面向主动安全的汽车底盘行驶稳定性控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车电子稳定性控制(ESP,Electronic Stability Program)系统是一种基于主动调节制动力、驱动力的车辆底盘主动安全控制系统,可以有效提高车辆的行驶稳定性。本文针对ESP系统中基于主动干预制动力的制动防抱死控制系统(ABS,Anti-lock Brake System)和主动横摆力矩控制系统(AYC,Active Yaw Control)的关键技术展开了深入的理论和试验研究。首先针对汽车行驶稳定性控制中的关键问题路面附着系数估计和汽车行驶状态算法进行了研究,并提出了基于车辆模型和动力学原理的路面附着系数联合估计算法、基于自适应Kalman滤波算法的汽车状态预测方法,有效提高了路面附着系数和车辆状态估计的精度。围绕制动防抱死系统在良好路面的制动防抱死控制、分离路面的制动方向稳定性控制策略和基于横摆角速度和质心侧偏角联合控制的主动横摆力矩控制策略进行了基本控制策略的研究。以此为基础,开发了制动防抱死控制和主动横摆力矩控制的协调控制逻辑与算法,并提出了制动防抱死控制系统和主动横摆力矩控制系统的评价方法。根据控制策略开发的需要,利用搭建的汽车稳定性控制系统硬件在环实验台,对所设计的控制算法的有效性和准确性进行了验证。仿真和试验结果表明,所开发控制算法和逻辑在各种工况下能够有效的提高汽车的行驶稳定性,所提出的评价方法能对汽车底盘电控系统进行有效评价。本文设计的制动防抱死控制策略、主动横摆力矩控制策略及二者的协调控制策略对汽车稳定性控制系统的开发具有重要参考意义。
based on controlling brake system and driving torque actively. With the rapid development of automotive chassis electronic control technology, ESP has been more and more widely used in modern cars, and the system make a significant role in improving the stability and safety of vehicles. Now many major automobile manufacturers and research institutions have carried out their products on ESP,and ESP will become the standard installation in modern cars.
     This paper introduces the Anti-lock Brake System (ABS) and Active Yaw-moment Control (AYC), then control strategies and performance evaluation methods have been carried out. Firstly, the estimation of road surface coefficient and the estimation algorithm of sideslip angle which is difficult to be measured have been brought out. According to above, yaw rate and sideslip angle feedback control strategy of AYC system is presented in Chapter 2. Secondly, the ABS basic control strategy is designed then yaw moment control algorithm in ABS system is researched. Thirdly the integrated control strategy of ABS and AYC has been put forward. The chassis stability control strategy for vehicle on longitudinal and lateral dynamics in critical states is introduced. A vehicle braking system hardware in the loop test bench is established based on real time rapid prototyping technology. Utilizing the test bench, hardware in the loop simulation for ABS, AYC and integrated control algorithms of ABS and AYC have been validated. Finally, vehicle dynamics principle and the system characteristics, the ABS and AYC system performance evaluation method is proposed. Combined with HILS the effectiveness of the evaluation methods are validated. The paper mainly includes the following details:
     1. Vehicle states and road adhesion conditions estimation
     Based on self-adaptive Kalman filtering theory and vehicle dynamics model, the sideslip angle estimation algorithm has been brought out for AYC control system design. The algorithm validation has been carried out with vehicle test data. The results show that method can estimate the value of sideslip angle accurately when the vehicle is driving. On the basis of adaptive Kalman filtering theory, a recursive algorithm has been researched. The vehicle yaw rate estimation methods and algorithm validation have been tested and verified with vehicle test data. Road adhesion conditions play an important role in AYC and ABS control strategies. According to vehicle wheel dynamic principle, Timothy tires and road empirical model, road conditions attached estimation algorithm has been established by dividing the road coefficient into three cases: 0.8, 0.5 and 0.2.
     2. ABS control strategies
     First, an improved sliding mode control method based on reaching law has been proposed to solve the vibration problem in traditional sliding mode control. The ABS basic antilock control strategy has been designed based on the improved sliding mode control method. On this basis, braking distance and directional stability as the measure standard, the ABS single wheel depending on yaw rate predictive value feedback closed-loop control strategy has been designed. Ensuring the braking direction stability, making the braking distance as shorten as possible, enhancing the control performance of ABS comprehensive, this ABS control strategy has improved the ABS control effect on split road
     3. AYC control strategies
     The active yaw-moment control algorithm establishes yaw moment depending on two reference control parameters: yaw rate and sideslip angle. According to the characteristics of driving conditions and the combination control with robust control and PID algorithm, the yaw rate control and sideslip angle control based on multi-stage robust PID control strategy are proposed respectively. The yaw rate and sideslip angle can reflect the status of vehicles in different driving condition. The combination control strategy can improve the control quality of the AYC and effectively enhance the vehicle's lateral driving ability.
     4. Integrated control strategy for ABS and AYC
     ABS and AYC systems are both based on active brake system to realize vehicle active safety control, but their action system is different, so it is necessary to research on the integration of two control strategies. In this paper, the integrated control strategy when ABS and AYC reach the threshold at the same time have been studied. The integrated control strategy of ABS and AYC based on the control priorities and vehicle's stability margin is carried out. It is determined the priority of ABS is higher than AYC, then AYC control strategy is used secondary to realize the vehicle stability control.
     5. Hardware in the loop experimental study
     ESP system hardware in the loop test bench has been built by using Matlab / xPC Target rapid prototyping technology. The hardware of the test bench includes vehicle braking system and steering wheel, etc. The software of the bench includes vehicle dynamics simulation software-using Matlab /Simulink to provide driving environment and vehicle states, in order to build a person - vehicle - road closed-loop driving environment. ABS and AYC control algorithms has been validated through the hardware in the loop experiment. Hardware-in-loop simulation results show that: (1) the Designed AYC and ABS control strategies can realize the basic vehicle yaw stability control and antilock braking control. (2)ABS control strategy of single wheel can effectively guarantee the directional stability when vehicles brake on split road and the ABS control can effectively shorten the braking distance. (3) The integrated control strategy of ABS and AYC can achieve the stability control when vehicles reach the dynamics critical states.
     6. ABS and AYC performance evaluation method
     According to vehicle assessment standards and ABS and AYC system characteristics, the objective evaluation methods of ABS and AYC have been brought out. First, according to vehicle driving conditions and performance requirements, a corresponding evaluation test conditions have been presented. Combined with driver's subjective feelings, the limits of each evaluation has been carried out. For the ABS and AYC integrated control, the test conditions which can simultaneously make ABS and AYC work have been designed. Based on above research results the integrated control performance evaluation method is presented. Finally an objective evaluation method for ABS, AYC, and integrated control has been established.
     Through above research, the conclusions of this paper are as follows:
     (1) Multi-level threshold control strategy of yaw rate and side slip angle can effectively solve the integrated problem in vehicle stability control. Yaw rate and side slip angle can always been kept within reasonable limits through different threshold settings, and enhancing the stability of vehicle effectively.
     (2) Based on the yaw rate predictive feedback, ABS control strategy of single wheel could solve the contradiction between the braking direction stability and braking distance when vehicles run on split road. To guarantee the stability of vehicle braking direction the braking distance can become shorten through a single wheel braking regulation.
     (3) Based on the performance characteristics of electronic control system and the influence of vehicle performance the objective evaluation method is designed .And the method can evaluated ABS and AYC system performance effectively. The evaluation methods can provide reference for ABS and AYC system control strategy.
     (4) Vehicle braking system hardware in the loop test bench based on rapid prototyping technology can enhance the safety and development efficiency. The test bench can also play the role of validation and guidance in ABS and AYC system development. It is an effective chassis active safety electronic control system tool.
引文
[1] Glaser H.Electronic Stability Program ESP [M] Sweden :Audi Press Presentation , 1996.
    [2] Sugiyama,M.,Inoue,H.,Uchida,K.,Monzaki,S.,Inagaki,S,and Kido,S.Development of VSC (Vehicle Stability Control) System[J].TOYOTA Technical Review Vol.46,No.2,61-68.1997.
    [3] National Highway Traffic Safety Administration. FMVSS No.126 Electronic Stability Control Systems [Z].2007-03.
    [4] European Commission. A Competitive Automotive Regulatory System for the 21st century[Z]. 2006.
    [5] Anders Lie,Claes Tingvall, Maria Krafft, Anders Kullgren.The Effectiveness of Electronic Stability Control(ESC) in Reducing Real Life Crashes and Injuries. Traffic Injury Prevention, 2006,7:38–43.
    [6] Robert Bosch有限公司.汽车安全性与舒适性系统[M].魏春源译.北京:北京理工大学出版社,2007.
    [7] Andrea Morgando.Linear Approach to ESP Control Logic Design[C]. SAE Paper,2006-01-1017.
    [8] Mohsen Davoudi, Mohammad Bagher Menhaj, Mehdi Davoudi. A Fuzzy Based Vehicle Dynamic Stability Control[C].SAE Paper, 2006-01-3483.
    [9] Byunghak Kwak, Youngjin Park.Robust Vehicle Stability Controller Based on Multiple Sliding Mode Control[C]. 2001-01-1060.
    [10] Rainer Erhardt, Georg Pfaff, Anton T. van Zanten. VDC, the vehicle dynamics control system of Bosch[C]. SAE Paper 950759.
    [11] A.T.van Zanten. Bosch ESP Systems: 5 Years of Experience[C].SAE Paper 2000-01-1633.
    [12]王会义,宋健.汽车电子稳定程序的控制算法[J].清华大学学报(自然科学版),2007, 47 (2):224-227.
    [13]王会义,高博,宋健.汽车ABS电磁阀动作响应测试与分析[J].汽车工程,2002,24 (1):29-31.
    [14]李亮,宋健,于良耀.汽车动力学稳定性控制系统仿真平台研究[J].系统仿真学报,2007,19(4):1597-1600.
    [15]李亮,宋健,韩宗奇,孔磊.用于电子稳定程序(ESP)在线控制的液压模型和反模型[J].机械工程学报,2008,44(2):139-144.
    [16]程军.汽车防抱死制动系统的理论与实践[M].北京:北京理工大学出版社,1999.
    [17] Bin Li, Daofei Li, and Fan Yu. Vehicle Yaw Stability Control Using the Fuzzy-Logic Controller[C].Vehicular Electronics and Safety,IEEE International Conference.2007:1-5.
    [18] Li Jun, Feng Jinzhi, Yu Fan and Zhang Jianwu. The rapid development of vehicle electronic control system by hardware-in-the-loop simulation[C].SAE Paper 2002-01-0568.
    [19]马跃峰,刘昭度,吴利军.基于ABS的ABS/ASR集成液压系统设计[J].液压与气动,2004(6):27-29.
    [20]刘巍.轻型汽车转向稳定性控制算法及硬件在环试验台研究[D]长春:吉林大学,2007.
    [21]史新民.轿车ESP系统实验平台的软件开发[D].长春:吉林大学,2007.
    [22]盛勇鑫.轿车侧向稳定性控制算法[D].长春:吉林大学,2008.
    [23]李静,徐斌,张英峰等.车辆电子稳定性程序神经网络PID控制算法[J].吉林大学学报(工学版),2007,37(4):741-744.
    [24]谢敏松.汽车ESP液压系统动态特性研究[D].重庆:重庆大学,2007.
    [25] Wallentowitz, H..Integrated of Chassis and Traction Control Systems. What is Possible -What Makes Sense-What is Under Development, AVEC[C].1992:1-7.
    [26]陈祯福.汽车底盘控制技术的现状和发展趋势[J].汽车工程2006年,8(2):105-113.
    [27]周慧会.汽车ESP/ASS、ESP/4WS的协调控制研究[D].合肥:合肥工业大学,2008.
    [28]刘冠延.轻型汽车侧片与横摆联合控制ESP算法研究[D].长春:吉林大学,2008.
    [29]黄炳华,陈祯福. ESC的最新动向和发展趋势[J].汽车工程,2008,30(1)1-9.
    [30]于振洪,刘步丰. ESP电子稳定系统工作原理[J].无锡职业技术学院学报,2008,7(4):41-44.
    [31] Siqi Zhang, Shuwen Zhu, Jun Sun .Vehicle Dynamics Control Based on Sliding Mode Control Technology[J]. Control and Decision IEEE Conference, 2009:2435-2439.
    [32] Shuwen Zhou, Lixin Guo, Siqi Zhang. Vehicle Yaw Stability control and its Integration with Roll Stability Control[J]. IEEE Control and Decision Conference 2008:3624-3629.
    [33] Chih-Keng Chen and Trung-Kien Dao, Min-Fang Lo. A Compensated-Yaw -Moment-Based Vehicle Stability Controller [J]. IEEE Control and Decision Conference 2008: 892-897.
    [34]韩建保,云志刚,陈厉兵.汽车电子稳定系统ESP的工作原理及应用[J].汽车电器.2004,04:29-30.
    [35]唐耀明.基于直接横摆力矩控制的汽车ESP控制系统研究[D].西安:长安大学,2009.
    [36]梁春兰.电动转向助力系统[J].维修技巧,2006,7:27-28.
    [37] Chih-Keng Chen and Trung-Kien Dao.A Compensated-Yaw-Moment-Based Vehicle Stability Controller[J].Department of Mechanical and Automation Engineering Dayeh University,2008,21:892.
    [38]侯光钰.车辆防抱死制动系统的控制技术研究.[D].南京:东南大学,2005.
    [39]于东.汽车防抱死制动系统(ABS)控制方法仿真研究与控制器设计[D].济南:山东大学,2007.
    [40] Taeyoung Chung ,Kyongsu Yi.A Vehicle-Simulator-based Evaluation of Combined State Estimator and Vehicle Stability Control Algorithm[C]. SAE Paper,2005-01-0383.
    [41] Chin-Min Lin,Chun-Fei Hsu.Self-Learning fuzzy Sliding-Mode Control for Antilock Braking System[J].IEEE Transactions on Control Systems Technology,2003.
    [42]周红妮.车辆稳定性控制方法与策略的比较研究[D].武汉:武汉科技大学,2006.
    [43]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,1998.
    [44]李晔.汽车ESP控制策略及其硬件实现研究[D].南京:东南大学,2006:25-2.
    [45]程军.防抱死制动系统不同控制方法的模拟研究[J].汽车技术.1998,(8):1-7.
    [46]陈佳佳,梅涛.基于自适应模糊PID控制的汽车ESP系统控制研究[J].组合机床与自动化加工技术,2008.
    [47]许良.后驱轻型客车ESP免疫PI控制及车速估算方法研究[D].长春:吉林大学,2007.
    [48] Zhang Wei Yu Guizhen Wang Jian Su Tianshu Xu Xiangyang. Self-Tuning Fuzzy PID Applied to Direct Yaw Moment Control for Vehicle[C].IEEE International Conference on Electronic Measurement & Instruments,2009:257-261.
    [49] De Moura Oliveira P B. Modern heuristics review for PID control optimization: a teaching experiment[C]Control and Automation,2005.
    [50]杨旭东.基于最优的汽车防抱死制动系统控制方法研究[D].西安:西北工业大学,2004:16-20.
    [51]张长冲.ESP汽车电子稳定系统仿真研究[D].济南:山东大学,2007.
    [52]刘豹.现代控制理论[M].北京:机械工业出版社,2000.
    [53]张长冲.汽车电子稳定系统仿真研究[D].济南:山东大学,2007.
    [54] Leo Laine , Johan Andreasson.Control Allocation based Electronic Stability Control System for a Conventional Road Vehicle[C].IEEE Intelligent Transportation Systems Conference,2007:514-521.
    [55] Hanmin Lee,Gildong Kim,Sunghwan Park.A Study on Optimal Braking Control Using Adhesion Coefficient[C]. The 7th International Conference on Power Electronics,2007:343-346.
    [56]裴锦华.汽车ESP控制系统研究[D].重庆:重庆大学,2005:53-54.
    [57] Scott Kimbrough Based Wheel Slip Assignment for Vehicle Stability Enhancement [C].SAE Paper 1999-01-0476.
    [58] DengfengYang, Zhihua Feng, Desheng Ma.Developmentof Anti-lock Brake System in Virtual Environment[C].IEEE International Conference,2004.
    [59] Buckholtz KR.Use of Fuzzy Logic in Wheel Slip Assignment-PartⅡ:Yaw Rate control with Sideslip Angle Limitation. Society of Automotive Engineers,No.2002-01-1220.
    [60]崔胜民,林清芝.基于模糊控制的汽车ESP建模仿真[J].农业装备与车辆工程.2007(5):17-29.
    [61]刘倩.汽车防抱死制动系统(ABS)模糊控制方法的研究[D].长春:吉林大学,2008.
    [62]刘金锟,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407.
    [63]庞迪.基于变结构滑模控制理论的汽车操纵稳定性控制策略研究[D].重庆:重庆大学,,2005: 31-33.
    [64]李健,王国忠,付学增,管西强.滑模控制在车辆电控稳定系统中的应用[J].汽车工程,2004,26(3)295-296.
    [65]刘国福.基于滑移率的车辆防抱死制动系统的研究[D].武汉:国防科技大学,2007:89-99.
    [66] Sergey V. Drakunov, Behrouz Ashrafi, Alessandro Rosiglioni.Yaw Control Algorithm via Sliding Mode Control[C].IEEE American Control Conference, 2000,1:580 -583.
    [67] Mohammad Durali,Yusef Bahramzadeh.Vehicle Stability Improvement Using Fuzzy Controller and Neural-Network Slip Angle Observer[C]. SAE Paper,2003-01-2883.
    [68] Yuen-Kwok Chin, William C. Lin, David M. Sidlosky, David S. Rule.SLIDING-MODE ABS WHEEL-SLIP CONTROL[C]American Control Conference,1992: 1-8.
    [69]崔仲华,胡如夫:基于虚拟样机技术的车辆稳定性鲁棒控制仿真[J].中国工程机械学报,2007.
    [70] Taeyoung Chung; Kyongsu Yi. Design and evaluation of side slip angle based vehicle stability control scheme on a virual test track[C ] . IEEE Transaction on Control System Technology ,2006:224-234.
    [71]陈胜金,黄妙华,陈飚.浅析汽车稳定控制系统(ESP)的ECU的性能要求[J].轻型汽车技术,2004(8):8-9.
    [72] Timothy Ward Athan and Panos Y. Papalambros. Multicriteria Optimization of Anti-lock Braking System Control Algorithms. Eng. Opt.. 1996.,27:199-227.
    [73]刘金琨.滑膜变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [74]刘震,王厚军,龙兵,张治国.一种基于加权隐马尔可夫的自回归状态预测模型[J].电子学报,2009,37(10):2113-2118.
    [75]张自立,刘惟一.基于动态贝叶斯网的状态预测[J].云南大学学报(自然科学版),2007,29(1):35-39.
    [76]于德介,臧献国,刘坚,李德刚.基于灰色理论的设备状态预测[J].湖南大学学报(自然科学版),2007,34(11):33-36.
    [77]杨素春,王朝晖,于晓红.基于ARMA模型的往复式压缩机状态预测[J].石油化工设备,2007,36(1):1-3.
    [78]陈敏泽,周东华.一种基于强跟踪滤波器的自适应故障预报方法[J].上海海运学院学报,2001.22(3):35-40.
    [79] M.米奇可.陈荫三,余强(译).汽车动力学[M].北京:清华大学出版社,2009.
    [80] ISO 3888-1.Passenger cars.Test track for a severe lane-change manoeuvre-Part 1: Double lane-change[S].
    [81]付梦印,邓志红,张继伟.《Kalman滤波理论及其在导航系统中的应用》[M].北京:科学出版社,2004年1月第1版.
    [82] Yanrui Geng ,Jinling Wang. Adaptive estimation of multiple fading factors in Kalman filter for navigation applications[J]. GPS Solut.,2008 ,.12(4):273-279.
    [83] Thomac D. Gillespie(著),赵六奇,金达锋(译).《车辆动力学基础》[M].北京:清华大学出版社,2006年12月第1版.
    [84]中华人民共和国国家标准.国际蛇行试验[Z],GB/T6323.1-94.
    [85]周红妮,陶健民.质心侧偏角和横摆角速度对车辆稳定性的影响研究[J].湖北汽车工业学院学报,2008,22(2):6-10.
    [86]薛安克.鲁棒最优控制理论与应用[M].北京:科学出版社, 2008年03月,第一版.
    [87] Jinzhi Feng ,Fan Yu.Study of Vehicle Yaw Stability Control Based on Hardware-in-the-loop Simulation[C].SAE Paper,2005-01-1845.
    [88] Hiroyuki Yamaguchi,Katsuhiro Asano,Yasushi Amano.Development of Vehicle Stability Control System Based on Vehicle Sideslip Angle Estimation[C].SAE Paper,2001-01-0137.
    [89] Yoshifumi Aoki, Toshiyuki Uchida, Yoichi Hori.Experimental Demonstration of Body Slip Angle[C].Industrial Electronics Society,IEEE Conference ,2005:2620—2625.
    [90] Quan-Zhong Yan, Frank C. Thompson, Russell E. Paul and Jim J. Bielenda. Hardware in the Loop for Dynamic Chassis Control Algorithms Test and Validation[C].SAE Paper,2004-01-2059
    [91]韦作高,刘振军,叶明,邓涛.基于dSPACE的混合动力实验台系统开发研究[J].重庆交通大学学报(自然科学版),2008,27(3):470-473.
    [92]张良.基于xPCTarget的汽车ESP硬件在环仿真试验台的开发[D].长春:吉林大学.2008:20-24.
    [93] Taehun Hwang, Jihoon Rohl, Kihong Park, Jeongho Hwang, Kyu Hoon Lee, Kangwon Lee, Soo-Jin Lee and Young-Jun Kim. Development of HILS Systems for Active Brake Control Systems[C]. SICE-ICASE International Joint Conference 2006:4404-4408.
    [94]丁海涛,郭孔辉,张建伟,付浩,吕济明.汽车ESP硬件与驾驶员在回路仿真试验台的开发与应用[J].汽车工程,2006,28(4):346-350.
    [95] Zhang Yong,Yin Chengliang,Zhang Jiancheng.Matlab Based Human & Hardware-in-Loop Simulation for the Study on Vehicle Stability Control[J].Journal of Shanghai Jiaotong University (Science) ,2006,11(4):498-505.
    [96] J.M. Cho, D.H. Hwang, K.C. Lee, J. W Jeon, D. Y. Park, Y.J. Kim, J.S. Joh. DESIGN AND IMPLEMENTATION OF HILS SYSTEM FOR ABS ECU OF COMMERCIAL VEHICLES[C].IEEE conference,2001:1272-1277.
    [97] Ki-Chang Lee, Jeong-Woo Jeon, Don-Ha Hwang, and Yong-Joo Kim. Performance Evaluation of Antilock Brake Controller for Pneumatic Brake System[C]. IEEE conference,2003:301-307.
    [98]孔磊,宋健.多功能液压ABS混合仿真试验台设计研究[J].公路交通科技,2006,23(10):128-131.
    [99] Liang Chu, Yanli Hou, Minghui Liu, Jun Li, Member, IEEE, Yimin Gao, and Mehrdad Ehsani, Fellow, IEEE. Development of Air-ABS-HIL-Simulation Test Bench[C].Vehicle Power and Propulsion IEEE Conference.2007:691-695.
    [100]侯艳丽.商用车气压ABS电磁阀的动态特性研究[D].长春:吉林大学,2005:25-32.
    [101]张为,王伟达,丁能根,刘辉,徐向阳.基于Dspace的ASR硬件在环仿真平台开发及ECU性能试验[J].汽车技术,2009,(10):4-8.
    [102]丁能根,邹红明,余贵珍,王伟达,张坚.ABS硬件在环仿真的车辆系统建模[J].江苏大学学报(自然科学版),2008,29(6):478-481.
    [103]刘兆勇,陈晓青,成婷.气压ABS/ASR硬件在环仿真平台的设计与应用[J].汽车电器,2007,(12):9-11.
    [104]宋正华.汽车稳定性控制虚拟样车及硬件在环仿真研究[D].南京:东南大学,2005:38-42.
    [105]杨涤,李立涛,杨旭,朱承元.系统实时开发环境与应用[M].北京;清华大学出版社,2002.
    [106]谢晗,吴光强,邱绪云.基于xPC目标的实时仿真技术及实现.微计算机信息[J].2006,22(12):200-202.
    [107]苗立冬,邹广德,石沛林,宋天佳.基于xPC的汽车测控系统开发[J].汽车技术,2008,30(3):235-238.
    [108]杜尚丰,曹晓钟,徐津.CAN总线测控技术及其应用[M].北京:电子工业出版社,2007.
    [109]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991年12月第1版.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700