双膜耦合分离器的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在中空纤维膜分离器内进行气体分离时,慢气在原料侧的富集降低了快气的传质推动力,对快气的渗透产生不利影响。提出使用双膜耦合分离器来减弱此影响,进而提高膜过程的分离效率。建立了描述双膜耦合分离器在全混流,并流,逆流三种流型下分离混合气体的数学模型,并把求解过程嵌入到UniSim软件中进行求解,和文献中实验值相比较,逆流模型计算值吻合最好。
     以回收煤气化过程中一氧化碳变换气里所含的H:为背景,通过计算分析了各参数对双膜耦合分离器性能的影响。结果表明,逆流比并流更有利于气体的分离;适当增大两膜的膜面积比有利于H2的回收,同时也证明双膜耦合分离器的性能优于单膜分离器;增大原料气的进料压力可以提高H2在PEI膜渗透侧的浓度和回收率,有利于H2的回收;提高双膜耦合分离器中两种膜的性能(增大渗透速率和分离系数)可以显著提高膜分离器的分离性能。比较了两单膜分离器串联和双膜耦合分离器分离混合气体的性能,结果表明当膜面积比为0.6时,对于H2的回收,双膜耦合分离器可以得到最高的回收率,但PEO-PEI串联可以得到最高的氢气浓度。
     针对国内某大型综合炼油化工企业内的多股炼厂尾气,开发出了炼厂尾气综合回收工艺来回收其中的氢气和轻烃等组分。该工艺分为氢气回收、轻烃回收和双膜耦合分离三个部分,相关技术主要包括压缩冷凝、气体脱硫、变温吸附脱水、氢膜分离、有机蒸汽膜分离、精馏等。年可回收氢气6.1×107Nm3、液化石油气13.1万吨、轻油1万吨,工艺中分离出的各股物料的质量满足该炼厂将其作为产品或生产原料的要求,通过初步的经济性分析该工艺年经济效益可达2.8×108元。
     把双膜耥合分离器用于压缩冷凝不凝气的回收,和多级膜串联方案相比,轻烃的回收率由82.8%t增大到98.7%,对于20万吨/年炼厂气的回收,年经济收益可增加919万元。使用三种方案回收PSA解吸气中的氢气,双膜耦合分离器方案和单PEI膜方案相比,PEI膜渗透气中氢气浓度由74.38%增加到80.12%,氢气回收率由48.24%增加到54.66%,但PEO-PEI串联方案可以得到最高的氢气浓度和回收率,分别为83.46%和56.18%。
In the hollow fiber membrane separator for gas separation, the enrichment of slow gas in the feed side reduced mass transfer impetus of fast gas, which had an adverse effect on the permeability of fast gas. It was proposed that using double membrane coupling separator to reduce this effect, and to improve the separation efficiency of the membrane process.The mathematical model was established to express gas separation process in double membrane coupling separator with three flow patterns, which were perfect mixing, cocurrent and countercurrent. The solving procedure was embedded into the UniSim software for solving. Compared the model calculation values with the experimental values in the literature, countercurrent flow pattern was preferable.
     Choose the recovery of H2from carbon monoxide shift gas in coal gasification as background, the influence of various parameters on the performance of double membrane coupling separator was analysised.The results show that:countercurrent is more advantageous to the gas separation than the cocurrent flow pattern; increasing the membrane area ratio is in favor of H2recovery, and the performance of double membrane coupling separator is better than the single membrane separator; increasing the feed pressure can increase the H2concentration and recovery rate in the permeate side of the PEI membrane; improving the performance of two kinds of membranes in double membrane coupling separator (increase the permeation rate and separation coefficient) can improve the membrane separation performance. The performance of two single membrane separator in series scheme was compared with the double membrane coupling separator for separating mixed gas.the results showed that for recovery of H2, double membrane coupling separator can get the highest recovery rate, but the PEO-PEI series can get the highest molar content.
     A comprehensive recovery process was developed to recover hydrogen and light hydrocarbon from refinery vent gases in a large petrochemical plant. The process composed of three parts:hydrogen recovery, light hydrocarbon recovery and multistage membrane separation. The technology used in the process included compression/condensation, gas desulfurization, TSA dehydration, hydrogen membrane separation, VOC membrane separation and distillation. The annual production of H2, LPG, and light petroleum are6.1×107Nm3,1.31×105ton, and1×104ton respectively. The quality of the materials separated through the process meets the requirement that they can be used as products or production materials by the plant. Through the primary economic analysis, the annual economic benefit of the process reached2.8×108yuan.
     Double membrane coupling separator was used for uncondensed gas recovery, the light hydrocarbon recovery rate increased from82.8%to98.7%compared with multistage membrane separation, for the200000tons/year refinery gases recovery, the annual economic benefits increased9.19million yuan. Three schemes was used to recover H2from PSA purge gas, compared the PEI membrane separator scheme with the double membrane coupling separator scheme, the H2concentration increased from74.38%to80.12%, H2recovery rate from48.24%to54.66%, but the PEO-PEI series scheme get the highest H2concentration and recovery rate of83.46%and56.18%respectively.
引文
[1]RICHARD B. Future directions of membrane gas-separation technology[J]. Membrane Technology,2001,138:5-10.
    [2]STERN S A. Polymers for gas separations:the next decade[J]. Journal of Membrane Science,1994,94(1):1-65.
    [3]WIJMANS J G, BAKER R W. The solution-diffusion model:a review[J]. Journal of Membrane Science,1995,107(1-2):1-21.
    [4]李旭祥.分离膜制备与应用[M].北京:化学工业出版社,2004.
    [5]BERNARDO P, DRIOLI E, GOLEMME G. Membrane gas separation:A review/state of the art[J]. Industrial Engineering Chemistry Research,2009,48:4638-4663.
    [6]XIAO Y, LOW B T, HOSSEINI S S, et al. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review[J]. Progress in Polymer Science,2009,34:561-580.
    [7]丁晓莉,曹义鸣,王丽娜等.聚酰亚胺6FDA-2mPDA及其非对称中空纤维膜的气体渗透性能[J].高等学校化学学报,2009,03(6):1240-1244.
    [8]庞洪涛.6FDA型聚酰亚胺膜材料的合成及其气体渗透性能研究[D].南京:南京理工大学,2004.
    [9]汤明,肖泽仪,史晓燕.膜技术在含烃类气体分离中的研究及前景[J].过滤与分离,2005,15(4):21-23.
    [10]王兴宏,朱海林.膜法有机蒸汽回收技术在丙烯单体回收中的应用[J].辽宁化工,2003,32(10):455-456.
    [11]BAI S, SRIDHAR S, KHAN A A. Recovery of propylene from refinery off-gas using metal incorporated ethyleellulose membranes[J]. Journal of Membrane Sc i ence,2000,174 (1):67-79.
    [12]OHNO M, OZAKI O, SATO H. Radioactive rare gas separation using a separation cell with two kinds of membrane differing in gas permeability tendency[J]. Journal of Nuclear Science and Technology,1977,14(8):589-602.
    [13]PERRIN J E, STERN S A. Separation of a helium-methane mixture in separators with two types of polymer membranes [J]. AlChe Journal,1986,32(11):1889-1901.
    [14]陈勇,王从厚,吴鸣.气体膜分离技术与应用[M].北京:化学工业出版社,2004.
    [15]Membrane Technology and Applications. Richard W. Baker:Membranes mid modules[M]. 2nd ed. Chichester:John Wiley & Sons Ltd, England,2004.
    [16]LIM S P, TAN X, LI K. Gas/vapour separation using membranes:Effect of pressure drop in lumen of hollow fibers[J]. Chemical Engineering Science, 2000,55:2641-2652.
    [17]CHUNG T S, LIN W H, ROHITKUMAR H. The effect of shear rates on gas separation performance of 6FDA-durene polyimide hollow fibers[J]. Journal of Membrane Science, 2000,167:55-66.
    [18]金大天,曹义鸣,介兴明等.多组分气体分离膜组件的数学模拟[J].石油化工,2008,37(10):1032-3041.
    [19]HE G H, MI Y L, YUE P L, et al. Theoretical study on concentration polarization in gas separation membrane processes[J]. Journal of Membrane Science, 1999,153:243-258.
    [20]MOURGUES A, SANCHEZ J. Theoretical analysis of concentration polarization in membrane modules for gas separation with feed inside the hollow-fibers [J]. Journal of Membrane Science,2005,525:133-144.
    [21]VISSER T, KOOPS G H, WESSLING M. On the subtle balance between competitive sorption and plasticization effects in asymmetric hollow fiber gas separation membranes[J]. Journal of Membrane Science,2004,252:265-277.
    [22]魏不芳,贺高红.空气膜分离过程中非理想现象的研究[J].石油化工设计,2003,20(3)54-58.
    [23]SENGUPTA A, SIRKAR K K. Ternary gas mixture separation in two membrane separators[J]. AlChe Journal,1987,33(4):529-539.
    [24]MARRIOTT J. A general approach to modeling membrane modules[J]. Chemical Engineering Science,2003,58:4975-4990
    [25]HALWAGI E. Synthesis of reverse osmosis networks for waste reduction[J]. American Institute of Chemical Engineering Journal,1992,38:1185-1198.
    [26]QI R H, HENSON M. Approximate modeling of spiral-wound gas separators[J]. Journal of Membrane Sicence,1996,121:11-24.
    [27]QI R H, HENSON M. Modelling of spiral-wound separators for multicomponent gas separations[J]. Industrial and Engineering Chemistry Research, 1997,36:2320-2331.
    [28]COKER D T, FREEMANN B T, FLEMING G K. Modeling multicomponent gas separation using hollow-fiber membrane contactors[J]. American Institute of Chemical Engineering Journal,1998,44:1289-1302.
    [29]VADAPALLI A, SEADER J D. A generalized framework for computing bifurcation diagrams using process simulation programs[J]. Computers and Chemical Engineering, 2001,25:445-464.
    [30]贺高红,徐仁贤,朱葆琳.中空纤维气体膜分离器的数学模型[J].化工学报,1994,45(2):162-167.
    [31]KOVVAI.I A S, VEMURY S, ADMASSU W. Modeling of multicomponent countercurrent gas separators[J]. Industrial and Engineering Chemistry Research,1994,33:896-903.
    [32]MARRIOTT J. A general approach to modeling membrane modules[J]. Chemical Engineering Science,2003,58:4975-4990.
    [33]HAPPEL J. Viscous Dow relative to an array of cylinders[J]. AlChe Journal,1959,5:174-177.
    [34]OBUSKOVIC G, MAJUMDAR S, SIRKAR K K. Highly VOC-selective hollow fiber membranes for separation by vapor permeation[J]. Journal of Membrane Science,2003,217:99-116.
    [35]PERRIN J E, STERN S A. Modeling of separators with two different types of polymer membranes[J]. AlChe Journal.,1985,31(7):1167-1177.
    [36]黄齐鸣,庄震万,谷和平.双膜分离器的数学模型[J].南京化工学院学报,1992,14(4):30-37.
    [37]刘殿中,王明友.HYSYS模拟技术在丁辛醇装置用能优化方而的应用[J].中外能源,2009,14(3):81-83.
    [38]冯宏超.膜法回收氯甲烷的模拟与优化[D].大连:大连理啊大学化工学院,2009.
    [39]郭宏远,左信,罗雄麟,等.基于UniSim的催化裂化分馏塔的模拟与优化[J].化学工程与装备,2008,(3):1-6.
    [4()]皮红梅,董晓燕,王红梅.HYSYS软件在芳烃装置工的应用[J].化学工业与工程,2005,22(1):77-79.
    [41]刘家洪,周平.浅析HYSYS软件在三甘醇脱水工艺设计中的应用[J].天然气与石油,2000,18(1):18-20.
    [42]沈光林,陈勇,吴鸣.国内炼厂气中氢气的回收工艺选择[J].石油与天然气化工,2003,32(4):193-196.
    [43]周奕亮,叶震,俞峰等.低压、低浓炼厂气中膜法氢回收工艺过程的研究[J].化工进展,2003,22(增刊):129-1:32.
    [44]许庆本,高健康.变压吸附提纯氢气及其影响因素[J].甘肃科披,2008,2,4(12):32-33.
    [45]李立清,曾光明,唐新村等.变压吸附技术净化分离有机蒸气的的研究进展[J].现代化工,2004,24(3):20-23.
    [46]WANG X L, CHEN G J YANG I. Y. Study on the recovery of hydrogen from refinery (hydrogen plus methane) gas mixtures using hydrate technology[J]. Science in China series B-Chemistry,2008,51(2):171-178.
    [47]张茂华.胜利油田轻烃资源的开发利用决策研究[D].大连:大连理工大学工商管理学院,2009.
    [48]李仁科.提高轻烃回收率工艺参数研究[D].西南石油学院油气储运工程
    [49]董子丰.用膜分离从炼厂气中回收氢气[J].低温与特气,1997,3:34-42.
    [50]KALDIS S P, KAOANTAIDAKIS G C, SAKELLAROPOULOS G P. Simulation of multicomponent gas separation in a hollow fiber membrane by orthogonal collocation-hydrogen recovery from refinery gases[J]. Journal of Membrane Science,2000,173(1):61-71.
    [51]刘建军,屠原祯,栾秀文等.气体膜分离在石化行业氢气分离回收中的应用[J].膜科学与技术,2005,25:11-16.
    [52]CHA J S, MALIC V, BHAUMIK D, et al. Removal of VOCs from waste gas streams by permeation in a hollow fiber separator[J]. Journal of Membrane Science, 1997,128:195-211.
    [53]VIJAY Y K, WATE S, ACHARYA N K. The titanium-coated polymeric membranes for hydrogen recovery[J]. International Journal of Hydrogen Energy,2002,27:905-908.
    [54]中国石油化工股份有限公司.从烯烃-氢混合物中分离烯烃和氢的方法[P].中国,200410086381.6,2006-5-10.
    [55]刘丽,邓卖村,袁权.气体分离膜研究和应用新进展[J].现代化工,2000,20(1):17-21.
    [56]KHAN A L, BASU S, ODENA A C, et al. Novel high throughput equipment for membrane-based gas separation[J]. Journal of Membrane Science,2010,354:32-39.
    [57]KAI T, KOUKETSU T, SHUHONG D. Development of commercial-sized dendrimer composite membrane modules for C02 removal from flue gas[J]. Journal of Membrane Science,2008,63:524-530.
    [58]LI Y, CHUNG T S, XIAO Y C. Superior gas separation performance of dual-layer hollow fiber membranes with an ultrathin dense-selective layer[J]. Journal of Membrane Science,2008,325:23-27.
    [59]滕一万,武法文,丁少杰等.改性聚苯胺膜在C02/CH4分离中的应用研究[J].化学工程,2010,38(3):48-51.
    [60]朱葆琳,蒋国梁.中空纤维膜N2-H2分离器分离性能计算方法[J].化工学报,1987(3):21-29
    [61]王鹏宇.气体膜分离过程HYSYS模拟系统的研究[D].大连:大连理工大学,2006.
    [62]曹义鸣,王仁文.中空纤维膜N2-H2分离器分离过程的数学模型[J].膜科学与技术.1992,12(1):42-47
    [63]仲伟平.膜分离技术在炼厂气回收中的应用[J].石化技术,2008,15(2):61-63.
    [64]曹武卫,邱冬梅,宋建平.提高炼厂气综合利用水平的途径[J].内蒙古石油化工,2004,(30):143-146.
    [65]蔡耀日.催化裂化干气的加工与综合利用[J].炼油设计,2000,30(6):35-38
    [66]WANG L, SHAO C, WANG H, et al. Radial basis function neural networks-based modeling of the membrane separation process:hydrogen recovery from refinery gases[J]. Journal of Natural Gas Chemistry,2006(15):65-69.
    [67]SHAO L, LOW B T, CHUNG T S, et al. Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future[J]. Journal of Membrane Science,2009(327):18-31.
    [68]CLAUSSE M,BONJOUR J,MEUNIER F.Adsorption of gas mixtures in TSA adsorbers under various heat removal eonditions[J]. Chemical Engineering Seience, 2004(59):3657-3670.
    [69]DEGREVE J,EVERAERT K,BAEYENS J.The use of gas membrane for VOC-air separations[J]. Filtration and Separation 2001(4):48-54.
    [70]LIU Y J,FENG X,LAWLESS D.Separation of gasoline vapor from nitrogen by hollow fiber composite membranes for VOC emission control[J].Journal of Membrane Seience, 2006(271):114-124.
    [71]陆恩锡,慧娟,云峰.总体优化提高装置的经济效益—吸收稳定的集成设计[J].化工科技,2000,8(4):65-69.
    [72]彭琳.综合回收炼厂气中氢气及轻烃工艺的设计研究[D].大连:大连理工大学化工学院,2009.
    [73]黄爱斌.炼厂气中氢气、轻烃组分综合回收的工业应用[J].炼油技术与工程,2010,40(1):25-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700