ABS匹配流程与标定技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
防抱制动系统(ABS)是车辆底盘控制系统的重要组成部分,可以显著改善车辆制动性能,增强车辆主动安全性。随着我国汽车工业的发展,以产业化为目标的ABS研究意义重大,其中ABS匹配流程与标定技术是较为关键的课题。
     ABS匹配流程是开展ABS匹配工作的指导性纲要,是规范匹配项目,保障匹配质量的基础。在匹配实践中总结归纳了ABS主要匹配任务和匹配管理过程,制定了ABS标准匹配流程,建立了匹配关键路径,并基于客户需求开发了快速匹配流程,在实际应用中有效的控制了匹配周期。通过分析ABS质量因素,制定了实用的质量标准,研究了质量指标中制动效能与制动稳定性的关系,提出了以附着系数利用率为目标,以转向盘修正转角为约束的ABS质量控制方法,解决了ABS综合性能标定的困难。
     ABS硬件匹配决定ABS标定工作的难易程度,并影响ABS的性能。为提高ABS硬件选型的效率,建立了ABS的总泵、分泵和液压控制单元(HCU)关键元件的理论模型,分析了制动分泵以及HCU增、减压阀的流量与压力特性,提出了制动分泵液压灵敏度和HCU流量分辨率的概念,以此研究了HCU硬件选型的理论方法,仿真表明与装车试验的结果吻合的较好。分析了轮速传感器输出电压特性与ABS轮速计算方法,提出了基于最低轮速的传感器选型方法,较好的满足了ABS控制对轮速的要求。
     ABS性能的完善需要扩展功能控制算法。仿真研究了直线制动工况下前后轴制动力分配与路面附着系数的关系,提出了基于减速度参数的电子制动力分配(EBD)控制算法。为解决系统噪音与振动问题,分析了ABS开关阀在PWM控制方式下的流量特性,提出了采用高频PWM信号实现开关阀连续流量控制的方法。为改善ABS转向控制性能,研究了转向工况下的轮速特征,提出了基于ABS控制信息的转向识别和参数修正算法。为增强系统故障检测功能,结合轮速传感器的最低测量轮速和车轮运行的动力学参数限值,提出了基于轮速特征的传感器故障检测算法。实车试验验证了这些算法的有效性。
     ABS软件标定技术能提高ABS标定的质量和效率。为提高ABS性能稳健性,分析了ABS噪声因子对控制的影响,提出了ABS参数的稳健性标定试验方法。为辅助标定工作,开发了基于CCP协议和COM通讯接口的ABS标定软件,设计了开放式和指导式两种标定界面,并在实车标定中成功应用。
Anti-lock braking system (ABS) is an important part of the vehicle chassis control systems, which can improve braking performance and enhance active safety of vehicle. With the development of Chinese automotive industry, the studies on ABS for industrialization are highly significant, the ABS matching process and calibration technologies are key issues.
     ABS matching process is the guiding framework to carry out the matching work, it is also the basis to standardize matching project and guarantee matching quality. The main tasks and management process of the ABS matching work are summarized and the standard matching process is developed in practice. Using critical path analysis, a fast matching process is developed based on customer demand, which can effectively control the matching period in the application. By analyzing the ABS quality factors, practical quality standards are developed. The relationship between efficiency and stability of braking is researched, a quality control method aiming at adhesion coefficient utilization is proposed with the steering wheel angle correction constraints, which can solve problems in ABS comprehensive performance calibration.
     ABS hardware matching determines the difficulty of the calibration and affects ABS performance. To improve the efficiency of hardware selection, the theoretical models of the master cylinder, wheel cylinder and key components of hydraulic control unit (HCU) of ABS are established, the flow and pressure characteristics of wheel cylinder and HCU inlet and outlet valves are researched, the hydraulic sensitivity of wheel cylinder and flow resolution of HCU valves are proposed, based on which the theoretical method of the HCU hardware selection is studied and the simulation results fit the actual test well. By analyzing output voltage characteristics of the wheel speed sensor and the ABS wheel speed calculation method, the sensor selection method is proposed based on the lowest wheel speed, which can meet the ABS requirements better.
     The extended control algorithms are necessary to improve ABS performance. The braking force distribution of front and rear axles under straight-line braking is simulated with different road friction coefficients, and the electronic braking force distribution (EBD) control algorithm using deceleration parameters is proposed. To solve the system noise and vibration problems, the flow characteristics of ABS switching valve under PWM control mode are analyzed, and the valve control mode using high frequency PWM signal is proposed to achieve continuous flow characteristics. To improve ABS performance of steering braking, the characteristics of wheel speed under steering condition are studied. The algorithms of turning identification and parameter correction are proposed based on ABS control information. To enhance the system fault detection, combined with the lowest measurable wheel speed of sensor and wheel running kinetic parameters, the sensor fault detection algorithm based on wheel speed characteristics is proposed. Vehicle road tests verify the effectiveness of these algorithms.
     ABS software calibration technique can improve the calibration quality and efficiency. To improve ABS robust performance, the influence of the noise factors to ABS control is analyzed, and ABS robust calibration test method is proposed. To assist the calibration work, ABS calibration software is developed based on CAN calibration protocol (CCP) and COM communication interface. The free-type and directed-type calibration interfaces are designed. These are successfully applied in the vehicle ABS calibration.
引文
[1]张亚东.汽车防抱制动系统逻辑门限控制方法仿真计算研究[硕士学位论文].北京:清华大学汽车工程系, 1998.
    [2]陈在峰.以制动器耗散功率最大为目标的ABS控制方法研究与系统实现[博士学位论文].北京:清华大学汽车工程系, 2000.
    [3]厉朴.汽车防抱制动系统控制软件开发及其参数匹配[硕士学位论文].北京:清华大学汽车工程系, 2001.
    [4]陈炯.基于ADAMS环境下ABS控制方法的研究[硕士学位论文].北京:清华大学汽车工程系, 2002.
    [5]高博. ABS硬件在环仿真的并行性研究及ABS的实车匹配[硕士学位论文].北京:清华大学汽车工程系, 2002.
    [6]祁雪乐. ABS液压制动系统动态特性研究和综合仿真匹配平台的建立[硕士学位论文].北京:清华大学汽车工程系, 2005.
    [7]吴凯辉. ABS控制参数匹配方法的研究[硕士学位论文].北京:清华大学汽车工程系, 2005.
    [8]孔磊.面向产业化的ABS控制关键技术研究与开发[博士学位论文].北京:清华大学汽车工程系, 2006.
    [9]沈俊.越野车的ABS控制策略研究[博士学位论文].北京:清华大学汽车工程系, 2006.
    [10]齐志权,刘昭度,马岳峰,等. Jetta GTX轿车MK20-I型ABS液压系统数学模型.液压与气动, 2005(1):42-44.
    [11]夏晶晶.汽车DYC装置液压系统建模与仿真.公路交通科技, 2005(22):148-151.
    [12]姚时音,孙仁云,赵双,等.基于AMESim的ABS液压电磁阀动态响应仿真研究.机床与液压, 2007(6):180-184.
    [13]谢敏松,李以农.汽车ABS液压调节器建模与分析.天津汽车, 2007(8):16-18.
    [14]陶润,张红,付德春,等. ABS液压系统仿真与电磁阀优化.农业工程学报, 2010(3):135-138.
    [15]吴诰珪,刘绍辉.汽车ABS制动轮缸压力函数的试验研究.机床与液压, 2001(3):25-26.
    [16]丁能根,潘为民,方裕固. ABS压力响应测试和压力的精细调节.机械工程学报, 2004(6):188-191.
    [17]解福泉. ABS/EDS液压装置轮缸增、减压特性测试.交通标准化, 2006(7):188-191.
    [18]李志远,刘昭度,崔海峰,等.汽车ABS制动轮缸压力变化速率模型试验.农业机械学报, 2007(38):6-9.
    [19] Yeh Edge C, Chih-Yeh Kuo, Pei-Len Sun. Conjugate boundary method for control law design of anti-skid brake system. Int. J. Vehicle Design, 1990, 11(1):40-62.
    [20] Kuo C. Y., Yeh E. C. A four-phase control scheme of anti-skid brake systems for all road conditions. Proc. of Inst. of Mech. Engineers, Part D, 1992, 206(4):275-284.
    [21]程军.防抱制动系统防抱逻辑的研究.汽车工程, 1995, 17(1):1-11.
    [22]叶楠,洪涛,彭彦宏.在防抱制动控制中比较量的选择.汽车技术, 1997(8):18-23.
    [23]程军.车辆防抱系统鲁棒性控制的研究.汽车工程, 1998(1):17-23.
    [24] Lennon, William K, Kevin M. Intelligent control for brake systems. Transactions on Control Systems Technology, 1999, 7(2):188-202.
    [25] Jiang F., Gao Z. An application of nonlinear PID control to a class of truck ABS problems. IEEE Conference on Decision and Control, 2001, 1:516-521.
    [26]朱伟兴,陈垠昶.模糊PID控制在汽车ABS中的应用与仿真研究.江苏大学学报(自然科学版), 2004, 25(4):310-314.
    [27]晏蔚光,李果,余达太,等.基于模糊PID控制的汽车防抱制动系统控制算法研究.公路交通科技, 2004, 21(7):123-126.
    [28]张陵,诸德培.车轮防抱死制动滑移模式控制律的理论研究.汽车工程, 1996(1):1-6.
    [29]赵治国,方宗德,李杰.防抱制动系统参数自适应滑模变结构控制器的研究.机械科学与技术, 2002, 21(1):6-9.
    [30] Byung-Ryong Lee, Kyu-Hyun Sin. Slip-ratio control of ABS using sliding mode control. The 4th Korea-Russia International Symposium on Science and Technology, 2000, 3:72-77.
    [31] Lee T H, Xu J X, Wang M. A model-based adaptive sliding controller. Int. J. of Systems Science, 1996, 27(1):129-140.
    [32] Emami K.J., Akbarzadeh-T M.-R. Adaptive discrete-time fuzzy sliding mode control for anti-lock braking systems. NAFIPS 2003. 22nd International Conference of the North American, 2003, 335-340.
    [33]王纪森,付卫强,余洋,等.防抱制动系统自寻优控制的半物理仿真研究.系统仿真学报, 2005, 17(12):2841-2843.
    [34]宋桂秋,陆方,郭立新.汽车智能制动系统自寻优控制与仿真.东北大学学报(自然科学版), 2006, 27(1):69-71.
    [35] Layne R Jeffery, Passino Kevin M, Yurkovich Stephen. Fuzzy learning control for antiskid braking systems. IEEE Transactions on Control Systems Technology, 1993, 1(2).
    [36] Mauer G.F. A fuzzy logic controller for ABS braking system. IEEE Transactions on Fuzzy System, 1995, 3:381-388.
    [37] Mark A. Development of fuzzy logic ABS control for commercial trucks. SAE Paper No.952673, 1995.
    [38] Guy Kokes, Tarunraj. Adaptive fuzzy logic control of an anti-lock braking system. IEEE International Conference on Control, 1999, 22-27.
    [39]郭孔辉,王会义.模糊控制方法在汽车防抱制动系统中的应用.汽车技术, 2000(3):7-10.
    [40]李君,喻凡,张建武.基于道路自动识别ABS模糊控制系统的研究.农业机械学报, 2001, 32(5):26-29.
    [41]赵治国,方宗德,王广炎,等.防抱死制动系统模糊自学习控制研究.汽车工程, 2002, 24(6):474-479.
    [42]李林,李仲兴,陈昆山.汽车ABS模糊控制方法的分析与仿真.江苏大学学报(自然科学版), 2003, 24(3):49-52.
    [43]孙骏.基于模糊控制的汽车防抱制动系统仿真.计算机仿真,2004,21(10):160-162.
    [44] Choi Seibum B. Antilock brake system with a continuous wheel slip control to maximize the braking performance and the ride quality. IEEE Transactions on Control Systems Technology, 2008, 16(5):996-1003.
    [45] Goodarzi A, Mehrmashhadi J, Esmailzadeh E. Optimised braking force distribution strategies for straight and curved braking. International Journal of Heavy Vehicle Systems, 2009, 16(1-2):78-101.
    [46] Ali R, Mahyar N. Vehicle integrated control: An adaptive optimal approach to distribution of tire forces. Proceedings of 2008 IEEE International Conference on Networking, Sensing and Control, ICNSC, 2008:885-890.
    [47] Wang Guoye, Liu Zhaodu, Ma Yuefeng, et al. Electronic brake-force distribution control methods of ABS-equipped vehicles during cornering braking. Journal of Beijing Institute of Technology, 2007, 16(1):34-37.
    [48]刘国福,张屺,王跃科.汽车防抱制动系统车速估计方法的初步研究.汽车工程, 2004, 26(6):723-725.
    [49]边明远,李克强.基于车轮信息的制动车辆参考车速算法研究.农业机械学报, 2005, 36(6):5-7.
    [50]齐志权,刘昭度,马岳峰,等.汽车制动防抱系统参考车速确定方法.农业机械学报, 2005, 36(11):8-11.
    [51]吴诰珪,廖俊,周全.客车ABS制动的车速分析与试验.机床与液压,2005(9):101-102.
    [52]王伟达,丁能根,徐向阳,等.基于轮速和压力控制状态信息的ABS参考车速算法研究及其试验验证.中国机械工程, 2008, 19(3):370-373.
    [53] L. R. Ray. Nonlinear state and tire force estimation for advanced vehicle control. IEEE Trans. Control Systems Technology, 1995, 33:117-124.
    [54] Daiss A. Model based calculation of friction curves between tyre and road surface. IEEE Conference on Control Applications, 1995, 28-29.
    [55] Gustafsson F. Monitoring tire-road friction using tire wheel slip. IEEE Control System, 1998, 42-49.
    [56] Behzad Samadi, Reza Kazemi, Kamaleddin Y, et al. Real-time estimation of vehicle state and tire-road friction forces. American Control Conference, 2001, 3318-3332.
    [57] Umeno T., E. Ono, K. Asano, et al. Estimation of tire-road friction using wheel speed vibration. SAE Paper No.2002-01-1183, 2002.
    [58]张代胜,顾勤林,陈朝阳,等.车辆转弯制动防抱死系统仿真.农业机械学报, 2005, 36(9):16-20.
    [59]李君,喻凡,张建武,等.车辆转向制动防抱死系统仿真研究.系统仿真学报, 2001, 13(6):789-793.
    [60]孙骏,陈彦夫.汽车ABS轮速传感器性能测试系统的实现.电子测量与仪器学报, 2009, 23(3):105-109.
    [61]陆文昌,毛务本.汽车防抱死制动系统轮速传感器信号处理.江苏大学学报(自然科学版), 2002, 23(4):24-28.
    [62]那文波,孙坚,李璘.汽车ABS的轮速传感器系统故障类型识别方法.机床与液压, 2008, 36(7):191-193.
    [63] Quet Pierre-Francois, Salman Mutasim. Model-based sensor fault detection and isolation for X-by-wire vehicles using a fuzzy logic system with fixed membership functions. Proceedings of the 2007 American Control Conference, 2007, 2314-2319.
    [64] B?rner Marcus, Straky Harald1, Weispfenning Thomas, et al. Model based fault detection of vehicle suspension and hydraulic brake systems. Mechatronics, 2002, 12(8):999-1010.
    [65]陈在峰,宋健,于良耀.汽车防抱死制动系统轮速传感器信号处理.汽车工程, 2000, 22(4):42-48.
    [66] Liu Zhaodu. Mathematical models of tires-longitudinal road adhesion and their use in the study of road vehicle dynamics. Journal of Beijing Institute of Technology. 1996, 5(2):193-203.
    [67]科玮,朱俊.道路附着系数的试验研究.内蒙古公路与运输, 1996(3):31-33.
    [68]王野平.论轮胎与路面间的摩擦.汽车技术, 1999(2):10-13.
    [69]吴诰珪,赵克刚,范刚,等.附着系数-滑移率曲线的测定.华南理工大学学报(自然科学版), 2001, 29(9):20-22.
    [70]和松,夏礼秀.高速公路路面摩擦系数的测试与评价.公路交通科技, 2002, 19(2):8-11.
    [71]孙明哲,裴玉龙.道路摩擦系数测定方法若干问题的讨论.黑龙江交通科技, 2004(10):78-79.
    [72]李玉璇,林忠钦,丁海涛,等.利用正交试验法进行ABS控制参数的优化.机械科学与技术, 2002, 21(增刊):58-60.
    [73]夏帆,冯辉宗.基于正交试验的汽车ABS控制参数分析平台的设计.黑龙江科技信息, 2008(27):85.
    [74]李环,郭世永.基于INCA的发动机电控ECU数据的开发.山东理工大学学报(自然科学版), 2010(4):65-68.
    [75]丁圣彦,罗峰,孙泽昌.基于CCP协议利用CANape进行电控单元标定.电子技术应用, 2005(12):5-8.
    [76]李计融,钟再敏.车载控制器匹配标定ASAP标准综述.汽车技术, 2004(10):1-4.
    [77]布鲁斯·巴克利,詹姆士·塞罗.客户驱动的项目管理:项目过程形成质量.北京:清华大学出版社, 2002.
    [78]强茂山.成功通过PMP.北京:清华大学出版社, 2006.
    [79]张立友,于晓璐,金林.项目管理核心教程与PMP实战.北京:清华大学出版社, 2003.
    [80]罗德尼·特纳.项目管理手册:改进过程、实现战略目标.北京:清华大学出版社, 2002.
    [81]中华人民共和国国家质量监督检验检疫总局. GB 7258-2004机动车运行安全技术条件.北京:中国标准出版社, 2004.
    [82]中华人民共和国国家质量技术监督局. GB 12676-1999汽车制动系统结构、性能和试验方法.北京:中国标准出版社, 1999
    [83]中华人民共和国国家质量监督检验检疫总局. GB/T 13594-2003机动车和挂车防抱制动性能和试验方法.北京:中国标准出版社, 2003.
    [84]中华人民共和国国家质量监督检验检疫总局. GB 21670-2008乘用车制动系统技术要求及试验方法.北京:中国标准出版社, 2008.
    [85]韩之俊,许前,钟晓芳.质量管理.北京:科学出版社, 2007.
    [86]龚益鸣.现代质量管理学.北京:清华大学出版社, 2003.
    [87]马林.六西格玛管理.北京:中国人民大学出版社, 2004.
    [88]余志生.汽车理论(第5版).北京:机械工业出版社, 2009.
    [89]尹帅钧.轿车防抱死制动系统的压力估算算法研究[硕士学位论文].吉林:吉林大学汽车工程学院, 2009.
    [90]梅宗信.真空助力器助力比检测方法的探讨.机床与液压, 2008, 36(5):142-143.
    [91]李成功,和彦淼.液压系统建模与仿真分析.北京:航空工业出版社, 2008.
    [92] Ming chin Wu, Ming Chang Shih. Simulated and experimental study of hydraulic anti-lock braking system using sliding mode PWM control. Mechatronics, 2003, 13(4):331-351.
    [93]宋健,孔磊,沈俊.特殊工况下的ABS控制算法.江苏大学学报(自然科学版), 2006, 27(2):117-121.
    [94]宋健,沈俊,孔磊.四驱车辆ABS控制算法.江苏大学学报(自然科学版), 2006, 27(4):320-323.
    [95] Savaresi S M, Tanelli M, Cantoni C. Mixed slip-deceleration control in automotive braking systems. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2007, 129(1):20-31.
    [96] Mi Chunting, Lin Hui, Zhang Yi. Iterative learning control of antilock braking of electric and hybrid vehicles. IEEE transactions on vehicular technology, 2005, 54(2):486-494.
    [97] Goodarzi A, Behmadi M, Esmailzadeh E. An optimised braking force distribution strategy for articulated vehicles. Vehicle System Dynamics, 2008, 46(Sup.1):849-856.
    [98] Mirzaei A, Moallem M, Dehkordi B M, et al. Design of an optimal fuzzy controller for antilock braking systems. IEEE transactions on vehicular technology, 2006, 55(6):1725-1730.
    [99]刘忠,龙国键,褚福磊,等.基于高速开关电磁阀技术的压力控制系统设计.液压与气动, 2003(3):13-15.
    [100]刘忠,刘卫萍,何谦.高速开关电磁阀动态响应建模与仿真.湖南师范大学自然科学学报, 2009, 32(3):53-57.
    [101] Liu Xinghua, Li Guanggong. Research and test of high speed switch electromagnetic valve. Neiranji Gongcheng/Chinese Internal Combustion Engine Engineering, 2004, 25(1):38-42.
    [102] Mo Bo, Li Mu, Du Min. The operating theory and testing system design of a high-speed switch valve. Proceedings of the International Symposium on Test and Measurement, 2003(4):2896-2916.
    [103]沈兴全,吴秀玲.液压传动与控制.北京:国防工业出版社, 2005.
    [104]喻凡,李道飞.车辆动力学集成控制综述.农业机械学报, 2008, 39(6):1-7.
    [105]于良耀,宋健,王学辉.汽车动力学稳定性控制系统试验平台.江苏大学学报(自然科学版), 2007, 28(2):115-118.
    [106]曾凤章.稳健性设计:原理技术方法案例.北京:兵器工业出版社, 2004.
    [107]茆诗松,周纪芗,陈颖.试验设计.北京:中国统计出版社, 2004.
    [108]刘文卿,谢邦昌.质量控制与实验设计:方法与应用.北京:中国人民大学出版社, 2008.
    [109] Kleinknecht H. CAN Calibration Protocol, Version 2.1, ASAP Standard, 1999.
    [110]李雅博,张俊智,甘海云,等.基于CCP协议的HEV用ECU标定系统设计.汽车工程, 2004, 26(4):375-378.
    [111]秦贵和,梅近仁,窦乔.基于CCP的机械自动变速器控制单元标定系统.计算机工程与应用, 2006(8):100-102.
    [112]张彧,冯辉宗.基于CCP协议的汽车ECU标定系统的设计.微计算机信息, 2007(23): 216-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700