool, Pet. Eng., 1958, 30: 14-19
    [13] Binning R C, Lee R J, Jennings J F, et al. Separation of liquid mixtures by pervaporation, Ind. Eng. Chem., 1961, 53: 45-54
    [14] Ballweg A H, Bruschke H E A, et al, Pervaporation membranes anctification columns in ethanol distilleries. proc. 5th Int. alcohl Fuel symposium. John, Mclnoe, Dunedm, Auckland, New Zealand, 1982, May: 13-18
    [15] Winston H W S , Sirkar K K, Membrane Handbook, New York, Van Nostrand Reinhold, 1992: 105-157
    [16] Rautenbach R[德],王乐夫译,膜工艺-组件和装置设计基础,第一版,北京,化学工业出版社,1998:305-306
    [17]阎勇,有机废气中VOC的回收方法,化工环保,1997,17(1):332-335
    [18] Edward C M, VOC Control:Current Practices and Future Trends, Chem. Eng. Prog., 1993, 89(7) 20-26
    [19] Edward N, Select the Best VOC Control Strategy, Chem. Eng. Prog., 1993, 89(7):28-35
    [20] Ruddy E N, Carroll L A, Select the best VOC control strategy, Chemical Engineering Progress, 1993, 89(7):28-34
    [21] Uragami T, Saito M, Takigawa K, Studies on syntheses and permeabilities of special polymer Memranes.68.Analyses of permeation and separation characteristics and new technique for separation of aqueous alcoholic solutions through alginic acid Memranes, Sep. Sci. Technol., 1989, 24(7-8):541-554
    [22] Uragami T, Saito M and Takigawa K, M, Chem. Rapid Commun, 1988, 9: 361-365
    [23]吴庸烈,刘静芝,彭曦,蒸汽渗透法有机溶剂气相脱水,膜科学与技术,1998,18(4):1-4
    [24] Tanihara N, Tanaka K, Kita N, et al, Vapor-permeation separation of water-ethanol mixtures by asymmetric polyimide hollow-fiber membrane modules, J. Chem. Eng. Jpn., 1992, 25(4):388-396
    [25] Jansen A E, Versteeg W F, Van Engelenburg B, et al, Methods to improve flux during alcohol/water azeotrope separation by vapor permeation, J. Mem. Sci., 1992, 68:229-239
    [26] Suematsu H, Harada K, Kataoka T, Separation of ethanol-water mixture by vapor permeation through cellophane membrane, Membrane,1989,14(5): 337-343
    [27] Xia B, Majumdar S, Sirdar K K, Regenerative oil scrubbing of volatile organic compounds from a gas stream in hollow fiber membrane devices, Indian Engineering and Chemical Research,1999,38:3462-3472
    [28] Poddar T K, Majumdar S, Sirkar K K, Membrane-based adsorption of VOCs from a gas stream, AICHE, 1996,429(11): 3267-3282
    [29] Obuskovic G, Poddar T K, Sirkar K K, Flow swing membrane absorption-permeation, Indian Engineering and Chemical Research,1998,37:212-220
    [30] Schofield R W, Fane A, Fell C J D, Gas and vapour transport through microporous membranes. II. Membrane distillation, Journal of Membrane Science, 1990, 53(1-2):173-185
    [31]丁孟贤,何天白编著,聚酰亚胺新型材料,北京:科学出版社,1998
    [32] Uhlhorn R J R, Keizer K, Burggraaf A J, Gas and surface diffusion in modifiedγ-alumina systems, Journal of Membrane Science, 1989, 46(2-3):225-241
    [33] Kita H, Horii K, Ohteshi Y, et al, Synthesis of a zeolite NaA membrane forprevaporation of water/organic liquid mixtures, J. Mater. Sci. Lett., 1995, 14:206
    [34] Sano T, Yanagishito H, Kiyozemi Y, et al, Separation of eethanol/water mixture by sillicatite membrane on pervaporation, J. Membr. Sci., 1994, 95:221
    [35]刘丽,聚合物膜中水蒸气渗透行为及脱湿过程研究[学位论文],中国科学院大连化学物理研究所,2001
    [36] Funke H H, Argo A M, Falconer J L, et al, Separation of cyclic, branched, and linear hydrocarbon mixtures through silicalite membranes, Ind. Eng. Chem. Res.,1997,36:137
    [37] Blume I, Schwering P J F, Mulder M H V, et al, Vapour sorption and permeation properties of poly(dimethylsiloxane) films, J. Membr. Sci., 1991, 61:85
    [38] Flory P J, Thermodynamics of high polymer solutions, J. Chem. Phys., 1942,10:51-61
    [39] Huggins M L, Solutions of long chain compounds, J. Chem. Phys., 1942, 46:151-158
    [40] Fels M, Mhuang R Y, Diffusion coefficients of liquids in polymer membranes by a desorption method, J. Appl. Poly. Sci., 1970, 14: 532-536
    [41] Oishi T, Prausnitz J M, Estimation of solvent activities in polymer solutions using a group-contribution method, Ind. Eng. Chem. Process. Des., 1978, 17(3):333-339
    [42] Zimm B H, Lundburg J L, Sorption of vapors by high polymers, J. Phys. Chem., 1956,60:425
    [43] Henis J M S, Tripodi M K, A novel approach to gas separation using composite hollow fiber membranes, Separation Science and Technology, 1980, 15(4): 1059-1068
    [44] Henis J M S, Tripodi M K, Composite hollow fiber membranes for gas permeation: The resistance model method, Journal of Membrane Science, 1981, 8(2):233-246
    [45] Henis J M S, Tripodi M K, Multicomponent membranes for gas separations, US Patent 4 230 463, 1977
    [46] Browall W R, Salemme R M, Laminated porous/nonporous membranes, US Patent 3 874 986, 1975
    [47] Chung T S, Kafchinski E R, Vora R, Development of a defect-free 6FDA-durene asymmetric hollow fibre and its composite hollow fibers, Journal of Membrane Science, 1994, 88(1):21-36
    [48] Petersen J, Pienemann K V, Novel polyamide composite membranes for gas separation prepared by interfacial polycondensation, Journal of Applied Polymer Science, 1997, 63(12):1557-1563
    [49] Oh S J, Zurawsky W P, Gas permeation through poly(dimethysiloxane)-plama polymer composite membrane, Journal of Membrane Science, 1996, 120(1): 89-99
    [50] Kesting R E, Frizsche A K, Cruse C A, et al, Second-generation polysulfone gas separation membranes. I. The use of Lewis acid. Base complexes as transient templates to increase free volume, Journal of Applied Polymer Science, 1990, 40(9-10):1557-1574
    [51] Kesting R E, Frizsche A K, Murphy M K, et al, Process for forming asymmetric gas separation membranes having graded density skins, US Patent 4 871 494, 1989
    [52] Mohammadi A T, Matsuura T, Sourirajan S, Gas separation by silicone-coated dry asymmetric aromatic polyamide membranes, Gas Separation & Purification, 1995, 9(3):181-187
    [53] Mohammadi A T, Gas separation by silicone-coated dry asymmetric aromatic polyamide membranes, Fuel and Energy Abstracts, 1995, 36(6):416
    [54] Wang D L, LI K, TEO W K, Gas Permselection Properties in Silicone-Coated Asymmetric Polyethersulfone Membranes, Journal of Applied Polymer Science, 1997, 66(1):837-846
    [55] Shieh J J, Chung T S, Cellulose nitrate-based multilayer composite membranes for gas separation, Journal of Membrane Science, 2000, 166 (2):259-269
    [56] Browall W R, Method for sealing breaches in multi-layer ultrathin membrane composite, US Patent 3 980 456, 1976
    [57] Lundy K A, Cabasso I, Analysis and construction of multilayer composite membranes for the separation of gas mixtures, Industrial Engineering Chemical Research, 1989, 28(6):742-756
    [58] Chung T S, Kafchinski E R, Spak M, et al, High performance PAN composite membranes, US Patent 5 324,430, 1994
    [59] Shieh J J, Chung T S, Paul D R, Study of multi-layer composite hollow fiber membranes for gas separation, Chemical Engineering Science, 1999, 54(5): 675-684
    [60] Chung T S, Shieh J J, Lau W W Y, et al, Fabrication of multi-layer composite hollow fiber membranes for gas separation, Journal of Membrane Science, 1999, 152(2):211-225
    [61] Elyashevich G K, Rosova E Y, Kuryndin I S, Properties of multi-layer composite membranes on the base of polyethylene porous films, Desalination, 2002, 144:21-26
    [62] Chung T S, High performance pan composite membranes, US Patent 5,324,430, 1994
    [63] Fouda A, Chen Y, Bai J, et al. Wheatstone bridge model for the laminated poly-dimethylsiloxane/polyethersulfone membrane for gas separation, Journal of Membrane Science, 1991, 64(2):263-271
    [64] He G, Huang X, Xu R, et al, An improved resistance model for gas permeation in composite membranes, Journal of Membrane Science, 1996, 118(1):1-7
    [65]贺高红,气体透过高分子膜的机理及其应用,高分子材料科学与工程, 1993, 9(4):97-102
    [66]黄向阳,胡伟,徐仁贤,普适性气体阻力复合膜模型,膜科学与技术,1996,16(1):39-48
    [67]陆文军,刘丽,王海等,非对称膜及其复合膜结构参数的确定,高分子材料科学与工程,1995, 11(1):7-12
    [68]陆文军,刘丽,王海等,非对称膜及其复合膜结构参数对气体渗透影响的研究,高分子材料科学与工程,1994,5(1):96-102
    [69] Kimmerle K, Hofmann T, Strathmann H, Analysis of gas permeation through composite membranes, Journal of Membrane Science, 1991, 61(1):1-17
    [70] Ashworth A J, Relation between gas permselectivity and permeability in a bilayer composite membrane, Journal of Membrane Science, 1992, 71(1-2):169-173
    [71] Robeson L M, Smith C D, Langsam M, A group contribution approach to predict permeability and permselectivity of aromatic polymers, Journal of Membrane Science, 1997, 132(1):33-54
    [72] Chung T S, Eddy S P L, Shieh J-J, A simple approach to estimate gas permeability and selectivity of extremely thin and brittle materials, Chemical Engineering Science , 2000, 55:1093-1099
    [73] Karode S K, Patwardhan V S, Kulkarni S S, An improved model incorporating constriction resistance in transport through thin film composite membranes, Journal of Membrane Science, 1996, 114(2):157-170
    [74] Tessendorf S, Gani R, Michelsen M L, Aspects of modeling, design and operation of membrane-based separateion processes for gaseous mixtures, Computers Chemical Engineering, 1996, 20:S653-S658
    [75] Baker R W, Yoshioka N, Mohr J M, Separation of organic vapours from air, Journal of Membrane Science, 1987,31:259
    [76] Paul H, Philipen C, Gerner F J, Strathmann H, Removal of organic vapour from air by selective membrane permeation, Journal of Membrane Science, 1988,36:363
    [77] Deng S, Sourirajan A, Matsuura T, Study of volatile hydrocarbon emission control by and aromatic poly(ether imide) membrane, Indian Engineering and Chemical Research, 1996,34:4494
    [78] Pinnau I, Wijmans J G, Blume I, Journal of Membrane Science, 1988,37:81
    [79] Behling R D, Ohlrogge K, Peinemann K V, The separation of hydrocarbons from waste vapour streams, AIChE Symposium Series, 1988, 272 (48):68
    [80] Kai T, Yamaguchi T, Nakao S, Preparation of organic/inorganic composite membranes by plasma-graft filling polymerization technique for organic-liquid separation, Industrial and Engineering Chemistry Research, 2000, 39(9):3284-3290
    [81] Ellinghorst G, Steinhauser H, Hübner A, Improvement of PVAP Plant by Choice of PVA or Plasma Polymerized Membranes Proc. 6th Int. Conf. on PVAP Processes in the Chemical Industry 1992, Ottawa
    [82]丹霞,王保国,陈翠仙,等离子体技术在膜分离领域的应用,膜科学与技术,2002,22(4):65-70
    [83] Sohn W I, Ryu D H, Oh S J, A study on the development of composite membranes for the separation of organic vapors, Journal of Membrane Science, 2000 (175): 163-170
    [84] Yamaguchi T, Nakao S, Kimura S, Plasma-graft filling polymerization for organic liquid mixtures, Macromolecules, 1991, 24:5522-5527
    [85] Ruskov T, Turmanova S, Kostov G, Study of IR and Mossbauer spectroscopy of grafted metal complex of poly(acrylic acid) and on to low density poly(ethylene) and on to poly(tetrafluroethylene), Polym., 1997, 33(8): 1285-1288
    [86] Nakada S, Sawatari C, Tamura K, et al, Hyperbranched modification of unsaturated side chains of polyethylene introduced byγ-ray irradiation under a 1,3-butadiene atmosphere, Polym. Sci., 2001, 279:754-762
    [87]彭福兵,中空纤维复合膜回收氢气过程研究,硕士生论文,天津大学,2004
    [88] Leeman M, Eisenberger G, Strathmann H, Vapor permeation for the recovery of organic solvents from waste air streams; separation capacities and process optimization, J. Membrane Science, 1996,113:313
    [89] Cha J S, Malik V, Bhaumik D, Removal of VOCs from waste gas streams by permeation in a hollow fiber permeator, J. Membrane Science, 1997, 128: 195
    [90] Bhaumik D, Majumdar S, Sirkar K K, Pilot-plant and laboratory studies on vapor permeation removal of VOCs from waste gas using silicone-coated hollow fibers, Journal of Membrane Science, 2000, 167: 107
    [91] Obuskovic G., Majumdar S, Sirkar K K, Highly VOC-selective hollow fiber membranes for separation by vapor permeation, Journal of Membrane Science, 2003,217: 99-116
    [92]贺高红,徐仁贤,朱葆琳,中空纤维膜气体分离器的数学模型,化工学报,1994,45(2):162-167
    [93]曹义鸣,王仁文,中空纤维膜N2-H2分离器分离过程的数学模型,膜科学与技术,1992,12(1):42-47
    [94] Kaldis S P, Kapantaidakis G C, Papadopoulos T I, et al, Simulation of Binary Gas Mixtures Separation in Hollow Fiber Asymmetric Membranes by Orthogonal Collocation, J. Membr. Sci., 1998, 142(1): 43
    [95] Kaldis S P, Kapantaidakis G C, Sakellaropoulos G P, Simulation of Multicomponent Gas Separation in a Hollow-Fiber Membranes by Orthogonal Collocation - Hydrogen Recovery from Refinery Gases, Journal of Membrane Science, 2000, 173(1-2), 61-71
    [96]朱葆琳,蒋国梁,中空纤维氮/氢分离器性能计算方法,化工学报,1987,38(3):281-292
    [97] Weller S, Steiner W A, Engineering aspects of separation of gases, Chem. Eng. Prog., 1950, 46:585
    [98] Baker R W, Simmons V L, Kaschemekat J, et al, Membrane systems for VOC recovery from air streams, Filtration and Separation, 1994 ,5:231-235
    [99] Baker R W, Lokhandwala K A, Jacobs M L, et al, Recover Feedstock and Product from Reactor Vent Streams, Chem. Eng. Prog., 2002, 96:51
    [100] Ohlrogge, K, Wind J, Behling R D, Off-gas purification by means of membrane vapor separation systems, Sep. Sci. and Technol., 1995,30: 1625-1638
    [101] Feng X, Sourirajan S, Tezel F H, Separation of volatile organic compound/nitrogen mixtures by polymeric membranes, Ind. Eng. Chem. Res., 1993,32: 533-539
    [102] Ludgrada, B, Krzysztof W, Marek T, Cost analysis for the removal of volatile organic compounds from air using hybrid systems: membrane separation/condensation versus membrane separation/combustion, Chem. Eng. Proce., 1999,38: 273-279
    [103] Ohlrogge, K, Brockmoller J, Wind J, Engineering aspects of the plant design to separate volatile hydrocarbons by vapor permeation, Separation Science and Technology, 1993,28(3):227-240
    [104]日本电工株式会社,有机蒸汽膜分离回收装置,海得能公司内部资料,1997
    [105]胡伟,李晖,刘桂香,等,有机蒸气/氮气膜分离的研究,膜科学与技术,1997,17(3):25-29
    [106]刘桂香,李晖,曾理,等,用于有机蒸气分离的PAN-SR膜的研究,膜科学与技术,1997,17(5):21-27
    [107]李晖,刘富强,曹义鸣,等,膜法分离有机蒸气/氮气混合气的过程研究,膜科学与技术,2000,20(2):39-42
    [108]赵之平,王志,王世昌,现代分析测试技术在膜结构与性能研究中的应用,膜科学与技术,2001,21 (6):34-39
    [109]晨光化工研究院有机硅编写组,有机硅单体及聚合物,第一版,北京:化学工业出版社,1986
    [110]荆煦瑛,陈式,么恩云,红外光谱实用指南,第一版,天津:天津科学技术出版社,1992
    [111]张叔良,易大年,吴天明,红外光谱分析与新技术,第一版,北京:中国医药科技出版社,1993
    [112]王典芬,X-射线光电子能谱在非金属材料研究中的应用,武汉:武汉大学出版社,1994
    [113]王建琪,吴文辉,冯大明,电子能谱学引论,北京:国防工业出版社,1992
    [114] Hennepe H J C, Bargeman D, Mulder M H V, et al, J. Membrane Scirnce, 1987, 35:39
    [115] Kimura S, Hirose T, Theory of membrane permeation, in Toshima N(Ed.). Polymers for Gas Separation, VCH, New York, NY, 1992, 15-49
    [116] Pan C Y, Gas separation by high-flux, asymmetric hollow-fiber membrane, AIChE J, 1983,29: 545-552
    [117] Pinnau I, Wijmans J G., Blume I, Gas permeation through composite membranes, Journal of Membrane Science, 1988,37: 81-88
    [118] Fritzsche A K, Kruse C A, Kestion R E, Hollow fiber membranes spun from Lewis acid-base complexes: I. Structure determination by oxygen plasma ablation, J.Appl.Polym.Sci., 1990,40: 19-40
    [119] Bauer C J M, Smid J, Olijslager J, The resistance towards gas transport of the sublayer of asymmetric PPO hollow fiber membranes determined by plasma-etching, J.Membr.Sci.,1991,51: 307-320
    [120] Beuscher U, Gooding C H, Characterization of the porous support layer of composite gas permeation membranes, J.Membr.Sci.,1997,132: 213-227
    [121] Mason E A, Malinauskas A P, Gas transport in porous media: The Dusty Gas Model, Elsevier, Amsterdam, 1983
    [122] Crank J, The Mathematics of Diffusion, 2nd, Clarendon, Oxford, 1975
    [123] Barrer R M, Formal Theory of Diffusion through membranes, in Hopfenberg H B (Ed.), Permeability of Plastic Films and Coating to Gases, Vapors and Liquids, Plenum, New York, NY, 1975,113-124
    [124] Mason E A, Malinauskas A P, Evas R B, Flow and diffusion of gases in porous media, J. Chem. Phys., 1967,46:3199-3216
    [125] Evas R B, Watson G M, Mason E A, Gaseous diffusion in porous media, J. Chem. Phys., 1961, 35:2076-2083
    [126] Evas R B, Watson G M, Mason E A, Gaseous diffusion in porous media: II Effect of pressure gradients, J. Chem. Phys., 1962, 36:1894-1902
    [127] Veldsink J W, Versteeg G F, van Swaaij W P M, An experimental study of diffusion and convection of multicomponent gases through catalytic and non-catalytic membranes, J. Membr. Sci., 1994, 92:275-291
    [128] Datta R, Dechapanichkul S, Kim J S, et al, A generalized model for the transport of gases in porous, non-porous , and leaky membranes: I Application to single gases, J. Membr. Sci., 1992, 75:245-263
    [129]《化学工程手册》编辑委员会,化学工程手册,第一篇,化工基础数据,北京:化学工业出版社,1980,404-406
    [130] Carman P C, Flow of gases through porous media, Butterworth Publications, London, 1956
    [131]林刚,陈晓惠,金石,蔺恕昌,气体膜分离原理、动态与展望,低温与特气,2003,21(2):13-18
    [132]白玉沽,顾爱萍,气体膜分离的进展及在石油化工中的应用,陕西化工,2000,29(1):12-15
    [133] Tessendorf S, Gani R, Michelsen M L, Aspects of modeling, design and operation of membrane-based separateion processes for gaseous mixtures, Computers Chemical Engineering, 1996, 20(l): 653-658
    [134] Blaisdell C T, Kammermeyer K, Counter-current and co-current gas separation, Chem. Eng. Sci., 1973, 28:1249
    [135] Pinnau I, Toy L G, Transport of organic vapors through poly(1-trimethylsilyl-1-propyne), Journal of Membrane Science, 1996, 116:199-209
    [136] Lapkin A A, Roschupkina O P, Ilinitch O M, Transport of C1-C3 hydrocarbons in poly(phenylene oxides) membranes, Journal of Membrane Science, 1998, 141:223-229

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700