回收费托合成弛放气中合成原料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国石油对外依存度逐年增大,而石油进口来源高度集中、运输方式单一和国际油价波动剧烈等问题严重威胁了我国的石油安全,迫使我国建立石油战略安全体系。建立以煤炭、天然气和煤层气等为原料生产的合成气,通过费托合成工艺制合成油的技术储备,可以有效地保证我国石油战略资源安全。合成气经过费托合成工艺制备合成油的过程中,由于原料合成气中N_2、Ar等惰性气体在合成过程中不断积累,浓度会逐渐升高,造成反应物分压的降低,从而降低了原料转化率。因此为控制反应装置中惰性气体的含量,系统必须定期排出一定量的弛放气。但弛放气中含有大量合成原料,如果直接排入燃料管网会降低其价值;并且因为弛放气中不含毒害催化剂的组分,所以从弛放气中回收的H_2和CO直接返回合成装置,可以大大降低合成产品的单耗、提高过程的经济效益和产品竞争力。
     本文以费托合成弛放气为回收目标,针对弛放气的组成和压力等特点提出了先用膜分离工艺回收氢气,后用PSA工艺回收CO的综合回收过程。模拟了两种氢气分离膜组件的氢气回收过程,讨论了产品氢气浓度和渗透侧压力对回收效果和经济效益的影响,确定了氢气回收过程的操作条件:选用PI制备的膜组件,一段回收过程,渗透侧表压为100kPa。确定PSA进气压力为0.8MPag,采用5-1-1/RP VPSA回收流程。综合回收过程的H_2回收率为89.0%,CO回收率为83.4%,经济效益为3.77亿元/年,投资回收期15个月。
     针对弛放气回收过程有两个目标回收组分和排出系统物流组成的特点对回收过程进行优化,首先比较了CO吹扫膜组件和H_2吹扫PSA两种回收流程的经济效益,确定H_2吹扫PSA为较优流程。在此基础上,讨论了PSA吸附尾气回收和PSA置换尾气回收流程。结果表明:在现有的燃料气和合成气价格条件下,置换尾气回收过程有较高的经济效益。讨论了系统的处理量和稳定性,得到系统最大处理量为设计处理量的120%:并得到不同αH_2/N_2时,更换膜组件的临界点。
     目前使用的膜组件计算模型忽略了膜丝内压降,而实际膜分离过程中膜丝内压降经常是不可忽略的,本文改进了HYSYS中的Membrane Extension模块,采用更接近实际的柱塞流模型代替原有的全混流模型,计算过程增加了膜丝内径、丝外径和膜长度等变量,并把其引入Unisim Design中。采用改进的计算模块与原有的模块相比,可得到更接近实际的计算结果。
National energy safety is seriously threatened by increasing degree of dependence on foreign petrol,highly centralized imported sources of oil,single transportation mode and acute fluctuation of the international oil's price,which force our country to construct petrol security strategy system.To establish the technical reserve of synthesis oil technology by F-T synthesis could effectively ensure national petrol strategic security.The Inert gas such as N_2, Ar,CH_4 et al could accumulate during synthesis process.So the concentration of the inert gas increases gradually,which could decrease the partial pressure of reactants,affect the balance of the F-T synthesis reaction,and reduce the conversion rate of raw materials.Synthesis system must exhaust a certain amount of vent gas in order to control the concentration of the inert gas.The vent gas usually as fuel gas imports the fuel pipe network,which decrease the value of vent gas.H_2 and CO recovered from vent gas could directly return to the synthesis device due to the vent gas doesn't contain catalyst poison gas,so recovery H_2 and CO from vent gas could effectively reduce the unit consumption of synthesis product,increase the economic benefit of recovery process and product competition.
     According to the characteristics of vent gas's pressure and composition,this paper proposed the integrated recovery process composed of membrane separation and PSA. Unisim Design software is utilized to simulate the recovery process of membrane modules prepared by PSf and PI.The effects of product hydrogen concentration and pressure in the permeate on hydrogen recovery rate and economic benefit have been discussed.The initial condition of hydrogen recovery is choosing membrane module made from PI with one-stage recovery process,and 100kPag as the pressure in the permeate.The entrance pressure of PSA is determined according to the pressure of fuel pipe network and CO as the adsorbed gas,and the PSA-CO recovery process adopts 5-1-1/RP VPSA technique.In the whole process,the recoveries of H_2 and CO are 89.0%and 83.4%respectively,the economic benefit is 3.77 billion yuan per year and the investment payback period is 15 months.
     The integrated recovery process has been optimized according to the recovery process characteristics and components of material flow exhausted from process.First,the process economic benefits of the CO purging membrane module and H_2 purging PSA have been compared and the process of H_2 purging PSA is the better scheme.The processes of adsorption tail gas recovery and replacement gas recovery have been discussed on above basis. The results show that replacement gas recovery process has higher economic benefit,about 3.87 billion yuan per year in present prices of synthesis gas and fuel gas,the recoveries of H_2 and CO are 89.0%and 93.5%respectively and the investment payback period is 15 months. The maximum capacity and stability of recovery process have been discussed,the results show that the maximum capacity is 1.2 times as much as the designed capacity.In the condition of present prices of membrane modules and synthesis gas,whenαH_2/N_2 is less than 95,the economic benefit of membrane modules replacement is higher.The product hydrogen concentration is greatly affected by CO_2 concentration of vent gas,but the effect ofαCO_2/N_2 on hydrogen recovery process can be neglected.
     The pressure drop in hollow-fiber membrane is necessary factor in actual application. Membrane Extension module of Unisim Design has been improved because the pressure drop in hollow-fiber membrane was neglected in the initial module.Improved module adds parameters such as inner diameter,external diameter and length of hollow-fiber membrane. Module adopts differential calculation equations and four-order Runge-Kutta method. Improved module compared with initial module could obtain calculation results that are more close to experimental values.
引文
[1]BP Statistical Review of World Energy 2008http://www.bp.com/productlanding.do?categoryId=6929&contentId=7044622.
    [2]孙超.我国石油资源现状及引进石油草可行性的初步研究[J].资源环境与发展,2008(4):26-28.
    [3]刘团会.煤间接液化制油的研究[D].陕西:西北大学,2007.
    [4]刘镜远.合成气工艺技术与设计手册[M].北京:化学工业出版社,2002.
    [5]Sheldon R.A.,梁玉德等译.从合成气生化学品.北京:化学工业出版社,1991.
    [6]相宏伟,唐宏青,李永旺.煤化工工艺技术评述与展望[J].燃料化学学报,2001,29(4):289-297.
    [7]Sie S T.Process development and scale up Ⅳ.Case history of the development of a Fisher-Tropsch synthesis process[J].Rev.Chem.Eng.,1998,14(2):109-157.
    [8]Wender I.Reactions of synthesis gas[J].Fuel Processing Technology,1996,11(4):385-393.
    [9]B.Jager,R.Espinoza.Advances in low temperature Fischer-Tropsch synthesis [J].Catalysis Today,1995,23:17-28.
    [10]A.Jess,R.Popp,K.Hedden.Fischer-Tropsch synthesis with nitrogen-rich syngas Fundanentals and reactor design aspects[J].Applied catalysis,1999,186:321-342.
    [11]白尔铮.费托合成燃料的经济性及发展前景[J].化工进展,2004,23(4):370-374.
    [12]王兆祥.生物重油重整制氢/富氢合成气以及费托合成液体燃料的合成[D].合肥:中国科学技术大学,2007.
    [13]Tomlison T.R..Comparison of Hydrogen Recovery Methods.Oil & Gas Journal,1990,88(3):35-36.
    [14]张炳标.膜分离法回收合成氨弛放气中的氢气[J].低温与特气,2003,21(1):23-25.
    [15]化学工业部西南化工研究院.变压吸附法从合成甲醇弛放气中提氢[P].中国,88105937.41990-3-14.
    [16]乔治洛德方法研究和开发液化空气有限公司.从富氢原料气体生产氢气的方法和设备[P].中国,97107640.5,1999-3-3.
    [17]成都华西化工科技股份有限公司.从含有烃类的混合气中分离回收乙烯、乙烷、丙烷和氢气的方法[P].中国,00113109.5,2002-3-6.
    [18]成都新华化工研究所.从富氢废气中提取氢的变压吸附法[P].中国,97107640.5,1997-8-21.
    [19]吕昌忠.新型四塔变压吸附提纯氢气过程研究[J].天津:天津大学,2002.
    [20]中国石油化工股份有限公司巴陵分公司.一种从工业尾气中回收氢气的方法[P].中国,02139826.7,2004-6-30.
    [21]中国科学院广州能源研究所.从含氢混合气体中回收和提纯氢气的方法[P].中国,0013036.X,2002-7-24.
    [22]气体产品与化学公司.通过吸附膜进行氢气的回收[P].中国,95115910.0,1996-5-29.
    [23]时钧,袁权,高从增.膜技术手册[M].北京:化学工业出版社,2001.
    [24]大连欧科膜技术工程有限公司.膜法回收甲醇合成过程放空气中氢气的系统[P].中国,200510046052,2005-11-9.
    [25]中国石油化工总公司.用膜分离技术从催化干气中回收氢气的装置[P].中国,93193019.6.1994-9-28.
    [26]谢承志.用膜分离工艺提取催化裂化干气中的氢气[J].炼油设计,1999,29(6):26-28.
    [27]Raymond F Malon,St Charles,Clint A Cruse,et al.Asymmetric gas separation membranes having improved strength[P].US,US 5013767.1989.
    [28]中国石油化工股份有限公司.从烯烃-氢混合物中分离烯烃和氢的方法[P].中国,200410086381.6,2006-5-10.
    [29]Henis J.M.S,Tripodi M.K.Multicomponent membranes for gas separations[P].US,4230463,1980-10-28.
    [30]刘茉娥.膜分离技术[M].北京:化学工业出版社,1998,88-109.
    [31]彭福兵.中空纤维复合膜回收氢气分离过程研究[D].天津:天津大学,2003.
    [32]谢振威.中空纤维复合膜分离氢气的实验研究[D].天津:天津大学,2005.
    [33]董子丰.氢气膜分离技术的现状[J].特点和应用,工厂动力,2000(1):25-35.
    [34]Gardner R.G.,Crane R.A.,Hannan J.F..Hollow fiber permeator for separating gas [J].Chemical Engineering Progress,1977,73(10):76-78.
    [35]Jay M.S.,Henis,Mary K.,et al.A novel approach to gas separation using composite hollow fiber membranes[J].Sep.Sci.Tech,1980,15(4):I059-1068.
    [36]Jay M.S.,Henis,Mary K.,et al.Composite hollow fiber membranes for gas separation:The resistance model[J].Jouranl of Membrane Science,1981,8:233-246.
    [37]陈祥俭.高功能聚砜分离膜的种类、制备及应用[J].合成树脂及塑料,1985,(4):55-58
    [38]黄旭,邵路,孟冷辉等.聚酰亚胺基气体分离膜的改性方法及其最新进展[J].膜科学与技术,2009,29(1):101-107.
    [39]Kazuhiro T,Islam M N,Masayoshi K,eta al.Gas permeation and separation properties of sulfonated polyimide membrane[J].Polymer,2006(47):4370-4377.
    [40]Liu Y,Chun T S,Wang R.Effects of amidation on gas permeation properties of polimide membranes[J].J Membr Sci,2003,214:83-92.
    [41]Ye Zhen,Chen Yong,Li Hui,et al.Preparation of a novel polysulfone/polyethylene oxide/silicone rubber multilayer composite membrane for hydrogen-nitrogen separation [J].Materials Chemistry and Physics,2005,94:288-291.
    [42]白跃华.PDMS/PS中空纤维复合膜回收催化裂化干气中氢气的实验与理论研究[D].天津:天津大学,2005.
    [43]Kapantaidakis G C,Kaldis S P,Dabou X S,et al.Gas permeation through PSF-PI miscible blend membranes[J].Journal of Membrane Science,1996,110:239-247.
    [44]中西俊介,楠木喜博.聚酰亚胺中空纤维分离膜[J].高分子纤维与应用,1996,(7):27-33.
    [45]沈立强,徐康志,徐又一.聚酰亚胺中空纤维膜研究进展[J].功能材料,2001,31(增刊):2-4.
    [46]Chun T S,Shao L,Shi T P.Sulface modification of polyimide membranes by diamines for H_2 and CO_2 separation macromol[J].Rapid Commun,2006,27:998-1003.
    [47]Cao C,Chun T S,Liu Y,et al.Chemical cross-linking modification of 6FDA-2,6-DAT hollow fiber membranes for natural gas separation[J].J Membr Sci,2003,216:257-268.
    [48]戴服管,游家骊.工业废气中一氧化碳的分离及利用[J].石油化工,1989,18:128-134.
    [49]N.N.Dutta,G.S.Patil.Development in CO separation[J].Gas.Sep.Puirf,1995,9(4):277-283.
    [50]R.W.Triebe,F.H.Tezel.Adsorption of nitrogen,carbon monoxide,carbon dioxide and nitic oxide on molecular sieves[J].Gas.Sep.Purif,1995,9(4):223-230.
    [51]朱道藩.Cosorb法分离提纯c0[J].精细化工,1986,3:42-46.
    [52]刘志军.变压吸附法从合成气中分离一氧化碳的基础研究[M].南京:南京工业大学,2006.
    [53]谢有畅,张佳平,童显忠等.一氧化碳高效吸附剂CuCl/分子筛[J].高等学校化学学报,1997,18(7):1159-1165.
    [54]R.T.Yang.王树森等译.吸附法气体分离[M].北京:化学工业出版社,1991.
    [55]Peng X.D,Golden T C.Pearlstein R M,et al.CO Adsorbents Based on the Formation of a Supported Cu(CO)Cl Complex[J].Langmuir,1995,(11):534-537.
    [56]Triebe R.W.,Tezel F.H..Adsorption of nitrogen,carbon monoxide,carbon dioxide and nitric oxide on molecular sieves[J].Gas Sep Purif,1995,9(4):223-230.
    [57]化学工业部西南化工研究设计院.从含一氧化碳混合气中提纯一氧化碳的变压吸附法[P].中国,97107737.1,2001-10-31.
    [58]化学工业部西南化工研究设计院.从含一氧化碳混合气中提纯一氧化碳的变压吸附法[P].中国,97107738.X,1999-5-5.
    [59]胡国静.甲醇合成装置的模拟与优化[M].北京:北京化工大学,2006.
    [60]彭林.综合回收炼厂气中氢气及轻烃工艺的设计研究[D].大连:大连理工大学,2008.
    [61]朱开宏.化工过程流程模拟[M].北京:化学工业出版社,1993.
    [62]Motarrd R.L.,Shachem M.,Rosen E.M.Steady State Chemical Process Simulation [J].AIChE,1975,21(3):417.
    [63]Unisim Design用户手册
    [64]曹义鸣.王仁文.中空纤维膜N2-H2分离器分离过程的数学模型.膜科学与技术[J],1992,12(1):42-47.
    [65]贺高红.徐仁贤.朱葆林.中空纤维膜气体分离器的数学模型[J].化工学报,1994,45(2):162-167.
    [66]贺高红.中空纤维膜气体分离过程的研究[D].大连:中国科学院大连化学物理研究所,1993.
    [67]S.P.Kaldis,G.C.Kapantaidakis,T.I.Papadopoulo,eta.Simulation of binary gas separation in hollow fiber asymmetric membranes by orthogonal collocation[J].Journal of Membrane Scinece,1998(142):43-59.
    [68]S.P.Kaldis,G.C.Kapantaidakis,G.P.Sakellaropoulos.Simulation of multicomponent gas separation in a hollow fiber membrane by orthogonal collocation-hydrogen recovery from refinery gases[J].Journal of Membrane Scinece,2000(173):61-71.
    [69]A.Sarma Kovvali.S.Vemury.Wudneh Admassu.Modeling of Multicomponent Countercurrent Gas Permeators[J].Ind.Eng.Chem.Res,1994(33):896-903.
    [70]James Marriott,Eva Sorensen.A general approach to modelling membrane modules [J].Chemical Engineering Science,2003(58):4975-4990.
    [71]Happel J.Viscous Dow relative to an array of vylinders[J].AIChE.J,59(5):174-177.
    [72]In W.S.,W.Ho,K.K.Sirkar.Membrane handbook[M].New York:Van Nostrand Reinhold.
    [73]张元秀,李贝贝,蔡培等.气体膜分离数学模型建立及软件开发[J].计算机与应用化学,2008,25(2):137-140.
    [74]Mohammad H.,MuradChowdhury,Xianshe Feng et al.A New Numerical Approach for a Detailed Multicomponent Gas Separation Membrane Model and AspenPlus Simulaiton [J].Chem.Eng.Technol,2005,28(7):773-782.
    [75]王鹏宇.气体分离膜过程HYSYS模拟系统的研究[D].大连:大连理工大学,2006.
    [76]聂飞.贺高红.窦红等.HYSYS中膜分离单元的优化.第二届全国石油和化工行业节能节水技术会议论文集[C].北京:化学工业出版社,2008.
    [77]Butcher,J.C..The mumerical analysis of ordinary differential equations:Runge-Kutta and general linear methods[M].Chichester,1987.
    [78]Arich Iserles.微分方程数值分析基础教程[M].北京:清华大学出版社,2005.
    [79]何光渝等.Visual C++常用数值算法集[M].北京:科学出版社,2002.
    [80]Jeri R.,Hanly,ElliotB.Koffman.工程专业C程序设计[M].北京:科学出版社,2005。
    [81]何光渝等.VB常用算法大全[M].西安:西安电子科技大学出版社,2001.
    [82]郑辉东,赵素英,王良恩.用中交配置法求解中空纤维气体膜分离过程的数学模型[J].计算机与应用化学.2005,22(1):69-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700